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Introduction

1.1 Prologue

Engineers learn early on in their careers how to harness energy from

nature, how to generate useful forms of energy, and how to transform

between different energy forms. Engineers usually first learn how to do

this in thermodynamics courses.

There are two fundamental concepts in thermodynamics, energy, E ,

and entropy, S. These are taught axiomatically in engineering courses,

with the help of the two laws of thermodynamics:

(1) energy is always conserved, and

(2) the entropy difference for any change is non-negative.

Typically, the first law of thermodynamics for the energy of a system

is cast into a balance equation of the form:

{

change of energy in the system

between times t1 and t2

}

=

{

energy that entered the system

between times t1 and t2

}

−

{

energy that exited the system

between times t1 and t2

}

+

{

energy generated in the system

between times t1 and t2

}

.

(1.1)

The second law of thermodynamics for the entropy of a system can

be presented through a similar balance, with the generation term never

taking any negative values. Alternatively, the second law is presented

with an inequality for the entropy, �S ≥ 0, where �S is the change of

entropy of the system for a well-defined change of the system’s state.

These laws have always served engineering disciplines well. They

are adequate for purposes of engineering distillation columns, aircraft

engines, power plants, fermentation reactors, or other large, macroscopic

systems and processes. Sound engineering practice is inseparable from

understanding the first principles underlying physical phenomena and

processes, and the two laws of thermodynamics form a solid core of this

understanding.
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2 Introduction

Macroscopic phenomena and processes remain at the heart of engi-

neering education, yet the astonishing recent progress in fields like

nanotechnology and genetics has shifted the focus of engineers to the

microcosm. Thermodynamics is certainly applicable at the microcosm,

but absent from the traditional engineering definitions is a molecular

interpretation of energy and entropy. Understanding thermodynamic

behavior at small scales can then be elusive.

The goal of this book is to present thermodynamics from a micro-

scopic point of view, introducing engineers to the body of knowledge

needed to apply thermodynamics and solve engineering challenges at

the molecular level. Admittedly, this knowledge has been created in

the physical and chemical sciences for more than one hundred years,

with statistical thermodynamics. There have been hundreds of books

published on this subject, since Josiah Willard Gibbs first developed

his ensemble theory in the 1880s and published the results in a book in

1902. What then could another textbook have to offer?

I am hoping primarily three benefits:

1. A microscopic interpretation of thermodynamic concepts that engi-

neers will find appropriate, one that does not dwell in the more eso-

teric concepts of statistical thermodynamics and quantum mechanics.

I should note that this book does not shy away from mathematical

derivations and proofs. I actually believe that sound mathematics is

inseparable from physical intuition. But in this book, the presentation

of mathematics is subservient to physical intuition and applicability

and not an end in itself.

2. A presentation of molecular dynamics and Monte Carlo simulations

as natural extensions of the theoretical treatment of statistical ther-

modynamics. I philosophically subscribe to the notion that computer

simulations significantly augment our natural capacity to study and

understand the natural world and that they are as useful and accu-

rate as their underlying theory. Solidly founded on the theoretical

concepts of statistical thermodynamics, computer simulations can

become a potent instrument for assisting efforts to understand and

engineer the microcosm.

3. A brief coverage of stochastic processes in general, and of stochastic

reaction kinetics in particular. Many dynamical systems of scien-

tific and technological significance are not at the thermodynamic

limit (systems with very large numbers of particles). Stochasticity

then emerges as an important feature of their dynamic behavior.

Traditional continuous-deterministic models, such as reaction rate
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ordinary differential equations for reaction kinetics, do not capture

the probabilistic nature of small systems. I present the theory for

stochastic processes and discuss algorithmic solutions to capture

the probabilistic nature of systems away from the thermodynamic

limit.

To provide an outline of the topics discussed in the book, I present

a summary of the salient concepts of statistical thermodynamics in the

following section.

1.2 If we had only a single lecture in statistical thermodynamics

The overarching goal of classical statistical thermodynamics is to

explain thermodynamic properties of matter in terms of atoms. Briefly,

this is how:

Consider a system with N identical particles contained in volume

V with a total energy E . Assume that N , V , and E are kept constant.

