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A review of probability theory

In this book we will study dynamical systems driven by noise. Noise is something
that changes randomly with time, and quantities that do this are called stochastic
processes. When a dynamical system is driven by a stochastic process, its motion
too has a random component, and the variables that describe it are therefore also
stochastic processes. To describe noisy systems requires combining differential
equations with probability theory. We begin, therefore, by reviewing what we will
need to know about probability.

1.1 Random variables and mutually exclusive events

Probability theory is used to describe a situation in which we do not know the
precise value of a variable, but may have an idea of the relative likelihood that it
will have one of a number of possible values. Let us call the unknown quantity X.
This quantity is referred to as a random variable. If X is the value that we will
get when we roll a six-sided die, then the possible values of X are 1, 2, . . . , 6. We
describe the likelihood that X will have one of these values, say 3, by a number
between 0 and 1, called the probability. If the probability that X = 3 is unity, then
this means we will always get 3 when we roll the die. If this probability is zero,
then we will never get the value 3. If the probability is 2/3 that the die comes up
3, then it means that we expect to get the number 3 about two thirds of the time, if
we roll the die many times.

The various values ofX, and of any random variable, are an example of mutually
exclusive events. That is, whenever we throw the die, X can have only one of the
values between 1 and 6, no more and no less. Rather obviously, if the probability
forX to be 3 is 1/8, and forX to be 6 is 2/8, then the probability forX to be either
3 or 6 is 1/8+ 2/8 = 3/8. That is, the total probability that one of two or more
mutually exclusive events occurs is the sum of the probabilities for each event. One
usually states this by saying that “mutually exclusive probabilities sum”. Thus, if
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2 A review of probability theory

Figure 1.1. An illustation of summing the probabilities of mutually exclusive
events, both for discrete and continuous random variables.

we want to know the probability for X to be in the range from 4 to 6, we sum all
the probabilities for the values from 4 to 6. This is illustrated in Figure 1.1. Since
X always takes a value between 1 and 6, the probability for it to take a value in this
range must be unity. Thus, the sum of the probabilities for all the mutually exclusive
possible values must always be unity. If the die is fair, then all the possible values
are equally likely, and each is therefore equal to 1/6.

Note: in mathematics texts it is customary to denote the unknown quantity
using a capital letter, say X, and a variable that specifies one of the possible
values that X may have as the equivalent lower-case letter, x. We will use this
convention in this chapter, but in the following chapters we will use a lower-case
letter for both the unknown quantity and the values it can take, since it causes no
confusion.

In the above example,X is a discrete random variable, since it takes the discrete
set of values 1, . . . , 6. If instead the value ofX can be any real number, then we say
that X is a continuous random variable. Once again we assign a number to each of
these values to describe their relative likelihoods. This number is now a function of
x (where x ranges over the values that X can take), called the probability density,
and is usually denoted by PX(x) (or just P (x)). The probability for X to be in the
range from x = a to x = b is now the area under P (x) from x = a to x = b. That
is

Prob(a < X < b) =
∫ b

a

P (x)dx. (1.1)
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1.1 Random variables and mutually exclusive events 3

Figure 1.2. A Gaussian probability density with variance V = 1, and mean 〈X〉 = 0.

This is illustrated in Figure 1.1. Thus the integral of P (x) over the whole real line
(from −∞ to∞) must be 1, since X must take one of these values:∫ ∞

−∞
P (x)dx = 1. (1.2)

The average ofX, also known as the mean, or expectation value, ofX is defined
by

〈X〉 ≡
∫ ∞
−∞
P (x)x dx. (1.3)

If P (x) is symmetric about x = 0, then it is not difficult to see that the mean of X
is zero, which is also the center of the density. If the density is symmetric about
any other point, say x = a, then the mean is also a. This is clear if one considers a
density that is symmetric about x = 0, and then shifts it along the x-axis so that it
is symmetric about x = a: shifting the density shifts the mean by the same amount.

The variance of X is defined as

VX ≡
∫ ∞
−∞
P (x)(x − 〈X〉)2 dx =

∫ ∞
−∞
P (x)x2 dx − 〈X〉2 = 〈X2〉 − 〈X〉2. (1.4)

The standard deviation of X, denoted by σX and defined as the square root of the
variance, is a measure of how broad the probability density for X is – that is, how
much we can expect X to deviate from its mean value.

