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Introduction to hybrid systems

W. P. M. H. Heemels, D. Lehmann, J. Lunze, and B. De Schutter

This chapter gives an informal introduction to hybrid dynamical systems

and illustrates by simple examples the main phenomena that are encoun-

tered due to the interaction of continuous and discrete dynamics. References

to numerous applications show the practical importance of hybrid systems

theory.
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4 W. P. M. H. Heemels, D. Lehmann, J. Lunze, and B. De Schutter

1.1 What is a hybrid system?

Wherever continuous and discrete dynamics interact, hybrid systems arise. This is

especially profound in many technological systems, in which logic decision making

and embedded control actions are combined with continuous physical processes. To

capture the evolution of these systems, mathematical models are needed that com-

bine in one way or another the dynamics of the continuous parts of the system with

the dynamics of the logic and discrete parts. These mathematical models come in

all kinds of variations, but basically consist of some form of differential or differ-

ence equations on the one hand and automata or other discrete-event models on

the other hand. The collection of analysis and synthesis techniques based on these

models forms the research area of hybrid systems theory, which plays an important

role in the multi-disciplinary design of many technological systems that surround

us.

1.1.1 Three reasons to study hybrid systems

The reasons to study hybrid systems can be quite diverse. Here we will provide three

sources of motivation, which are related to (i) the design of technological systems,

(ii) networked control systems, and (iii) physical processes exhibiting non-smooth

behavior.

Challenges of multi-disciplinary design When designing a technological sys-

tem (Fig. 1.1) such as a wafer stepper, electron microscope, copier, robotic system,

fast component mounter, medical system, etc., multiple disciplines need to make

the overall design in close cooperation. For instance, the electronic design, mechan-

ical design, and software design together have to result in a consistent, function-

ing machine. The designs are typically made in parallel by multiple groups of peo-

ple, where the communication between these groups is often hampered by lack of

common understanding and common models. The lack of common models compli-

cates the making of cross-disciplinary design decisions that may have advantages

for one discipline, but disadvantages for others. To make a good trade-off, the over-

all effect of such a design decision has to be evaluated as early as possible. As the

complexity of a technological system with typically millions of lines of codes and

tens of thousands of mechanical components gives rise to many cross-disciplinary

design decisions, a framework is required that supports efficient evaluation of de-

sign decisions incorporating quantitative information and models from multiple

disciplines.

Hybrid systems theory studies the behavior of dynamical systems, including

the technological systems mentioned above described by modeling formalisms

that involve both continuous models such as differential or difference equations

describing the physical and mechanical part, and discrete models such as finite-

state machines or Petri nets that describe the software and logical behavior.
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1 Introduction to hybrid systems 5

Fig. 1.1 Example of a technological system with hybrid dynamics (courtesy

of Daimler).

This theory is one of the few scientific research directions that aim at approaching

the design problem of technological systems in a rigorous manner and at developing

a complete design framework. As such, hybrid systems theory combines ideas origi-

nating in the computer science and the software engineering disciplines on one hand,

and systems theory and control engineering on the other. This mixed character ex-

plains the terminology “hybrid systems,” which was used in this context for the first

time by Witsenhausen in 1966 [665].

Hybrid systems theory is a relatively young research field as opposed to the more

conventional mono-disciplinary research areas such as mechanical, electrical, or soft-

ware engineering. The urgent need for multi-disciplinary design and development

methods for technological systems has spurred the growth of hybrid systems theory

in recent years. However, due to the inherent complexity of hybrid systems, many

issues still remain unsolved at present, at least at the scale needed for industrial

applications. The current status of hybrid systems theory is surveyed in this hand-

book, which can be used as a starting point for future developments in this appealing

and challenging research domain.

Adding communication: networked control systems Besides merging software

(discrete) and physical (continuous) aspects of systems, another important aspect

of many technological systems is communication. Within one single system, many

subsystems interact through communication networks. For systems-of-systems the

coordination plays an even larger role, resulting in extremely complicated networks

of communication. One might think of examples such as automated highways [426]

and air-traffic management [629]. As the many control, computation, communica-

tion, sensing, or actuation actions take place through shared network or processor

resources, another dimension is added to the design of these systems. Within the con-

text of these networked control systems (Chapter 15), the asynchronous and event-

driven nature of the data transmission caused by varying delays, varying sampling

intervals, package loss, etc., and the implementation of the networks and protocols
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complicate their analysis and design even further. Also in this domain hybrid systems

theory plays an essential role as a foundation to understand the behavior of these

complex systems.