We call this an N V E system (Fig. 1.1). These parameters uniquely

define the macroscopic state of the system, that is all the rest of the

thermodynamic properties of the system are defined as functions of N ,

V , and E . For example, we can write the entropy of the system as a

function S = S(N , V, E), or the pressure of the system as a function

P = P(N , V, E). Indeed, if we know the values of N , V , and E for

a single-component, single-phase system, we can in principle find the

values of the enthalpy H , the Gibbs free energy G, the Helmholtz free

energy A, the chemical potential �, the entropy S, the pressure P , and

the temperature T . In Appendix B, we summarize important elements

of thermodynamics, including the fundamental relations between these

properties.

Figure 1.1 System with N particles contained in volume V with a total energy E .

www.cambridge.org/9780521765619
www.cambridge.org


Cambridge University Press
978-0-521-76561-9 — Statistical Thermodynamics and Stochastic Kinetics
Yiannis N. Kaznessis 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Introduction

A fundamentally important concept of statistical thermodynamics is

the microstate of a system. We define a microstate of a system by the

values of the positions and velocities of all the N particles. We can

concisely describe a microstate with a 6N -dimensional vector

X = (r1, r2, . . . , r N , ṙ1, ṙ2, . . . , ṙ N ). (1.2)

In Eq. 1.2, r i are the three position coordinates and ṙ i are the three

velocity coordinates of particle i , respectively, with i = 1, 2, . . . , N .

By definition, ṙ i = dr i/dt . Note that the positions and the velocities of

atoms do not depend on one another.

An important postulate of statistical thermodynamics is that each

macroscopic property M of the system (for example the enthalpy H , or

the pressure P) at any time t is a function of the positions and veloci-

ties of the N particles at t , i.e., M(t) = M(X (t)). Then, any observed,

experimentally measured property Mobserved is simply the time average

of instantaneous values M(t),

Mobserved = 〈M〉 = lim
T →∞

1

T

∫ T

0

M(X (t))dt, (1.3)

where T is the time of the experimental measurement.

Equation (1.3) provides a bridge between the observable macroscopic

states and the microscopic states of any system. If there were a way to

know the microscopic state of the system at different times then all

thermodynamic properties could be determined. Assuming a classical

system of point-mass particles, Newtonian mechanics provides such a

way. We can write Newton’s second law for each particle i as follows:

mi r̈ i = F i , (1.4)

where mi is the mass of particle i , r̈ i = d2r i/dt2, and F i is the force

vector on particle i , exerted by the rest of the particles, the system walls,

and any external force fields.

We can define the microscopic kinetic and potential energies, K and

U , respectively so that E = K + U . The kinetic energy is

K = K (ṙ1, ṙ2, . . . , ṙ N ) =

N
∑

i=1

1

2
mi ṙ

2
i . (1.5)

The potential energy is

U = U (r1, r2, . . . , r N ), (1.6)

www.cambridge.org/9780521765619
www.cambridge.org


Cambridge University Press
978-0-521-76561-9 — Statistical Thermodynamics and Stochastic Kinetics
Yiannis N. Kaznessis 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

If we had only a single lecture in statistical thermodynamics 5

so that (for conservative systems)

F i = −
∂U

∂r i

. (1.7)

Albert Einstein attempted to infer the laws of thermodynamics from

Newtonian mechanics for systems with large but finite degrees of free-

dom. In principle, a set of initial conditions at t = 0, X (0), would suffice

to solve the second law of motion for each particle, determine X (t) and

through Eq. (1.3) determine thermodynamic properties. Einstein was,

however, unsuccessful in his quest. A simple reason is that it is not

practically feasible to precisely determine the initial microscopic state

of a system with a large number of particles N , because it is not possible

to conduct 6N independent experiments simultaneously.

The impossibility of this task notwithstanding, even if the initial con-

ditions of a system could be precisely determined in a careful experiment

at t = 0 , the solution of 6N equations of motion in time is not possible

for large numbers of particles. Had Einstein had access to the super-

computing resources available to researchers today, he would still not

be able to integrate numerically the equations of motion for any system

size near N = 1023. To appreciate the impossibility of this task, assume

that a computer exists that can integrate for one time step 10 000 coupled

ordinary differential equations in one wall-clock second. This computer

would require 1020 seconds to integrate around 1024 equations for this

single time step. With the age of the universe being, according to NASA,

around 13.7 billion years, or around 432 × 1015 seconds, the difficulty of

directly connecting Newtonian mechanics to thermodynamics becomes

apparent.