An important example of a probability density is the Gaussian, given by

P (x) = 1√
2πσ 2

e
− (x−µ)2

2σ2 . (1.5)

The mean of this Gaussian probability density is 〈X〉 = µ and the variance is
V (x) = σ 2. A plot of this probability density in given in Figure 1.2.
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4 A review of probability theory

1.2 Independence

Two random variables are referred to as being independent if neither of their
probability densities depends on the value of the other variable. For example, if
we rolled our six-sided die two times, and called the outcome of the first roll X,
and the outcome of the second roll Y , then these two random variables would be
independent. Further, we speak of the eventX = 3 (when the first die roll comes up
as 3) and the event Y = 6 as being independent. When two events are independent,
the probability that both of them occur (that X = 3 and Y = 6) is the product of
the probabilities that each occurs. One often states this by saying that “independent
probabilities multiply”. The reason for this is fairly clear if we consider first making
the die roll to obtainX. Only ifX = 3 do we then make the second roll, and only if
that comes up 6 do we get the result X = 3 and Y = 6. If the first roll only comes
up 3 one eighth of the time, and the second comes up 6 one sixth of the time, then
we will only get both of them 1/8× 1/6 = 1/48 of the time.

Once again this is just as true for independent random variables that take a
continuum of values. In this case we speak of the “joint probability density”,
P (x, y), that X is equal to x and Y is equal to y. This joint probability density is
the product of the probability densities for each of the two independent random
variables, and we write this as P (x, y) = PX(x)PY (y). The probability thatX falls
within the interval [a, b] and Y falls in the interval [c, d] is then

Prob(X ∈ [a, b] and Y ∈ [c, d]) =
∫ b

a

∫ d

c

P (x, y)dydx

=
∫ b

a

∫ d

c

PX(x)PY (y)dydx =
(∫ b

a

PX(x)dx

)(∫ d

c

PY (y)dy

)
= Prob(X ∈ [a, b])× Prob(Y ∈ [c, d]).

In general, if we have a joint probability density, P (x1, . . . , xN ), for the N
variables X1, . . . , XN , then the expectation value of a function of the variables,
f (X1, . . . , XN ), is given by integrating the joint probability density over all the
variables:

〈f (X1, . . . , XN )〉 =
∫ ∞
−∞
f (x1, . . . , xN )P (x1, . . . , xN ) dx1 . . . dxN . (1.6)

It is also worth noting that when two variables are independent, then the expec-
tation value of their product is simply the product of their individual expectation
values. That is

〈XY 〉 = 〈X〉〈Y 〉. (1.7)
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1.3 Dependent random variables 5

1.3 Dependent random variables

Random variables, X and Y , are said to be dependent if their joint probability
density, P (x, y), does not factor into the product of their respective probability
densities.

To obtain the probability density for one of the variables alone (say X), we
integrate the joint probability density over all values of the other variable (in this
case Y ). This is because, for each value ofX, we want to know the total probability
summed over all the mutually exclusive values that Y can take. In this context, the
probability densities for the single variables are referred to as the marginals of the
joint density.

If we know nothing about the value of Y , then our probability density for X is
just the marginal

PX(x) =
∫ ∞
−∞

P (x, y)dy. (1.8)

If X and Y are dependent, and we learn the value of Y , then in general this will
change our probability density for X (and vice versa). The probability density for
X given that we know that Y = y, is written P (x|y), and is referred to as the
conditional probability density for X given Y .

To see how to calculate this conditional probability, we note first that P (x, y)
with y = a gives the relative probability for different values of x given that Y = a.
To obtain the conditional probability density for X given that Y = a, all we have
to do is divide P (x, a) by its integral over all values of x. This ensures that the
integral of the conditional probability is 1. Since this is true for any value of y, we
have

P (x|y) = P (x, y)∫∞
−∞ P (x, y)dx

. (1.9)

Note also that since

PY (y) =
∫ ∞
−∞

P (x, y)dx, (1.10)

if we substitute this into the equation for the conditional probability above
(Eq. (1.9)) we have

P (x|y) = P (x, y)

PY (y)
, (1.11)

and further that P (x, y) = P (x|y)PY (y).
As an example of a conditional probability density consider a joint probability

density for X and Y , where the probability density for Y is a Gaussian with zero
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6 A review of probability theory

mean, and that for X is a Gaussian whose mean is given by the value of Y . In this
case X and Y are not independent, and we have

P (x, y) = P (x|y)P (y) = e−(1/2)(x−y)2

√
2π

× e−(1/2)y2

√
2π
= e−(1/2)(x−y)2−(1/2)y2

2π
,

(1.12)

where we have chosen the variance of Y , and of X given Y to be unity. Generally,
when two random variables are dependent, 〈XY 〉 �= 〈X〉〈Y 〉.

1.4 Correlations and correlation coefficients

The expectation value of the product of two random variables is called the corre-
lation of the two variables. The reason that we call this quantity a correlation is
that, if the two random variables have zero mean and fixed variance, then the larger
the value of the correlation, the more the variables tend to fluctuate together rather
than independently; that is, if one is positive, then it is more likely that the other
is positive. The value of the correlation therefore indicates how correlated the two
variables are.

