Contents

Preface xiii

1 Introduction .. 1
 1.1 Motivation 1
 1.2 Contents 2

2 Some Elements of Continuum Mechanics 6
 2.1 Preamble 6
 2.2 Matter and Its Distribution 6
 2.3 Motion of Matter: Kinematics and Material Points 7
 2.4 The Formal (Axiomatic) Approach to Matter and Material Points 9
 2.5 Mass Conservation 11
 2.6 Dynamics I: Global Relations 14
 2.6.1 Introduction 14
 2.6.2 Linear Momentum Balance 14
 2.6.3 Rotational Momentum Balance 16
 2.6.4 Rigid Body Dynamics 17
 2.7 Dynamics II: Local Relations 24
 2.8 Thermomechanics 29
 2.8.1 Global Balance of Energy 29
 2.8.2 Aside on the Spin Vector Field \(\mathbf{w} \) and Power Expended by Couples 29
 2.8.3 Local Balance of Energy 30

3 Motivation for Seeking a Molecular Scale-Dependent Perspective on Continuum Modelling 33
 3.1 Preamble 33
 3.2 The Natural Continuum Prejudice 33
 3.3 The Continuum Viewpoint on Mass Density \(\rho \) 34
 3.4 Boundaries and the Scale Dependence of \(\rho \) 34
 3.5 Continuity of \(\rho \) and the Discrete Nature of Matter 36
 3.6 Velocity 37
 3.7 The Pressure in a Gas 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8 Reproducibility</td>
<td>42</td>
</tr>
<tr>
<td>3.9 Summary of Conceptual Problems</td>
<td>42</td>
</tr>
<tr>
<td>3.10 Motivation for Space-Time Averaging of Molecular Quantities</td>
<td>43</td>
</tr>
<tr>
<td>4 Spatial Localisation, Mass Conservation, and Boundaries</td>
<td>44</td>
</tr>
<tr>
<td>4.1 Preamble</td>
<td>44</td>
</tr>
<tr>
<td>4.2 Weighted Averages and the Continuity Equation</td>
<td>44</td>
</tr>
<tr>
<td>4.3 The Simplest Choice (w_e) of Weighting Function</td>
<td>48</td>
</tr>
<tr>
<td>4.3.1 Definition of (w_e)</td>
<td>48</td>
</tr>
<tr>
<td>4.3.2 The Boundary Corresponding to (w_e)</td>
<td>48</td>
</tr>
<tr>
<td>4.3.3 Integration of (\rho_e) and (p_e) over a Region</td>
<td>52</td>
</tr>
<tr>
<td>4.3.4 A Wrinkle to Be Resolved: Use of a Mollifier</td>
<td>53</td>
</tr>
<tr>
<td>4.3.5 Further Mollification Considerations</td>
<td>56</td>
</tr>
<tr>
<td>4.3.6 Regularity of Mollified Fields: Polynomial Mollifiers</td>
<td>58</td>
</tr>
<tr>
<td>4.3.7 Mollification as a Natural Consequence of Spatial Imprecision</td>
<td>60</td>
</tr>
<tr>
