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The impact of QFT on low-dimensional topology

paul kirk
∗

Abstract

In this chapter I discuss some of the history and problems of geometric

topology and how ideas coming from physics have had an impact on low-

dimensional topology in the last 20 years. The ideas are presented largely in

simplified (and morally but not necessarily rigorously correct) form to give

students an overview of the topics unencumbered by the many technical issues

required to put the results on a firm theoretical footing.

The goal of this chapter is to provide theoretical physics students with an

introduction to the impact of modern physics on mathematics, as well as to

provide for mathematics students a gentle but broad introduction to some of the

developments in topology inspired by quantum field theory. No prerequisites

are needed besides the usual mathematical maturity, but the astute student will

recognize the large role that Morse theory plays. Thus, some familiarity with

Morse theory is likely to be useful.

1.1 Geometric topology: a brief history

Geometric topology refers to the study of (usually compact) manifolds.

Let R
n
≥ = {(x1, . . . , xn)|xn ≥ 0}. An n-dimensional manifold is a topological space M

equipped with a maximal collection of charts

{(Ui, φi) |Ui ⊂ M open, φi : Ui → R
n
≥, φi a homeomorphism onto an open subset}.

The set of points mapped to {xn = 0} by the charts φi is called the boundary of M, denoted

∂M . If M is compact and ∂M is empty, we call M closed.

There are many different notions of manifold. Manifolds can have many dif-

ferent kinds of extra structures or restrictions (and corresponding equivalences),

∗
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such as an orientation (orientation-preserving homeomorphism), a smooth structure

(diffeomorphism), a PL structure (PL isomorphism), a spin structure (spin diffeo-

morphism), a Spinc structure, an almost complex structure, a symplectic structure

(symplectomorphism), a Riemannian or Lorentzian structure (isometry), a flat or

spherical or hyperbolic structure, a holomorphic structure (biholomorphism), a

Kähler structure, a framing, a trivial fundamental group, a contractible universal

cover, etc.

In geometric topology the focus is on structures such that the corresponding set

of equivalence classes is discrete, and the goal of geometric topology can usually

be stated as follows:

Distinguish all equivalence classes of manifolds with a given structure.

1.1.1 Examples

To a compact, connected 2-manifold one can associate its Euler characteristic

χ (alternating sum of numbers of n-simplices in a triangulation), the number b

of boundary circles, and o ∈ {0, 1} keeping track of whether or not the manifold

is orientable. Then a classical theorem of topology states that two compact 2-

manifolds have the same triple (χ, b, o) if and only if they are homeomorphic.

Thus the class of compact, connected 2-manifolds is classified up to homeomor-

phism by (χ, b, o) ∈ Z × Z≥0 × Z/2, and it is simple to determine which triples

occur.

Another example is provided by a consequence of Smale’s h-cobordism theo-

rem [48]: Every closed manifold homotopy equivalent to an n-sphere Sn = {x ∈

R
n+1|‖x‖ = 1} is homeomorphic to an n-sphere, if n > 4. (Freedman [15] proved

this for n = 4, and Perelman for n = 3.)

Two topological spaces X, Y are homotopy equivalent if there exists continuous maps

f : X → Y and g : Y → X and homotopies H : X × [0, 1] → X and K : Y × I → Y

such that H (x, 0) = x,H (x, 1) = g(f (x)),K(y, 0) = y,K(y, 1) = f (g(y)).

More interestingly, two smooth closed n-manifolds homotopy-equivalent to Sn

need not be diffeomorphic. But a consequence of Smale’s theorem is that if Mn is

a smooth homotopy sphere, n ≥ 5, then M is obtained from a pair of hemispheres

Dn
+ and Dn

− (with Dn
± = {x ∈ R

n | ‖x‖ ≤ 1}) by gluing their boundaries using a

nontrivial diffeomorphism f : ∂Dn
+

∼= ∂Dn
−.

