Index

absolute spin, 246
acceleration
for different observers, 229
field, 8, 10, 25, 74, 81, 157
mass centre, 16
admissible
deformation, 365, 380
microstate, 264
algebra of displacements, 304
\(\alpha\)-time averaging, 132
alternating forms
\(6N\)-linear, 401
trilinear, 324–326
angular
resolution, 35
velocity, 22
angular (rotational) momentum
generalised, 115–121
global balance, 16
local balance, 28
assembly energy density, 108
atomic nuclei, 77, 110
average
cellular, 61, 209–211
\(\Delta\)-time, 77, 111
local space-time, 134–139
local spatial, 44
local time, 77, 111, 132–134
REV intrinsic pressure, 204
averaging
cellular, 61, 209–224
for porous bodies, 197–208
repeated, 62–67
axial vector, 21, 28, 119, 337
back pressure on fluid in porous body, 199
balance of angular momentum: See balance of rotational momentum
balance of energy, 29–32, 102–114, 157–164, 179–184, 186
global form, 29
interior form, 31
time-averaged local form, 137–139
balance of generalised moment of momentum, 115–121
local forms, 116–119
interior form, 25
global form, 14
local forms, 27, 81–82, 136–137, 156–157, 170–172, 190, 193, 196, 200–203, 206, 223, 273, 276
time averaged forms, 135–137, 223
balance of mass, 150–152
local form, 152
balance of moment of mass, 121
balance of rotational momentum, 16–17, 25–29, 119–120
global form, 16
interior form, 25
local form, 28, 119–120
balanced (pairwise) interactions, 78, 85
basis
for Lin V, 320
orthonormal, 313, 318, 335
right-handed, 313, 318
for vector space, 315
behaviour
continuously reproducible, 281
reproducible, 1
binary mixture, 74
non-diffusive, 75
non-reacting, 74
binding energy, 109–110
body, 1, 6, 44
couple density, 25
force density, 14, 80
rigid, 17–24
bond function (Hardy), 86
boundary, 34, 48
boundary (cont.)
 conditions, 293
geometric, 50–51
molecules, 50
of pores in porous medium, 50–51
triangulated geometric, 52
Brinkman equation, 206
Brownian motion, 40
calculus in euclidean space, 356–395
differential, 366–379
integral, 383–389
calculus in phase space, 400–406
candidate interaction stress tensors, 84–91
capillary effects, 192, 292–295
cartesian co-ordinate system, 359
tensor notation, 355, 359, 369–373, 375–376
Cauchy stress tensor, 3, 28, 83, 101, 156, 172, 223, 273
cell, ϵ-, 210
cellular averaging, 61, 209–224
centre of mass, 15
changing material content, 139–166
characterisation of
homogeneous deformation, 363–365
invertibility for linear transformations, 321
isometry, 360–363
orthogonal linear transformation, 338–343
characteristic equation, 331
for proper orthogonal transformation, 340
for skew linear transformation, 337
charge, electric, 297
force on, 301
classical physics, 227
statistical mechanics, 263–289
clocks, 227
cloud, electron, 79
comparison of interaction stress tensors, 91–95
components, 306, 352–355
compressible viscous fluid, 193
concentration (of constituent in mixture), 169
conceptual problems, 2, 34, 37, 42
conductive heat supply, 29
configuration, 9
current, 9
reference, 10
space, 263
configurational forces, 296
connectivity, 188
conservation
of mass, 11–14, 44–47, 168–169, 189–190
of moment of mass, 121–122
constituent (in a mixture), 167
constitutive relations, 225
for elastic, 239
for simple materials, 242
for viscous fluids, 243
contact
force, 14
line, 192
continuity equation, 12, 44, 47
time-averaged, 134–135
time-reversed, 298–299
continuity of mass density, 45
continuously reproducible behaviour, 281
continuum
prejudice, 33
viewpoint, 1, 33–34
controversy, mfi/isrbm, 248–254
co-ordinate-free (direct) notation, 303, 376
co-ordinate system, 236, 359
couple density
body, 22, 115