<td>4.4 Other Choices of Weighting Function</td>
<td>61</td>
</tr>
<tr>
<td>4.4.1 Cellular Averaging</td>
<td>61</td>
</tr>
<tr>
<td>4.4.2 Choices Associated with Repeated Averaging</td>
<td>62</td>
</tr>
<tr>
<td>4.4.3 Other Choices</td>
<td>67</td>
</tr>
<tr>
<td>4.5 Temporal Fluctuations</td>
<td>69</td>
</tr>
<tr>
<td>4.6 Summary</td>
<td>70</td>
</tr>
<tr>
<td>5 Motions, Material Points, and Linear Momentum Balance</td>
<td>71</td>
</tr>
<tr>
<td>5.1 Preamble</td>
<td>71</td>
</tr>
<tr>
<td>5.2 Motions and Material Points</td>
<td>72</td>
</tr>
<tr>
<td>5.3 Motions and Material Points for Non-Reacting Binary Mixtures</td>
<td>74</td>
</tr>
<tr>
<td>5.4 Linear Momentum Balance Preliminaries: Intermolecular Forces</td>
<td>76</td>
</tr>
<tr>
<td>5.5 Linear Momentum Balance</td>
<td>80</td>
</tr>
<tr>
<td>5.5.1 Derivation of the Balance Relation</td>
<td>80</td>
</tr>
<tr>
<td>5.5.2 The Thermal Nature of (D_w)</td>
<td>82</td>
</tr>
<tr>
<td>5.5.3 Comparison of Contributions (T_w) and (D_w) to (T_w)</td>
<td>83</td>
</tr>
<tr>
<td>5.6 Determination of Candidate Interaction Stress Tensors</td>
<td>84</td>
</tr>
<tr>
<td>5.6.1 Preamble</td>
<td>84</td>
</tr>
<tr>
<td>5.6.2 Simple Form</td>
<td>84</td>
</tr>
<tr>
<td>5.6.3 Form for Pairwise-Balanced Interactions</td>
<td>85</td>
</tr>
<tr>
<td>5.6.4 Simple Choice of (b_{ij}) for Pairwise-Balanced Interactions</td>
<td>85</td>
</tr>
<tr>
<td>5.6.5 Hardy-Type Choice of (b_{ij}) for Pairwise-Balanced Interactions</td>
<td>86</td>
</tr>
<tr>
<td>5.6.6 Noll-Type Choice of (b_{ij}) for Pairwise-Balanced Interactions</td>
<td>87</td>
</tr>
<tr>
<td>5.6.7 Conclusions</td>
<td>87</td>
</tr>
<tr>
<td>5.7 Calculation of Interaction Stresses for the Simplest Form of Weighting Function (w_e)</td>
<td>88</td>
</tr>
<tr>
<td>5.7.1 Determination of (a_i) and Calculation of (sT_{w_e}) and (sbT_{w_e})</td>
<td>88</td>
</tr>
<tr>
<td>5.7.2 Determination of (b_{ij}) and Calculation of (bT_{w_e})</td>
<td>90</td>
</tr>
<tr>
<td>5.7.3 The Geometrical Complexity of (b_{ij})</td>
<td>91</td>
</tr>
<tr>
<td>5.8 Comparison of Interaction Stress Tensors for the Simplest Form of Weighting Function (w_e)</td>
<td>91</td>
</tr>
</tbody>
</table>
Contents