Physical processes modeled as hybrid systems In the technological and net-

worked systems mentioned above, the digital and logic (embedded control) aspects

are typically brought in by design in order to control the physics and mechanics of

the system. However, hybrid system theory is not only useful within these domains.

Many physical processes, exhibiting both fast and slow changing behaviors, can of-

ten be well described by using (simple) hybrid models. For instance, in non-smooth

mechanics [123], the evolution of impacting rigid bodies can be captured in hybrid

models. Indeed, as the impacts occur at a much smaller time scale than the uncon-

strained motion, the behavior can be described well by introducing discrete events

and actions in a smooth model. The bouncing ball presented in Example 2.4 is a sim-

ple demonstration of this. Also the vector fields defining the behavior of the system

might be different over time as they depend crucially on the fact whether a contact

is active or not. The dynamics of a robot arm moving freely in space is completely

different from the situation in which it is striking the surface of an object. Other

examples in mechanics with hybrid behavior include motion systems with friction

models that distinguish between stick and slip modes, backlash in gears, and dead

zones in cog wheels.

Examples are not only found in the mechanical domain. Nowadays, switches

such as thyristors and diodes are used in electrical networks for a wide variety of

applications in both power engineering and signal processing. Examples include

switched-capacitor filters, modulators, analog-to-digital converters, power convert-

ers, and choppers. In the ideal case, diodes are considered as elements with two

(discrete) modes: the blocking mode and the conducting mode. Mode transitions for

diodes are governed by state events, where currents or voltages change their sign.

This indicates that hybrid modeling and analysis offer an attractive perspective on

these switched circuits [306]. The DC-DC converter discussed in Section 1.3.3 forms

a simple example of this.

Also many biological and chemical systems can often be efficiently described by

hybrid models. For example, simulating moving bed processes, which are a special

kind of chromatographic separation processes, have to be switched regularly among

different structures in order to avoid that the separation process will eventually stop.

Like in DC-DC converters, the switching is an integral part of the physical principle

utilized in such processes. For the analysis of these systems and for control design,

the model has to be switched accordingly, which demonstrates the necessity to extend

continuous models towards hybrid models.

1.1.2 Behavior of hybrid systems

The previous section indicates that multi-disciplinary design of technological systems

and the study of several non-smooth physical processes require the understanding of
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1 Introduction to hybrid systems 7

the complex interaction between discrete dynamics and continuous dynamics. To

provide some insight in this interaction, let us consider the following example.

Example 1.1 Thermostat

As a textbook example of a simple hybrid system consider the regulation of the temperature

in a house. In a simplified description, the heating system is assumed either to work at

its maximum power or to be turned off completely. This is a system that can operate in two

modes: “on” and “off.” In each mode of operation (given by the discrete state q ∈ {on, off})

the evolution of the temperature T can be described by a different differential equation. This

is illustrated in Fig. 1.2 in which each mode corresponds to a node of a directed graph, while

the edges indicate the possible discrete state transitions. As such, this system has a hybrid

state (q, T ) consisting of a discrete state q taking the discrete values “on” and “off” and a

continuous state T taking values in the real numbers.

T(t) ≥ T
max

T(t) £ T
min

q(t) = on

T(t) = f
on

 (T(t))

T(t) £ T
max

q(t) = off

T(t)  = f
off

 (T(t))

T(t) ≥ T
min

Fig. 1.2 Model of a temperature control system.

Clearly, the value of the discrete state q affects the evolution of the continuous state

T as a different vector field is active in each mode. Vice versa, the switching between the

two modes of operations is controlled by a logical device (the embedded controller) called

the thermostat and depends on the value of the continuous state T . The mode is changed

from “on” to “off” whenever the temperature T reaches the value Tmax (determined by the

desired temperature). Vice versa, when the temperature T reaches a minimum value Tmin,

the heating is switched “on.”