surface, 25, 117–121
couple stress tensor, 28, 117–121
interaction, 117–118
cracks, 262
creeping flow of fluid in porous body, 202
criteria for invertibility of linear transformations, 321–323
Dalton’s Law, 174
Darcy’s ‘Law’, 206
defow, 9, 356, 359
gradient, 380
homogeneous, 356, 363–365
inversion, 18, 342, 363
isometry, 356
phase space, 263, 379
physically admissible, 363, 365, 380
reflection, 18, 342
rotation, 342, 362–364
simple stretch, 356, 365
δ
δ-envelope, 213, 220
function notation, 62, 268–269, 283
Kronecker, 313
Δ-time average, 77, 111, 132, 185
density
body couple, 25, 115–116, 128
force, 14, 80
double force, 258–261, 274
energy of assembly, 108
heat energy, 103, 159
interaction force, 80
internal energy, 29, 109
mass, 6, 34, 44–45, 48, 167, 211, 218, 228, 268
moment of momentum, 116
momentum, 47, 150–151, 167, 211, 218
probability, 79, 265
second moment of mass, 123
surface couple, 16
third moment of mass, 125
derivative (gradient), 367
directional, 368, 370, 371, 372
generalisation of, 367–372
of linear transformation field, 372
of objective fields, 398–400
of point field, 369–370
of scalar field, 367–369, 403
of vector field, 371–372, 404
determinant, 329–331
differentiation of, 376–379
deterministic
behaviour, 42, 239
differential
continuum theories, 1, 237, 238
differential calculus in phase space, 402–404
differentiation of
compositions and products, 373–376
determinantal function, 376–379
linear transformation fields, 372
objective fields, 398–400
point-valued fields, 369–370
scalar fields, 367–369, 403
vector fields, 371–372, 404
diffusive
heat flux vector, 161
mixture, 174–177
stress tensor (See also thermokinetic stress), 223
dimensionality
of displacements, 305–306
of Lin V, 320
of vector spaces, 315
Dirac delta formalism, 62, 268–9, 283
directional derivative, 368
direct notation, 352–353, 376
director, 2, 296
discrete
distributions, 62
nature of matter, 36
displacements, 304, 357–358
algebra of, 304–306
for different observers, 235–236
distance in phase space, 401
linearly dependent set, 305
linearly independent set, 305
magnitude, 306
orthogonal, 306
phase space, 400
dissipation, 298
distance
in euclidean space, 358
in phase space, 401
distortion, 24, 380
divergence
identities, 392–325
of linear transformation field, 390–391
in phase space, 404
theorems, 390–392
of third-order tensor field, 391–392
of vector field, 389
drag, 148, 195
dynamic
ergodicity, 282
variable, 266
δ, Euclidean space, 356–359
Edelen’s non-local theory, 255–258
eigenvalues of linear transformations, 331–332
orthogonal, 340
skew, 336
symmetric, 343–344
eigenvectors of linear transformations, 331
skew, 336
symmetric, 344
elastic behaviour, 239–242
electric charge density, 297
electric current density, 297
electromagnetic effects, 297
electron, 77, 110, 297
cloud, 79
motions, 114
energetics, fine scale, 123
energy
assembly, 107
heat, 103, 159
internal, 109
macroscopic kinetic, 103
stored, 109
global form, 29
interior form, 31
time-averaged, 137–139
ensemble, 264–265
average, 267
expectation, 266
mass density, 268
momentum density, 268
thermal velocity, 272
velocity, 268
entropy, 301–302
ϵ
-cell, 210
-limit, 211
-representative, 210
-subsurface, 213
-surface cell, 213
euclidean space, 356–359
cartesian co-ordinate system for, 359
dehormations in, 359–360
event, 227
excess, surface, 294
expectation (of dynamic variable), 266
exponential
of bounded linear operator, 286
of linear transformation, 343
extensive descriptors/fields, 356
external
body force density, 14, 80
heat supply, 103, 158, 161
loading, 24
falling raindrop, 150
fields, 7
Index