- **5.8.1 Values for Two Simple Geometries** 91
- **5.8.2 Integration over Planar Surfaces** 92
- **5.9 Integrals of General Interaction Stress Tensors over the Boundaries of Regular Regions** 95
 - **5.9.1 Results for a General Choice of Weighting Function** 95
 - **5.9.2 Results for Choice \(w = w_\epsilon\)** 98
 - **5.9.3 Further Remarks for Choice \(w = w_\epsilon\)** 100

- **6 Balance of Energy** 102
 - **6.1 Preamble** 102
 - **6.2 Derivation of Energy Balances** 102
 - **6.3 A Subatomic Perspective** 110

- **7 Fine-Scale Considerations: Moments, Couple Stress, Inhomogeneity, and Energetics** 115
 - **7.1 Preamble** 115
 - **7.2 Generalised Moment of Momentum Balance** 115
 - **7.3 Inhomogeneity and Moment of Mass Conservation** 121
 - **7.4 Fine-Scale Energetics** 123
 - **7.5 Summary and Discussion** 128

- **8 Time Averaging and Systems with Changing Material Content** 130
 - **8.1 Preamble** 130
 - **8.2 Motivation** 130
 - **8.3 Time Averaging** 132
 - **8.4 The Time-Averaged Continuity Equation** 134
 - **8.5 Time-Averaged Forms of Linear Momentum Balance** 135
 - **8.6 Time-Averaged Forms of Energy Balance** 137
 - **8.7 Systems with Changing Material Content I: General Global Considerations** 139
 - **8.8 Systems with Changing Material Content II: Specific Global Examples** 146
 - **8.8.1 Rocketry** 146
 - **8.8.2 Jet Propulsion** 148
 - **8.8.3 Falling Raindrop** 150
 - **8.9 Systems with Changing Material Content III: Local Evolution Equations at Specific Scales of Length and Time** 150
 - **8.9.1 Mass Balance** 150
 - **8.9.2 Linear Momentum Balance** 153
 - **8.9.3 Energy Balance** 157
 - **8.9.4 Concluding Remarks** 164
 - **8.10 Summary** 165

- **9 Elements of Mixture Theory** 167
 - **9.1 Preamble** 167
 - **9.2 Mass Conservation and Material Points for a Non-Reacting Mixture Constituent** 167
Contents

9.3 Linear Momentum Balance for a Non-Reacting Mixture Constituent 169
9.4 On Relating Total Mixture Fields to Those of Constituents 174
9.5 A Paradox in Early Continuum Theories of Mixtures 177
9.6 Energy Balances 179
9.7 On Reacting Mixtures
 9.7.1 General Considerations 184
 9.7.2 A Simple Model of a Reacting Ternary Mixture 184
9.8 Concluding Remarks 187

10 Fluid Flow through Porous Media 188
 10.1 Preamble 188
 10.2 The General Forms of Mass Conservation and Linear Momentum Balance 189
 10.3 Linear Momentum Balance at Scale $\epsilon = \epsilon_1$ with $w = w_{\epsilon_1}$ 192
 10.4 Linear Momentum Balance at Scale $\epsilon = \epsilon_2$ with $w = w_{\epsilon_2}$ 193
 10.5 Flow of an Incompressible Linearly Viscous Fluid through a Porous Body It Saturates 195

11 Linkage of Microscopic and Macroscopic Descriptions of Material Behaviour via Cellular Averaging 209
 11.1 Preamble 209
 11.2 Cellular Averaging 209
 11.3 Concluding Remarks 223

12 Modelling the Behaviour of Specific Materials: Constitutive Relations and Objectivity 225
 12.1 Preamble 225
 12.2 Microscopic Considerations and the Key Role Played by Inertial Observers 226
 12.3 Objectivity
 12.3.1 Objectivity in General 237
 12.3.2 Objectivity in Deterministic Continuum Mechanics 238
 12.3.3 Elastic Behaviour 239
 12.3.4 Simple Materials 242
 12.3.5 Viscous Fluids 243
 12.3.6 Other Materials and Considerations 247
 12.4 Remarks on the mfi/isrbm Controversy
 12.4.1 Introduction 248
 12.4.2 Material Frame-Indifference 249
 12.4.3 Invariance under Superposed Rigid Body Motions 249
 12.4.4 Comparison of mfi, isr, isrbm, and Objectivity 249
 12.4.5 A Personal History 252
 12.4.6 A Final Remark 254

13 Comments on Non-Local Balance Relations 255
 13.1 Preamble 255
Contents

13.2 Edelen’s Non-Local Field Theories 255
13.3 Peridynamics 258

14 Elements of Classical Statistical Mechanics 263
14.1 Preamble 263
14.2 Basic Concepts in Classical Statistical Mechanics 263
14.2.1 Time Evolution in Phase Space of a System of Interacting Point Masses 263
14.2.2 Ensembles, Probability Density Functions, and Ensemble Averaging 264
14.3 Mass Conservation and Linear Momentum Balance 269
14.4 Generalisation of Irving and Kirkwood/Noll Results 276
14.5 Selection of a Probability Density Function: Projection Operator Methodology 281

15 Summary and Suggestions for Further Study 290
15.1 Preamble 290
15.2 Summary 290
15.3 Suggestions for Further Study 292
15.3.1 Interfacial Phenomena and Boundary Conditions 292
15.3.2 Generalised and Structured Continua 295
15.3.3 Configurational Forces 296
15.3.4 Reacting Mixtures 296
15.3.5 Electromagnetic Effects 297
15.3.6 Irreversibility 297
15.4 A Final Remark 302