Gluing, or pasting, topological spaces X, Y along subsets A ⊂ X and B ⊂ Y using a

gluing map f : A → B refers to forming the quotient space X ∪ Y/ ∼, where x ∼ y if

x ∈ A, y ∈ B, and f (x) = y. Gluing n-manifolds using a homeomorphism f of their

boundaries results in an n-manifold. If M is an n-manifold and N ⊂ M is an (n − 1)-

submanifold with ∂N = N ∩ ∂M , then cutting M along N means forming the manifold
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(with nonempty boundary) obtained by taking the closure of M − N . There are technical

issues to worry about, and often one uses instead the complement M − nbd(N ) of a small

tubular neighborhood of N . Notice that gluing and cutting are inverse operations.

An earlier example is provided by Thom’s cobordism theorem [53]: two

closed manifolds M, N are cobordant if and only if they have the same

Stiefel–Whitney numbers. Thom determined which numbers occur as Stiefel–

Whitney numbers.

Closed n manifolds M and N are cobordant if there exists a compact n + 1-manifold W

with ∂W the disjoint union of M and N . The Stiefel–Whitney numbers of a manifold

are a collection of numbers wI ∈ Z/2; one for each multi-index I = (i1, i2, . . . , in), i1+

2i2 + · · · + nin = n.

Yet another example is given by Freedman’s theorem [15]: two simply connected

(see the following) closed 4-manifolds are homeomorphic if and only if they have

isomorphic cohomology rings (see the next section for an introduction to cohomol-

ogy) and the same Kirby–Seibenmann invariant KS ∈ Z/2. One new twist here is

that there remains one unsolved case of the classification of possible ring structures;

namely, the full classification of unimodular quadratic forms over Z (which is deter-

mined by and determines the cohomology ring of a simply connected 4-manifold)

is not known.

Thus one might say that the homeomorphism classification of simply connected

4-manifolds is reduced to an algebra problem. In the case of Thom’s theorem, Thom

first reduced the cobordism classification to a homotopy theory problem, then he

solved the homotopy theory problem. For Freedman’s theorem, the classification

reduces to an algebra problem which is largely solved, but not completely. This is

typical.

As a negative example, it is simple to prove that any finitely presented group is

the fundamental group of a closed n-manifold for any n ≥ 4. Logicians tell us the

problem of determining whether two group presentations give isomorphic groups

is not solvable (no algorithm exists to determine if two presentations determine

isomorphic groups). Thus there cannot be an algorithmic (e.g., a finite set of

invariants) homeomorphism classification of n-manifolds for n ≥ 4.

The fundamental group π1(X, x) of a topological space X with a distinguished base point is

the set of based homotopy classes of loops α : [0, 1] → X,α(0) = α(1) = x. So α ∼ β if

there is a map H : [0, 1] × [0, 1] → X so that H (t, 0) = α(t),H (t, 1) = β(t),H (0, u) =

x = H (1, u). The group structure is given by following one loop, then the next. Concisely,

it is the group of path components of the based loop space on X. A continuous map

f : X → Y induces a homomorphism π1(X) → π1(Y ). A connected space X is called

simply connected if π1(X, x) is the trivial group.
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A good 3-dimensional theory is provided by Waldhausen’s results on Haken

3-manifolds [56]. A closed, oriented 3-manifold M is called Haken if it contains

a closed oriented 2-manifold F ⊂ M (with F �= S2) such that π1(F ) → π1(M)

is injective and such that every sphere S2 ⊂ M cuts M into two pieces, one

of which is D3. Then Waldhausen’s theorem says: if M and N are Haken and

π1(M) is isomorphic to π1(N), then M and N are homeomorphic (and diffeo-

morphic). Thus the fundamental group “classifies” Haken manifolds. Many (but

not all) 3-manifolds are Haken, or can be cut into Haken pieces which can be

analyzed. Later Thurston proved [54] that a closed Haken 3-manifold which does

not contain a π1-injective torus admits a hyperbolic structure. Thus this class

of 3-manifolds is classified by identifying its fundamental group with a Kleinian

group.