416

fineness, of partition, 384
fine-scale
considerations, 115–129
ergetics, 123–128
moment of mass, 121–123
moment of momentum, 115–121
first principal invariant, 326–328
flow, creeping, 202
fluctuation-dissipation theorem, 288
fluctuations, 1, 69, 111, 131
fluid
linearly viscous, 196
compressible, 193
creeping flow, 202
incompressible, 193
motion, 8
turbulence, 237
fluid-fluid stress tensor, 190–191
flux
heat, 31, 109
volumetric, 204
Fokker-Planck equation, 287
force
body, 14, 80
configurational, 296
contact, 14
density for interactions, 80, 176
intermolecular, 76–79
long range, 261
on moving charge, 301
on point mass, 232
self-, 80, 111, 140, 212
van der Waals, 261
force density
external body, 14, 80
interaction, 80
formal
approach to matter, 9
short range assumption, 212–213
Fourier, coefficients, 65
series, 65–66, 288–289
transform, 63–65
frame dependence, 230–236
frame of reference, inertial, 231, 237
frequentist interpretation, 79
fundamental discrete entities, 1
fuzzy set/measurement, 60
gas, pressure in, 41
generalisation
of derivative, 366–379
of Irving & Kirkwood/Noll results, 276–277
generalised
continua, 295
moment of momentum balance, 115–121
geometric
boundary, 51
triangulated, 52
region occupied, 51
global
considerations, changing content, 139–146
energy balance, 29
linear momentum balance, 15
mass conservation balance, 255
rotational momentum balance, 16
gradient, deformation, 380
gradient of
linear transformation field, 372
point-valued field, 369
scalar field, 367
vector field, 371
velocity, 104
group
Invlin V, 324
Invlin V−1, 331
orthogonal, Orth V, 340
proper orthogonal, Orth+ V, 340
Hardy bond function, 86
Hardy-type interaction stress tensor, 86
heat, 29, 82–83
conductive supply rate, 29, 31
energy density, 103, 159
external supply rate, 29, 103
flux vector, 31, 109, 161
for inertial observers, 234
kinetic theory of, 82
Heaviside ‘step’ function, 133
homogeneous deformation, 356
characterisation of, 363–365
hypothesis
dynamic ergodicity, 282
fading memory, 287
local equilibrium, 282
ideal gas, 83, 174
identities, 351, 373, 392
immiscible mixtures, 187
incompressible linearly viscous fluid, 193
inertia tensor, 22
inertial
frame, 3, 4, 164, 231
observers, 4, 231–237
inhomogeneity, 3, 121–123
measure 4, 121
inner product
on Lin V, 333–334
on vector space, 331
integral calculus in phase space, 405–406
integration (Riemann), 383–389
of interaction stress tensors, over
general boundaries, 95–96
planar surfaces, 96–98
of mass and momentum densities, 52
in R6, 405–406
interaction
couple stress tensor, 117–118
force density, 80, 176
range, 101, 212–213, 261, 276
stress tensor, 82, 84–91, 156, 191
integration over general boundaries, 95–98
Index