This example already shows some of the main features of hybrid systems:

• The thermostat is a hybrid system, because its state consists of a discrete state q and a

continuous state T .

• The continuous behavior of the system depends on the discrete state, i.e. depending on

whether the mode is “on” or “off” a different dynamics Ṫ (t) = fon(T (t)) or Ṫ (t) =
foff(T (t)), respectively, governs the evolution of the temperature T .

• The changes of the discrete state q are determined by the continuous state T and differ-

ent conditions on T might trigger the change of the discrete state (e.g. when the discrete

state is “on,” T = Tmax triggers the mode change, while T = Tmin triggers the change

when the discrete state is “off.”) �

Although the thermostat example is rather simple, it already contains some of

the basic ingredients that are needed to properly model hybrid systems. A proper

modeling format must involve (at least) the description of the evolution of both
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continuous-valued signals (temperatures, positions, velocities, currents, voltages,

etc.) and discrete-valued signals (operation mode, position of switch, alarm on or

off, etc.) over time and their mutual influence, see Fig. 1.3 for an abstraction of this

perspective.

Fig. 1.3 Hybrid dynamical system.

The system depicted in Fig. 1.3 has six types of signals:

• y(t) is a continuous output signal;

• w(t) is a discrete output signal;

• x(t) is a continuous (n-dimensional) state vector;

• q(t) is a discrete state;

• u(t) is a continuous input signal;

• v(t) is a discrete input signal.

The input and output signals may be scalar or vector-valued, but for explaining the

main idea of hybrid systems this distinction is not important.

Whereas the discrete signals (such as the “on” and “off” modes of the thermostat

example) are typically piecewise constant, the continuous signals may change their

value continuously or discontinuously. In the thermostat example the continuous sig-

nal representing the temperature is only changing continuously. There are no jumps

(discontinuities) in the temperature. The state of the hybrid system is described by

the pair (x, q) consisting of the continuous state vector x and the discrete state q.

An important characteristic of hybrid systems lies in the fact that this pair influences

the future behavior of the system. Moreover, the evolution of the system may also be

influenced by a continuous as well as a discrete input, which are denoted by u and v,

respectively, and one may receive some information on the hybrid state (x, q) from

the discrete and continuous outputs w and y, respectively.

Figure 1.4 displays the typical behavior of an autonomous hybrid system (i.e. a

hybrid system without an input), where the scalar continuous state x and the discrete

state q are identical to the outputs. It shows that the evolution consists of smooth

phases in which the discrete state remains constant and the continuous state changes

continuously. At the transition times t1, t2, t3, . . . the discrete state changes from

its current value to a new value. Simultaneously, the continuous state may jump as

shown in the figure for the time t1. At time t1 the state changed abruptly from x(t−1 )
to x(t+1 ), where x(t−1 ) and x(t+1 ) denote the (limit) values of x just before and just

after the state jump, respectively. It is important to realize that the transition times are
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1 Introduction to hybrid systems 9

Fig. 1.4 Behavior of an autonomous hybrid system.

not necessarily prescribed by some clock (time events), but usually depend on both

the discrete and the continuous state. For instance, in the thermostat example these

transition times were determined by the temperature T reaching the values Tmin or

Tmax (state events). In summary:

The trajectories of hybrid systems are partitioned into several time intervals. At

the interval borders, the discrete state changes and/or jumps of the continuous

state occur, whereas within all intervals the continuous signals change smoothly

and the discrete state remains constant.

For a hybrid system with inputs, the behavior also depends upon the input sig-

nals. In this case the time instant at which the discrete state jumps, the new discrete

and continuous states that are assumed afterwards as well as the continuous state

evolution are all affected by these inputs.