Of course, if we increase the variance of either of the two variables then the
correlation will also increase. We can remove this dependence, and obtain a quantity
that is a clearer indicator of the mutual dependence between the two variables by
dividing the correlation by

√
V (X)V (Y ). This new quantity is called the correlation

coefficient of X and Y , and is denoted by CXY :

CXY ≡ 〈XY 〉√
V (X)V (Y )

. (1.13)

If the means ofX and Y are not zero, then we can remove these when we calculate
the correlation coefficient, so as to preserve its properties. Thus, in general, the
correlation coefficient is defined as

CXY ≡ 〈(X − 〈X〉)(Y − 〈Y 〉)〉√
V (X)V (Y )

= 〈XY 〉 − 〈X〉〈Y 〉√
V (X)V (Y )

. (1.14)

The quantity on the top line, 〈XY 〉 − 〈X〉〈Y 〉 is called the covariance of X and Y ,
and is zero ifX and Y are independent. The correlation coefficient is therefore zero
if X and Y are independent (completely uncorrelated), and is unity if X = cY , for
some positive constant c (perfect correlation). If X = −cY , then the correlation
coefficient is −1, and we say that the two variables are perfectly anti-correlated.
The correlation coefficient provides a rough measure of the mutual dependence of
two random variables, and one which is relatively easy to calculate.
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1.5 Adding random variables together 7

1.5 Adding random variables together

When we have two continuous random variables, X and Y , with probability densi-
ties PX and PY , it is often useful to be able to calculate the probability density of
the random variable whose value is the sum of them: Z = X + Y . It turns out that
the probability density for Z is given by

PZ(z) =
∫ ∞
−∞

PX(s − z)PY (s)ds ≡ PX ∗ PY , (1.15)

which is called the convolution of PX and PY [1]. Note that the convolution of two
functions, denoted by “∗”, is another function. It is, in fact, quite easy to see directly
why the above expression for PZ(z) is true. For Z to equal z, then if Y = y,X must
be equal to z− y. The probability (density) for that to occur is PY (y)PX(z− y).
To obtain the total probability (density) that Z = z, we need to sum this product
over all possible values of Y , and this gives the expression for PZ(z) above.

It will be useful to know the mean and variance of a random variable that is the
sum of two or more random variables. It turns out that if X = X1 +X2, then the
mean of X is

〈X〉 = 〈X1〉 + 〈X2〉, (1.16)

and if X1 and X2 are independent, then

VX = VX1 + VX2 . (1.17)

That is, when we add independent random variables both the means and variances
add together to give the mean and variance of the new random variable. It follows
that this remains true when we add any number of independent random variables
together, so that, for example, 〈∑N

n=1Xn〉 =
∑N

n=1〈Xn〉.
If you have ever taken an undergraduate physics lab, then you will be familiar

with the notion that averaging the results of a number of independent measurements
produces a more accurate result. This is because the variances of the different
measurement results add together. If all the measurements are made using the
same method, we can assume the results of all the measurements have the same
mean, µ, and variance, V . If we average the results,Xn, ofN of these independent
measurements, then the mean of the average is

µav =
〈
N∑
n=1

Xn

N

〉
=

N∑
n=1

µ

N
= µ. (1.18)

But because we are dividing each of the variables by N , the variance of each goes
down by 1/N2. Because it is the variances that add together, the variance of the
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8 A review of probability theory

sum is

Vav = V
[

N∑
n=1

Xn

N

]
=

N∑
n=1

V

N2
= V

N
. (1.19)

Thus the variance gets smaller as we add more results together. Of course, it is
not the variance that quantifies the uncertainty in the final value, but the standard
deviation. The standard deviation of each measurement result is σ = √V , and
hence the standard deviation of the average is

σav =
√
V

N
= σ√

N
. (1.20)

The accuracy of the average therefore increases as the square root of the number
of measurements.

1.6 Transformations of a random variable

If we know the probability density for a random variable X, then it can be useful
to know how calculate the probability density for a random variable, Y , that is
some function of X. This is referred to as a transformation of a random variable
because we can think of the function as transforming X into a new variable Y . Let
us begin with a particularly simple example, in which Y is a linear function of X.
This means that Y = aX + b for some constants a and b. In this case it is not that
hard to see the answer directly. Since we have multiplied X by a, the probability
density will be stretched by a factor of a. Then adding b will shift the density by
b. The result is that the density for Y is Q(Y ) = P (y/a − b/a)/a.