integration over planar boundaries, 92–95, 98–101
stress tensor candidates, 84–91
interactions
molecular, 76–79, 101
pair-potentials for, 107
pairwise-balanced, 78, 85
Silling assumption for, 259
subatomic, 77, 110
velocity-dependent, 277, 300
interfacial
molecules, 295
phenomena, 292–295
region for
body containing fluid, 192, 293–294
liquid-vapour, 295
tension, 293
interior form
of energy balance, 31
of linear momentum balance, 25
of rotational momentum balance, 25
interior of body, 50
intermolecular forces, 76–79, 101, 212–213, 261, 276
internal energy density, 109
intrinsic
average pressure, 204
definition of velocity, 40–41
material time derivative, 169
time averaging, 134, 230, 236
invariance under superposed rigid motions, 242, 249
of body, 242, 249
of observer, 242, 249
invariants (principal) of linear transformation, 326–331
inversion, 18, 342, 363
invertible
linear transformation, 321–324
polar decomposition of, 347
Invlin V , 323
group structure, 324
Invlin V + V , 331
group structure, 331
ions, 101
irreversibility, 297–302
Irving & Kirkwood approach, 273, 276
generalisation, 276–281
isometry, 227, 360–363
representation of, 363
isotropic weighting function, 88
ist, 249, See also invariance under superposed rigid motions of observer
isrbm, 242, See also invariance under superposed motions of body
Jacobian, 357, 379
jet propulsion, 148–150
pulse, 150
ram, 148
turbo-, 148
kinetic energy
macroscopic density, 29, 103
of rigid body, 23
Kronecker delta symbol, 313
Lagrangian approach, 135
Laplace relation, 293
length scales, 8–9, 113, 248
lift, 148
limiting observational scale, 36
line in phase space, 402
linear combination of vectors, 315
global form, 14
interior form, 25
local form, 27, 81–82, 136–137, 156–157, 170–172, 190, 273
mixtures, 169–174
porous bodies, 190, 193
time-averaged, 135–139, 153–157, 219–223
via statistical mechanics, 271–273
linear space, 315
linear transformation, 314
characteristic equation, 331
eigenvectors and eigenvalues, 331–332
invertibility, 321–324
matrix representation, 318–321
orthogonal, 227, 338–343
positive-definite, 344
principal invariants, 326–331
proper orthogonal, 340
skew (-symmetric), 318, 336
skew part, 318
symmetric, 317, 343–344
symmetric part, 318
transpose, 316
linearly
dependent set of displacements, 305
independent set of displacements, 305
viscous fluid, 193
Lin V , 314
basis, 320
dimension, 320
inner product, 334
norm, 335
Lin(V , Lin V), 347
basis, 348
dimension, 347
Liouville equation, 266
operator, 285
liquid crystalline phases, 2, 87, 121, 128, 296
liquid-vapour systems, 293
loading, external, 24
local equilibrium hypothesis, 282

form of
energy balance, 32, 102, 104–107, 109, 112–113, 137–139, 160–162, 164
linear momentum balance, 27, 81–82, 136–137, 156
mass balance, 152
rotational momentum balance, 28, 117–119
inhomogeneity, 3, 121–123
linear approximations (differentials), 366, 367, 369, 371, 372
mass centre velocity, 230
spatial averaging, 2
volume change/magnification factor, 380, 382
localisation, 44–46
residual, 256
theorem for integrals, 388
(weighting) functions, 228
long-range forces, 261

macroscopic
behaviour, 1, 72
kinetic energy density, 29, 103
probability density, 288
macrostate, 282
magnification factor, 380, 382
magnitude of displacement, 306
mass
balance, 150–153
local form, 152
for reacting mixture, 185
centre, 15, 121
conservation, 11, 13, 269–271
global form, 255
for non-reacting mixture, 167–168
for porous media, 189
density, 6, 34, 44, 151, 167, 211, 228, 268
discharge rate, 208
exchange, 185
fraction, for mixture constituent, 169
moment of, 121
second moment of, 123
third moment of, 125
total, 15
master equation, 287
material
content, 130
frame-indifference controversy, 4, 237, 248–254
principle, 237, 249
ideal, 238–239
point, 7, 8, 73, 75, 168
system, 44
for non-reacting binary mixture, 74
with changing content, 130
time derivative, 12, 169, 383
matrix representations of
linear transformations, 318–320
vectors, 319