1.1.3 Hybrid dynamical phenomena

Appropriate models for hybrid systems are often obtained by adding new dynamical

phenomena to the classical description formats of the mono-disciplinary research

areas. Indeed, continuous models represented by differential or difference equa-

tions, as adopted by the dynamics and control community, have to be extended to

be suitable for describing hybrid systems. On the other hand, the discrete models

used in computer science, such as automata or finite-state machines, need to be ex-

tended by concepts like time, clocks, and continuous evolution in order to capture the

mixed discrete and continuous evolution in hybrid systems. The hybrid system mod-

els explained in Part I of this handbook combine both ideas. Here we will describe

www.cambridge.org/9780521765053
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-76505-3 — Handbook of Hybrid Systems Control
Edited by Jan Lunze, Françoise Lamnabhi-Lagarrigue
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 W. P. M. H. Heemels, D. Lehmann, J. Lunze, and B. De Schutter

the phenomena one has to add to the continuous models based on the differential

equations

ẋ(t) = f(x(t)). (1.1)

Roughly speaking, as also argued in the previous discussion, four new phenom-

ena that are typical for hybrid systems are required to extend the dynamics of purely

continuous systems as in (1.1):

• autonomous switching of the dynamics;

• autonomous state jumps;

• controlled switching of the dynamics;

• controlled state jumps.

These phenomena are first explained for autonomous hybrid systems.

Autonomous switching of the dynamics This reflects the fact that the vector field

f that occurs in (1.1) is changed discontinuously. The switching may be invoked by

a clock if the vector field f depends explicitly on the time t:

ẋ(t) = f(x(t), t).

For instance, if periodic switching between two different modes of operation is used

with period 2T , we would have

ẋ(t) = f (x(t), t) :=

�

f1(x(t)), if t ∈ [2kT, (2k + 1)T ) for some k ∈ N,

f2(x(t)), if t ∈ [(2k + 1)T, (2k + 2)T ) for some k ∈ N.

This is an example of time-driven switching.

The switching can also be invoked when the continuous state x reaches some

switching set S. As the situation x(t) ∈ S is considered to be a state event, this

kind of switching is said to be event-driven. The thermostat example provided an

illustration of event-driven switching as the transition from the “on” mode to the

“off” mode was triggered by the temperature reaching the value Tmax.

The following example also illustrates event-driven switching.

Example 1.2 Hybrid tank system

The tank systems shown in Fig. 1.5 illustrate two situations in which the dynamics of a

process changes in dependence upon the state (liquid level). The tank in the left part of the

figure is filled by the pump, which is assumed to deliver a constant flow QP, and emptied

by two outlet pipes, whose outflows Q1(t) and Q2(t) depend upon the level h(t). As the

flow Q2(t) vanishes if the liquid level is below the threshold hp given by the position of

the upper pipe, the dynamical properties of the tank change if the level h(t) exceeds this

threshold.

The dependence of the vector field upon the state can be simply written down. For

h(t) < hv , the differential equation is given by

ḣ(t) =
1

A
(QP −

"

2gh(t)) = f1(h(t)),

www.cambridge.org/9780521765053
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-76505-3 — Handbook of Hybrid Systems Control
Edited by Jan Lunze, Françoise Lamnabhi-Lagarrigue
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1 Introduction to hybrid systems 11

Fig. 1.5 Hybrid tank systems.

where g denotes the gravity constant. For h(t) ≥ hv this equation changes into

ḣ(t) =
1

A
(QP −

"

2gh(t) −
"

2g(h(t) − hv)) = f2(h(t)).

Hence, the model can be written as

ḣ(t) =

�

f1(h(t)) if h(t) < hv,

f2(h(t)) if h(t) ≥ hv,

which shows that the vector field switches between two different functions f1 and f2 in

dependende upon the state h(t) with the switching surface

S = {h ∈ R |h = hv}.

Now assume that the pump is switched on and off at different time instances t1 and t2.

Then the function f occurring in the differential equation changes at these time points but

this switching does not depend upon the state h(t), but is time-driven.

The tank in the right part of Fig. 1.5 illustrates that autonomous switching is a typi-

cal phenomenon introduced by safety measures. In the tank system the level controller is

equipped with a safety switch-off. If the liquid level is below the corresponding threshold,

the dynamics is given by the controlled tank. If the level exceeds the threshold, the pump is

switched off, which brings about a corresponding switching of the differential equation of

the tank. �

Switching among different dynamics has important consequences for the behav-

ior of the hybrid system. For instance, Example 2.3 shows that switching between

two linear stable vector fields can result in an unstable overall system.
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