An important family of examples comes from considering pairs (M, N) where

M is an m-dimensional manifold and N is an n-dimensional submanifold (with

n < m). One can ask for a relative homeomorphism classification, i.e., assuming

M0 is homeomorphic to M1 and N0 is homeomorphic to N1, does there exist a

homeomorphism h : M0
∼= M1 such that h(N0) = N1? Other interesting questions

include the concordance problem, where one assumes M0 = M1 = M , and sets

(M, N0) ∼ (M, N1) if there exists an embedding of N × [0, 1] ⊂ M × [0, 1] which

restricts to (M, N0) and (M, N1) at the ends M × {0} and M × {1}.

The most interesting case is when n = m − 2, the codimension 2 embedding

problem. This topic is generally known as knot theory, especially when M = Sm

and N ∼= Sm−2. The further specialization when n = 3, i.e., the study of embeddings

S1 ⊂ S3, is usually called classical knot theory (and was first systematically studied

by the physicist Lord Kelvin, who theorized that tiny knots in the “æther” might

explain the subatomic properties of nature).

1.1.2 Invariants

The preceding examples show that classifying manifolds in a certain class is a

subtle problem. One should not expect as clean an answer as for 2-manifolds, or

even Thom’s cobordism theorem. There are several questions to consider: What

class of manifolds do we study? Under what equivalence relation? What kind of

methods can we use? What is considered progress?

The standard approach to a classification problem in geometric topology is to

(i) find a geometrically meaningful and computable set of invariants,

(ii) find a collection of manifolds in the class that realize all the invariants (or determine

their range),

(iii) prove these invariants classify.
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The term invariants refers to some way of associating some object (e.g., in a

category, or set, or group) to each manifold in the chosen class so that equivalent

manifolds are given the same invariant. “Geometrically meaningful” is a vague

term, but ideally the invariants should tell us something interesting about the

geometric problem. As a negative example, consider the invariant of closed n-

manifolds I defined by I (M) = 0 if M is homeomorphic to a sphere and I (M) = 1

otherwise. Then I is an invariant which partially classifies n manifolds, but it

is useless, because its definition reveals nothing about the underlying geometric

question.

By contrast, the Euler characteristic of a closed, orientable 2-manifold classifies

up to homeomorphism, but in addition it can be defined for any compact space,

and it can be computed in many ways (e.g., from a triangulation, by computing

homology, from a Morse function, or geometrically by the Gauss–Bonnet theorem).

Moreover it has many nice properties (multiplicativity under covers, independence

from the triangulation, etc.). Thus producing new invariants is not by itself progress

(despite frequent claims made to the contrary).

An important requirement is that invariants be computable. This is also a vague

requirement, but to the extent that there are cut-and-paste constructions to produce

new manifolds from old in the given class, a good interpretation of this requirement

is that it is desirable to be able to compute how the invariant changes under specific

cut-and-paste operations.

1.1.3 High and low dimensions

Geometric topology is divided into two distinct topics: high-dimensional

topology, i.e., the study of manifolds of dimension 5 and higher, and low-

dimensional topology, i.e., manifolds of dimensions 2, 3, and 4. The reason for

this dichotomy is technical, but boils down to the slogan “there is more room to

move in high dimensions.” A beautiful construction due to Whitney [59], called

the Whitney trick, uses 2-dimensional disks as guides for various geometric defor-

mations. In n-dimensional topology with n > 4, because 2 + 2 < n it follows that

it is easy to fit the 2-dimensional disk into a manifold in such a way that it does not

interfere with itself and other disks in the manifold (in the same way that circles

in 3-space can be moved off each other by arbitrarily small perturbations, because

1 + 1 < 3).

The upshot of this is that the Whitney trick allows one to prove injectivity of

invariants produced by counting intersections of submanifolds in high dimensions.