Appendix A: Vectors, Vector Spaces, and Linear Algebra 303
Preamble 303
A.1 The Algebra of Displacements 304
A.2 Dimensionality 305
A.3 Angles, Magnitudes, and Euclidean Structure 306
A.4 Vectorial Entities and the Fundamental Space \(\mathcal{V} \) 307
A.5 Products in \(\mathcal{V} \) (Products of Physical Descriptors) 309
A.6 Unit Vectors, Orthonormal Bases, and Related Components 312
A.7 Linear Transformations on \(\mathcal{V} \) and the General Definition of a Vector Space over \(\mathbb{R} \) 314
A.8 The Transpose of a Linear Transformation on \(\mathcal{V} \) and Tensor Products of Vectors 316
A.9 Orthonormal Bases and Matrix Representation of Vectors and Linear Transformations 318
A.10 Invertibility 321
A.11 Alternating Trilinear Forms on \(\mathcal{V} \) 324
A.12 Principal Invariants of \(\mathbf{L} \in \text{Lin} \mathcal{V} \) 326
 A.12.1 The First Principal Invariant: \(I_1(\mathbf{L}) = \text{tr} \mathbf{L} \) 326
 A.12.2 The Second Principal Invariant: \(I_2(\mathbf{L}) \) 328
 A.12.3 The Third Principal Invariant: \(I_3(\mathbf{L}) = \det \mathbf{L} \) 329
Contents

A.13 Eigenvectors, Eigenvalues, and the Characteristic Equation for a Linear Transformation 331
A.14 A Natural Inner Product for Lin V 332
A.15 Skew Linear Transformations and Axial Vectors 336
A.16 Orthogonal Transformations and Their Characterisation 338
A.17 Symmetric and Positive-Definite Linear Transformations 343
A.18 The Polar Decomposition Theorem 346
A.19 Third-Order Tensors and Elements of Tensor Algebra 347
A.20 Direct, Component, and Cartesian Tensor Notation 352

Appendix B: Calculus in Euclidean Point Space \(\mathcal{E} \)

- **Preamble** 356
- **B.1 Euclidean Point Space \(\mathcal{E} \)** 357
- **B.2 Cartesian Co-ordinate Systems for \(\mathcal{E} \)** 359
- **B.3 Deformations in \(\mathcal{E} \)** 359
 - **B.3.1 Introduction** 359
 - **B.3.2 Isometries and Their Characterisation** 360
 - **B.3.3 Homogeneous Deformations** 363
- **B.4 Generalisation of the Concept of a Derivative** 366
 - **B.4.1 Preamble** 366
 - **B.4.2 Differentiation of a Scalar Field** 367
 - **B.4.3 Differentiation of Point-Valued Fields** 369
 - **B.4.4 Differentiation of Vector Fields** 371
 - **B.4.5 Differentiation of Linear Transformation Fields** 372
 - **B.4.6 Remarks** 373
 - **B.4.7 Differentiation of Products and Compositions** 373
 - **B.4.8 Differentiation of the Determinant Function** 376
- **B.5 Jacobians, Physically Admissible Deformations, and Kinematics** 379
- **B.6 (Riemann) Integration over Spatial Regions** 383
- **B.7 Divergences and Divergence Theorems** 389
- **B.8 Calculations in Section 7.4** 395
- **B.9 Proof of Results 10.5.1** 396
- **B.10 Derivatives of Objective Fields** 398
- **B.11 Calculus in Phase Space \(\mathcal{P} \) When Identified with \(\mathbb{R}^{6N} \)** 400
 - **B.11.1 Basic Concepts** 400
 - **B.11.2 Deformations and Differential Calculus in \(\mathbb{R}^{6N} \)** 402
 - **B.11.3 Integration in \(\mathbb{R}^{6N} \)** 405

References 407
Index 413