velocity gradient, 372
measurement, 164
values as space-time averages, 1, 164, 281
member function (for system with changing molecular content), 139
metric on Euclidean space, 358
mfi, 237, See also material frame-indifference
micromorphic, 296
micropolar, 296
microscopic
distribution, 62
dynamics, 76–79, 264
viewpoint, 1–2
microscopic state (microstate), 263
admissible, 264
mixture, 167
binary, 74–75
constituent, 167
concentration, 169
energy balances, 179–184
heat energy density, 180
interaction force densities, 170–171
intrinsic material time derivative, 169
linear momentum balance, 169–174
mass fraction, 169
motion, 168
reacting, 184–187
separation-dependent pair potentials, 182
stress tensor, 171–172
transitions, 185–186
diffusive, 174–177
immiscible, 187
interaction force densities, non-reacting, 81
non-diffusive, 168
paradox in early theories, 177–179
reacting, 184–187
ternary reacting, 184–186
total fields, 174–177
molecular
interactions, 76–79, 261
motion in fluids, 8, 57–60
motion in solids, 7–8, 37
speeds, 8, 37
substructure, 77–79
trajectory, 37–38
molecules
boundary, 50
constituent nuclei and electrons, 77–79, 110–111
mollification considerations, 53, 56, 60, 143
mollified
fields, regularity of, 58
member function, 143–144
weighting function, 55
mollifier, 53
polynomial, 58
moment of
mass, 115, 121
conservation, 121–123
second, 21, 123
third, 125
mass density, 121
momentum balance, 25–29
momentum (generalised) balance, 115–121
density, 14, 47, 134, 150, 167, 190, 229, 268
global balance, 14
interior form of balance, 25
local form of, 1, 27, 136–137, 156–157, 170–172, 190, 273
momentum (rotational/angular) balance, 16
generalised, 115–121
momentum space, 263
motion, 7, 9, 72, 152
Brownian, 39–40
corresponding to situation at time t₀, 7–8, 73, 152
defined by velocity field, 72, 152
mixture constituent, 168
non-reacting binary mixtures, 74–75
relative to configuration κ, 9–10
rigid, 18
time-reversed, 298
motivation for space–time averaging, 43
multibody potential, 277–281

nanoscale behaviour, 2
Navier-Stokes equation, 196
nematic liquid crystals, 2, 295–296
Newton’s second law, 232, 307
third law, 212
Noll-type interaction stress tensor, 89, 91, 274
non-diffusive mixture, 75, 168
non-local field theories, 255–262
linear momentum balance, 257–258
mass balance, 255–256
non-reacting mixture, 167–184
norm on Lin(V), 335
on space of displacements, 306
on vector space, 332
normalisation of probability density function, 265
of weighting function, 45
notional thermal velocity, 83, 109, 190
nuclei, 77, 110

objective fields, 234–236
differentiation of, 398–400
reality, 238
objectivity, 237–239
in deterministic continuum mechanics, 238
implications for elastica, 239–242
implications for simple materials, 242–243
implications for viscous fluids, 243–247
observers, 225–237

inertial, 231–237
operator exponential of, 286
identity, 288
Liouville, 285
projection, 283–285
orbital, electron, 79
order, of tensor, 303
orientation, 18
orthogonal
displacements, 306
group, 340
map, 338
transformation, 227, 338–343
characterisation of, 338–343
determinant, 339
inverse, 339
proper, 340
vectors, 310
Orth V, 340
Orth + V, 340
orthonormal basis, 313, 318
for Lin V, 335
oscillation of pendulum, 237