Thankfully, Josiah Willard Gibbs∗ developed an ingenious conceptual

framework that connects the microscopic states of a system to macro-

scopic observables. He accomplished this with the help of the concept

of phase space (Fig. 1.2). For a system with N particles, the phase space

is a 6N dimensional space where each of the 6N orthogonal axes cor-

responds to one of the 6N degrees of freedom, i.e., the positions and

velocities of the particles. Each point in phase space is identified by a

vector

X = (r1, r2, . . . , r N , ṙ1, ṙ2, . . . , ṙ N ), (1.8)

∗ It is noteworthy that Gibbs earned a Ph.D. in Engineering from Yale in 1863. Actually, his was
the first engineering doctorate degree awarded at Yale. Gibbs had studied Mathematics and
Latin as an undergraduate and stayed at Yale for all of his career as a Professor in Mathematical
Physics.
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6 Introduction

or equivalently by a vector

X = (r1, r2, . . . , r N , p
1
, p

2
, . . . , p

N
), (1.9)

where p
i
= mi ṙ i , is the momentum of particle i .

Consequently, each point in phase space represents a microscopic

state of the system. For an N V E system the phase space is finite, since

no position axis can extend beyond the confines of volume V and no

momentum axis can extend beyond a value that yields the value of the

total kinetic energy.

In classical mechanics the phase space is finite, of size �, but because

it is continuous, the number of microscopic states is infinite. For each

state identified with a point X , a different state can be defined at X + d X ,

where d X is an infinitesimally small distance in 6N dimensions.

Thanks to quantum mechanics, we now know that this picture of a

continuous phase space is physically unattainable. Werner Heisenberg’s

uncertainty principle states that the position and momentum of a par-

ticle cannot be simultaneously determined with infinite precision. For

a particle confined in one dimension, the uncertainties in the position,

�x , and momentum, �p, cannot vary independently: �x�p ≥ h/4�,

where h = 6.626 × 10−34 m2 kg/s is Planck’s constant.

The implication for statistical mechanics is significant. What the

quantum mechanical uncertainty principle does is simply to discretize

the phase space (Fig. 1.3). For any N V E system, instead of an infinite

number of possible microscopic states, there is a finite number of micro-

scopic states corresponding to the macroscopic N V E system. Let us

call this number � and write �(N , V, E) to denote that it is determined

by the macroscopic state.

Figure 1.2 Phase space Ŵ. Each microscopic state of a macroscopic N V E system

is represented by a single point in 6N dimensions.

p1

q1

p3N

q3N

Γ

X
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Another fundamental postulate of statistical thermodynamics is that

all these � microscopic states have the same probability of occurring.

This probability is then

P = 1/�. (1.10)

Ludwig Boltzmann showed around the same time as Gibbs that the

entropy of an N V E system is directly related to the number of micro-

scopic states �. Gibbs and Boltzmann were thus able to provide a direct

link between microscopic and macroscopic thermodynamics, one that

proved to be also useful and applicable. The relation between entropy

S(N , V, E) and the number of microscopic states �(N , V, E) has been

determined by numerous different methods. We will present a concise

one that Einstein proposed:

1. Assume there generally exists a specific function that relates the

entropy of an N V E system to the number of microscopic states

that correspond to this N V E macroscopic state. The relation can be

written as

S = �(�). (1.11)

2. Consider two independent systems A and B. Then

SA = �(�A), (1.12)

and

SB = �(�B). (1.13)

3. Consider the composite system of A and B. Call it system AB.

Since entropy is an extensive property, the entropy of the composite

system is

SAB = �(�AB) = SA + SB = �(�A) + �(�B). (1.14)

Figure 1.3 The available phase space to any macroscopic state is an ensemble of

discrete microscopic states. The size of the available phase space is �, and the

number of microscopic states is �.

p1

q1

p3N

q3N

Σ

Ω
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8 Introduction

4. Since the systems are independent, the probability of the composite

system being in a particular microscopic state is equal to the

product of probabilities that systems A and B are in their respective

particular microscopic state, i.e.,

PAB = PA PB . (1.15)

Therefore the number of microscopic states of the composite system

can be written as

�AB = �A�B . (1.16)

5. Combining the results in the two previous steps,

�(�AB) = �(�A�B) = �(�A) + �(�B). (1.17)

The solution of this equation is

�(�) = kB ln(�), (1.18)

and thus

S = kB ln(�), (1.19)

where kB = 1.38065 × 10−23 m2kg s−2K−1 is Boltzmann’s constant.