To calculate the probability density for Y = aX + b in a more systematic way
(which we can then use for much more general transformations of a random
variable) we use the fact that the probability density for Y determines the average
value of a function of Y , f (Y ), through the relation

〈f (Y )〉 =
∫ ∞
−∞

P (y)f (y)dy. (1.21)

Now, since we know that Y = g(X) = aX + b, we also know that

〈f (Y )〉 =
∫ ∞
−∞

P (x)f (y)dx =
∫ ∞
−∞

P (x)f (ax + b)dx. (1.22)

Changing variables in the integral from x to y we have

〈f (Y )〉 =
∫ ∞
−∞

P (x)f (ax + b)dx = 1

a

∫ ∞
−∞

P (y/a − b/a)f (y)dy. (1.23)

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76542-8 - Stochastic Processes for Physicists: Understanding Noisy Systems
Kurt Jacobs
Excerpt
More information

http://www.cambridge.org/9780521765428
http://www.cambridge.org
http://www.cambridge.org


1.6 Transformations of a random variable 9

Thus the density for Y is

Q(y) = 1

a
P (y/a − b/a). (1.24)

In addition, it is simple to verify that 〈Y 〉 = a〈X〉 + b and VY = a2VX.
More generally, we can derive an expression for the probability density of

Y when Y is an arbitrary function of a random variable. If Y = g(X), then we
determine the probability density for Y by changing variables in the same way as
above. We begin by writing the expectation value of a function of Y , f (Y ), in terms
of P (x). This gives

〈f (Y )〉 =
∫ x=b

x=a
P (x)f (g(x))dx, (1.25)

where a and b are, respectively, the lower and upper limits on the values that X
can take. Now we transform this to an integral over the values of Y . Denoting the
inverse of the function g as g−1, so that X = g−1(Y ), we have

〈f (Y )〉 =
∫ x=b

x=a
P (x)f (g(x))dx =

∫ y=g(b)

y=g(a)
P (g−1(y))

(
dx

dy

)
f (y)dy

=
∫ y=g(b)

y=g(a)

P (g−1(y))

g′(x)
f (y)dy =

∫ y=g(b)

y=g(a)

P (g−1(y))

g′(g−1(y))
f (y)dy. (1.26)

We now identify the function that multiplies f (y) inside the integral over y as the
probability density for Y . But in doing so we have to be a little bit careful. If the
lower limit for y, g(a), is greater than the upper limit for y, then the probability
density we get will be negative to compensate for this inversion of the integral
limits. So the probability density is actually the absolute value of the function
inside the integral. The probability density for y is therefore

Q(y) = P (g−1(y))∣∣g′(g−1(y))
∣∣ . (1.27)

One must realize also that this expression for Q(y) only works for functions that
map a single value of x to a single value of y (invertible functions), because in
the change of variables in the integral we assumed that g was invertible. For non-
invertible functions, for example y = x2, one needs to do the transformation of the
integral on a case-by-case basis to work out Q(y).
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10 A review of probability theory

1.7 The distribution function

The probability distribution function, which we will callD(x), of a random variable
X is defined as the probability that X is less than or equal to x. Thus

D(x) = Prob(X ≤ x) =
∫ x

−∞
P (z) dz. (1.28)

In addition, the fundamental theorem of calculus tells us that

P (x) = dD(x)

dx
. (1.29)

1.8 The characteristic function

Another very useful definition is that of the characteristic function, χ (s). The
characteristic function is defined as theFourier transform of the probability density.
Thus before we discuss the characteristic function, we need to explain what the
Fourier transform is. The Fourier transform of a function P (x) is another function
given by

χ (s) =
∫ ∞
−∞

P (x)eisxdx. (1.30)

The Fourier transform has many useful properties. One of them is the fact that it
has a simple inverse, allowing one to perform a transformation on χ (s) to get back
P (x). This inverse transform is

P (x) = 1

2π

∫ ∞
−∞

χ (s)e−isxds. (1.31)

Another very useful property is the following. If we have two functions F (x)
and G(x), then the Fourier transform of their convolution is simply the product
of their respective Fourier transforms! This can be very useful because a product
is always easy to calculate, but a convolution is not. Because the density for the
sum of two random variables in the convolution of their respect densities, we now
have an alternate way to find the probability density of the sum of two random
variables: we can either convolve their two densities, or we can calculate the
characteristic functions for each, multiply these together, and then take the inverse
Fourier transform.

Showing that the Fourier transform of the convolution of two densities is the
product of their respective Fourier transforms is not difficult, but we do need to
use the Dirac δ-function, denoted by δ(x). The Dirac δ-function is zero everywhere
except at t = 0, where it is infinite. It is defined in such a way that it integrates to
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