pair potential, 107
pairwise-balanced interactions, 78, 85
paradox in interpretation of pressure, 41
in mixture theories, 177–179
parallel displacements, 304
planes, 366
circumferency, 401
partition, 383
fine, 384
into ϵ-cells, 210
of surface into ϵ-subsurfaces, 213
peridynamics, 5, 258–262
permeability, 188
tensor, 206
permutation factor, 314
phase space, 263
calculus in, 400–406
deformations in, 402
homogeneous, 402
placement, 400
distances, 401
line, 402
plane, 402
point, 264
smooth surface, 405
volume, 401, 405
physical descriptors, 225
physically admissible homogeneous deformations, 363, 365, 380
Piola-Kirchhoff stress, 136–137, 257
plane euclidean space, 366
phase space, 402
point euclidean space, 366
material, 7, 8, 73, 75, 168
phase space, 264
polar decomposition theorem, 346–347
pore size, 189
space, 188
volume, 49–50
porosity, 50, 168
porosity, at scales $\varepsilon_1, \varepsilon_2$, 40, 189
porous media, 4, 188–208
fluid in, 4
creeping flow, 202
interfacial region, 192
linear momentum balance, 190, 192–195
mass conservation, 189
non-slip, non-penetration, 196
saturated case, 189
length scales, 188
positive-definite linear transformation, 344
square root, 345
potential
multibody, 277–281
separation-dependent, pair, 107
power expended by couples, 29
external forces and couples, 23
pressure
back, porous body, 199
in a gas, 41, 131
partial, 174
principal invariants of linear transformation, 326–331
first (trace), 326–328
second, 328–329
third (determinant), 329–331
principle
of material frame-indifference, 237, 249
of material objectivity, 250
probabilistic considerations, 79, 264–267
probability
density, 79
function, 265, 281–282
for point mass location, 268
product (of vectors)
inner, 332
scalar, 310
tensor, 317
vector, 311–312
projection operator
definition, 283
methodology, 281–289
Index
motivating assumptions, 282
properties, 284–286
projection, perpendicular, 321
proper orthogonal group, 340
linear transformation, 340
characterisation of, 341–343
propulsion
jet, 148–150
rocket, 146–147
propulsive agencies, 149–150
pseudo-limits, 211, 214
scalar, 338
vector, 338
pulse jet, 150
radiative heat supply, 29
raindrop falling, 150
ram jet, 148–149
range of interactions, 101, 212–213, 261, 276
cut-off, 101, 212–213, 259
effective, 212–213
reacting mixtures, 184–187, 296
energy balance, 186
linear momentum balance, 185–186
transitions between constituents, 185–186
reaction (back pressure), 199
rectangular box in phase space, 405
reduction map, 282
reference configuration, 10
reflection, 18
region
defined by weighting function, 72
geometric, scale ε, 51
occupied by a body, 7, 48
regular, 383
representations,
of homogeneous deformations, 363–365
of isometries, 363
matrix (of linear transformations), 318–320
of orthogonal linear transformations, 338–343
representative elementary volume (REV), 62, 197
reproducibility, 42, 281
reproducible behaviour, 1, 42
continuously, 281
resolution
angular, 35
spatial, 34
response functions, 225
for elastica, 239
relations for different observers, 240
for simple materials, 242
for viscous fluids, 243
restrictions on response functions due to objectivity, 239–248
elastica, 241
general materials, 247–248
simple materials, 243
viscous fluids, 245, 247
Index

421

REV, 62, 97
intrinsic average pressure in, 204
Riemann
integral, 383–389
sum, 210, 384
surface integral, 214
right-handed orthonormal basis, 313
rigid
body, 14, 18
dynamics, 17–24
motion, 17–18
deformation, 363
rocketry, 146–147
rotation, 342, 362
rotational momentum balance, 16–17, 22–23, 25–28
global form, 16, 22–23
interior form, 25–28
local form, 28
scalar multiplication of vectors, 310
scale
fine considerations, 115–129
limiting observational, 36
scale-dependency
of boundary, 2, 34
of mass density, 2, 36
of velocity, 2, 9, 39, 73
scales of mass, length and time, 113
second
law of thermodynamics, 301–302
moment of mass
density, 123
tensor, 21
principal invariant, 328–329
self-force, 80, 99, 111, 140, 212
assumption, 212
heating, 111, 161
semigroup property, 286
separation-dependent pair potentials, 107
series, Fourier, 65–66
Silling
interaction assumptions, 259–260
‘particle’, 259, 261
simple
balanced interaction stress tensor, 85–86, 90, 156
interaction
couple stress, 117
stress tensor, 82
materials, 242
stretch, 365
simultaneity, 226
Sk √\mathcal{V}, 318
skew symmetric linear transformation, 336–337
 corresponding axial vector, 337
solid body, 7
space
configuration, 263
euclidean, 357–359
momentum, 263
observer perception, 226–227
phase, 263
space-time
averaging, 2, 43, 133, 151–166, 185–187, 217–223
scales, 113, 281–282
span of cell, 62
spatial
imprecision, 60
localisation, 44–46
region occupied by body, 7, 48
resolution, 34
scale, 37
species, 167
spin
absolute, 246
dependence of stress and heat flux, 237, 242, 249–250, 252
field, 381
of rigid body, 20
tensor, 30, 381
vector field, 30, 382
square root of element of Sym+ √\mathcal{V}, 345
state
admissible micro-, 264
microscopic, 263
statistical mechanics, 263–289
steady flow, 206
stored energy, 109
stress tensor, 223
Cauchy, 3, 28, 82, 273
symmetry or otherwise, 128–129, 280
couple, 28, 117–121
diffusive, 223
for inertial observers, 233
interaction, 3, 82, 156, 176
balanced, 85–87, 156
comparison of candidates, 91–92
fluid-fluid, 190–191
Hardy-type, 86
Noll-type, 87
for mixture constituent, 171–174
thermal, 3
thermokinetic, 83, 175
stretching tensor field, 381
strict interior, 50
structured continua, 32, 295–296
subatomic considerations, 77–79, 110–114
summation convention, 313
superfluid helium, 250
superposed rigid motion of body, 242
of observer, 242
surface
couple density, 16
excess, 294
in phase space, 405
stress, 293
tension, 192, 293