This equation, which is called Boltzmann’s equation, provides a direct

connection between microscopic and macroscopic properties of matter.

Importantly, the entropy of N V E systems is defined in a way that

provides a clear physical interpretation.

Looking at the phase space not as a succession in time of microscopic

states that follow Newtonian mechanics, but as an ensemble of micro-

scopic states with probabilities that depend on the macroscopic state,

Gibbs and Boltzmann set the foundation of statistical thermodynamics,

which provides a direct connection between classical thermodynamics

and microscopic properties.

This has been accomplished not only for N V E systems, but for

N V T , N PT , and �V T systems among others. Indeed, for any system

in an equilibrium macroscopic state, statistical thermodynamics focuses

on the determination of the probabilities of all the microscopic states

that correspond to the equilibrium macrostate. It also focuses on the

enumeration of these microscopic states. With the information of how

many microscopic states correspond to a macroscopic one and of what

their probabilities are, the thermodynamic state and behavior of the

system can be completely determined.
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Remembering from thermodynamics that

d E = T d S − PdV + �d N , (1.20)

we can write, for the N V E system

∂S

∂ E

∣

∣

∣

∣

N ,V

=
1

T
, (1.21)

or

∂ ln(�)

∂ E

∣

∣

∣

∣

N ,V

=
1

kB T
. (1.22)

Similarly,

∂ ln(�)

∂V

∣

∣

∣

∣

N ,E

=
P

kB T
, (1.23)

and

∂ ln(�)

∂ N

∣

∣

∣

∣

E,V

= −
�

kB T
. (1.24)

In this book I present the theory for enumerating the microscopic

states of equilibrium systems and determining their probabilities. I

then discuss how to use this knowledge to derive thermodynamic

properties, using Eqs. 1.21–1.24, or other similar ones for different

ensembles.

As an example, consider an ideal gas of N particles, in volume V ,

with energy E . The position of any of these non-interacting particles is

independent of the positions of the rest of the particles. We discuss in

Chapter 4 that in this case we can enumerate the microscopic states. In

fact we find that

�(N , V, E) ∝ V N . (1.25)

Using Eq. 1.23 we can then write

P

kB T
=

N

V
, (1.26)

and rearranging

PV = NkB T . (1.27)

We can show that the Boltzmann constant is equal to the ratio of the

ideal gas constant over the Avogadro number, kB = R/NA. Then for
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ideal gases

PV = n RT, (1.28)

where n is the number of moles of particles in the system.

First stated by Benoı̂t Paul Emile Clapeyron in 1834, the ideal gas

law, an extraordinary and remarkably simple equation that has since

guided understanding of gas thermodynamics, was originally derived

empirically. With statistical thermodynamics the ideal gas law is derived

theoretically from simple first principles and statistical arguments.

I discuss how other equations of state can be derived theoretically

using information about the interactions at the atomic level. I do this

analytically for non-ideal gases, liquids, and solids of single compo-

nents of monoatomic and of diatomic molecules. I then introduce com-

puter simulation techniques that enable us numerically to connect the

microcosm with the macrocosm for more complex systems, for which

analytical solutions are intractable.

In Chapter 2, I present the necessary elements of probability and com-

binatorial theory to enumerate microscopic states and determine their

probability. I assume no prior exposure to statistics, which is regretfully

true for most engineers.

I then discuss, in Chapter 3, the classical mechanical concepts

required to define microscopic states. I introduce quantum mechan-

ics in order to discuss the notion of a discrete phase space. In Chapter 4,

I introduce the classical ensemble theory, placing emphasis on the N V E

ensemble.

In Chapter 5, I define the canonical N V T ensemble. In Chapter 6, fluc-

tuations and the equivalence of various ensembles is presented. Along

the way, we derive the thermodynamic properties of monoatomic ideal

gases.

Diatomic gases, non-ideal gases, liquids, crystals, mixtures, reacting

systems, and polymers are discussed in Chapters 7–11.

I present an introduction to non-equilibrium thermodynamics in

Chapter 12, and stochastic processes in Chapter 13.

Finally, in Chapters 14–18, I introduce elements of Monte Carlo,

molecular dynamics and stochastic kinetic simulations, presenting them

as the natural, numerical extension of statistical mechanical theories.
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