This was exploited in the golden era of geometric topology (1955–1980) by many

mathematicians, including Smale, Milnor, Wall, Browder, Sullivan, and Novikov,

by combining cutting and pasting constructions (surgery) with related algebra
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(algebraic K-theory) and homotopy theory (bordism theory). These techniques are

combined in a powerful machine called surgery theory.

It is not correct to say that all classification problems of high-dimensional

topology are solved, but it is fair to say that many important ones have

been, and that surgery theory provides a starting point for investigating high-

dimensional problems which is often powerful enough to solve the problem, or at

least to reduce it to purely algebraic or discrete problems.

In low-dimensional topology, the situation is less clear. In dimension 4, there

is a chasm between the topological theory and the smooth theory (i.e., between

classification up to homeomorphism and up to diffeomorphism). The homeomor-

phism problem was treated satisfactorily by Freedman. The result is that many of

the techniques of surgery theory extend to dimension 4, albeit with much more

intricate proofs using infinite processes in point-set topology. Interestingly, the

homotopy classification of non-simply-connected 4-manifolds is not well under-

stood. Freedman’s results treat the gap between the homotopy problem and the

homeomorphism problem for many fundamental groups.

The diffeomorphism problem is quite different, and a breakthrough came at

about the same time as Freedman’s theorem when Donaldson used ideas from

physics (gauge theory) to produce invariants of differentiable 4-manifolds [5]. The

development of the ideas pioneered by Donaldson has been the focus of most of the

work in the last 20 years in 4-dimensional topology. A major simplification came a

few years later with the introduction of Seiberg–Witten theory [28, 47]. However,

it is fair to say that any kind of diffeomorphism classification in dimension 4 is a

distant goal. As R. Stern puts it, in smooth 4-dimensional topology, “the more we

learn the more we realize how little we know.”

In 3-dimensional topology (and 2-dimensional topology) there is no difference

between homeomorphism and diffeomorphism questions. Depending on one’s

point of view (and the time of day), 3-manifolds are either well understood or

mysterious. One feature of 3-dimensional topology is that there are many structure

theorems, notably the existence and uniqueness of decompositions along 2-spheres

(the connected sum decomposition theorem [30]) and then along tori (the Jaco–

Shalen–Johannsen torus decomposition theorem [22, 23]). The results of Wald-

hausen have already been mentioned: these build on many previous results, but

notably on Papakyriakopoulos’s proofs of Dehn’s lemma and the sphere theorem

[42].

The next major step forward occurred when Thurston proved his hyperboliza-

tion theorem, which inserted the beautiful techniques of Kleinian groups into

the study of 3-manifolds. The recent stunning results of Perelman on Thurston’s

geometrization conjecture can be considered as a continuation of this perspective

in 3-dimensional topology.
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Fig. 1.1. A projection of the unknotted circle

Fig. 1.2. A framed trefoil knot

1.1.4 Links, Reidemeister moves, and Kirby’s theorem

We introduce a few notions from the theory of knots and links, a subject that is

both of intrinsic interest in topology and also a useful tool in the construction of

manifolds.

A link in S3 is an embedding of a finite disjoint union of circles in S3,

n
⊔

i=1

S1
i ⊂ S3.

A link with one path component (i.e., n = 1) is called a knot.

A projection of a knot or link is a picture of a generically immersed curve in R
2, with

“over and under” data given at each double point, to specify a knot or link in R
3 = S3 − {p}.

See Figure 1.1.

A framed link in S3 is an embedding of a finite disjoint union of solid tori in S3,

n
⊔

i=1

(S1 × D2)i ⊂ S3.

See Figure 1.2.
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R1

R3

R2

Fig. 1.3. The three Reidemeister moves

The result of surgery on a framed link is the 3-manifold, M , obtained by cutting out

each (S1 × D2) and gluing in (D2 × S1):

M =

(

S3 −
⊔

i

(S1 × D2)i

)

∪
⊔

i

(D2 × S1)i .