© in this web service Cambridge University Press
www.cambridge.org
Index

Sym \mathcal{V}, 318
Sym$^+$ \mathcal{V}, 344
symmetric linear transformation, 317, 343–344
symmetry of Cauchy stress tensor, 128–129, 280
system
material, 44
with changing content, 139–166
temperature, 80, 301
temporal
averaging, 132–134
fluctuations, 69
smoothing, 217
weighting function, 132
tensor
algebra, 303, 347–355
analysis, 303
cartesian, 352–355
Cauchy stress, 3, 28, 83, 101, 156, 172, 223, 273
couple stress, 28, 117–118
inertia, 22
interaction
couple stress, 117–118
stress, 82, 84–91, 156, 171
order of, 303
permeability, 206
product, 317
triple, 347
second moment of mass, 21, 123
simple, 350
spin, 30
stretching, 32
thermokinetic stress, 83
third order, 304, 347–352
thermal
motions, 114
notional velocity, 83, 190
quantity, 3, 109
stress, 84
velocity, 83, 272
thermokinetic stress tensor, 83
in mixtures, 175
thermomechanics, 29–32
third
order tensor, 347–352
principal invariant, 329–331
thrust force, rocket, 146
time averaging, 3, 4, 77–79, 130–166
α, 132
Δ, 77, 111, 152, 185
in inertial frames, 236
intrinsic, 134–155, 230
motivation for, 43, 130–132, 217–218
time-averaged
continuity equation, 134–135
energy balance, 137–139
interactions, 78
linear momentum balance, 135–137
time-dependent systems, 130–131, 139–166
time fluctuations, 111, 131
time-reversed
macropscopic field, 300
motion, 298
time scales, 113–114
total
kinetic energy (rigid body), 23
mass of body, 15
mixture fields, 174–177
trace, 326–328
traction field, 14, 209, 214
trajectory
of body, 7
of molecule, 37–38
transform, Fourier, 63–65
transitions between material systems, 141–146, 185–187
translation, 362
transport theorem, 13, 25
transpose of
linear transformation, 316
matrix, 319
triangulated
gEometric boundary, 52
polyhedral region, 52, 189
trilinear form, 324
alternating, 324–326
triple products of vectors, 312, 347–350
turbo-jet, 148
turbulence, 312
unit vector, 312
\mathcal{V}, vectorial space, 307–314
van der Waals forces, 261
vector, 308
axial/pseudo, 21, 28, 119
components, 309
heat flux, 31, 109
magnitude, 309
multiplication, 309–312
pseudo/axial, 21, 28, 119
space, 315
fundamental, 307–309
\mathcal{V}, 307–309
spin, 30
unit, 312
vectorial entities, 307–309
velocity field, 2, 7, 8, 10, 37–41, 47, 48, 134, 168, 211, 268
gradient, 104, 381
relations for two observers, 228–229
viscosity, 193
viscous fluids, 193, 243
volume
form, 401
fraction, 53
magnification/change factor, 380, 382, 402
of region, 384
volumetric flux vector, 204
vortex motion, 237
vorticity, 382
w-average, 62, 197
wedge product of vectors, 318
weighted averages, 44
weighting function, 2, 44–46
associated with repeated averaging, 62–67
cellular averaging, 61–62
choices, 45–46
Hardy, 67
isotropic, 88
mollification, 53–55
normalisation, 45
polynomial, 58–59

properties, 46
simplest choice, 48
temporal, 132
wrinkles
mollifier, 53
motivation for time averaging, 217

zero
displacement, 304
linear transformation, 315
third order tensor, 347
vector, 308