Isotopy of links can be described using projections in terms of the three Rei-

demeister moves, illustrated in Figure 1.3. In fact, Reidemeister proved that these

three moves classify links in S3, in the sense that two projections (i.e., pictures like

those in Figures 1.1 and 1.2) of links correspond to equivalent links if and only if

one can get from one projection to the other by a sequence of Reidemeister moves

R1, R2, and R3.

In a different direction, a classification theorem of sorts for 3-manifolds was

proven by Kirby in [26].

It has been known since the 1950s that any 3-dimensional manifold is obtained

by surgery on a framed link in S3. However, many different framed links yield the

same manifold.

There are geometric moves on the set of framed links: isotopy, stabilization

(adding a small, appropriately framed knot away from the rest, as in Figure 1.4),

and addition, or sliding (adding a parallel copy of one component to another

component; see Figure 1.5).

Kirby’s theorem says two framed links give diffeomorphic 3-manifolds if and only

if the framed links are related by these moves. (The stabilization and sliding moves in

this dimension are often called Kirby moves.) In other words, 3-manifolds are clas-

sified by identifying them with equivalence classes of framed links in S3 (note that

any framed link can be visualized as circles in R
3 with numbers attached to them).

This suggests a strategy to approach the classification problem for 3-manifolds:

construct a function which assigns a complex number (or an element in an abelian
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Fig. 1.4. A (−1) stabilization of a framed trefoil knot

Fig. 1.5. Sliding one component over another (framings omitted)

group) to each link in S3 (respectively, framed link in S3) in such a way that

links related by Reidemeister moves are assigned the same number (respectively,

framed links related by Reidemeister and Kirby moves are assigned the same

number). This might be a good strategy because one can draw links and framed

links. It may be hard to prove directly that two link projections correspond to

different equivalence classes, but straightforward to show that certain functions are

preserved by Reidemeister or Kirby moves.

This is one place where QFT has had an impact on low-dimensional topology:

The use of Feynman path integrals and the strategy by which physicists compute

them have led to the invention of the new mathematical notion of TQFT. Perhaps

more importantly, the input from physics has led to the formulation of a set of

axioms similar to, but in an important sense fundamentally different from, the

axioms of a homology theory.

1.2 Homology theories

We first review axioms for cohomology theories, which reshaped mathematical

thinking in the second half of the twentieth century. We will take the point of view

suited to algebraic topology, but there are many other points of view, in geometry,

algebra, analysis, etc. For reasons of exposition we discuss cohomology theories,

but each cohomology theory corresponds to a unique homology theory.
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A category C is a class of objects Ob(C), together with a class of disjoint sets Hom(A,B),

called morphisms, one for each pair A,B ∈ Ob(C). Moreover, we require that for each triple

A,B,C of objects there exist a composition Hom(A,B) × Hom(B,C) → Hom(A,C)

denoted (f, g) 
→ g ◦ f satisfying

(i) (Associativity) (f ◦ g) ◦ h = f ◦ (g ◦ h),

(ii) (Identity) for each A ∈ Ob(C) there exists a 1A ∈ Hom(A,A) such that for each B, we

have 1A ◦ f = f for f ∈ Hom(B,A) and g ◦ 1A = g for g ∈ Hom(A,B).

A covariant functor F : C → D is one that assigns to each object A ∈ Ob(C) an

object F (A) ∈ Ob(D) and to each morphism h ∈ Hom(A,B) a morphism F (h) ∈

Hom(F (A), F (B)) so that compositions and identity are preserved. A contravariant functor

is defined in a similar way, except that if h ∈ Hom(A,B), then F (h) ∈ Hom(F (B), F (A)),

i.e., the arrows are reversed.

A natural transformation between two functors is, loosely speaking, a functor of func-

tors. More precisely, if F,G : C → D are two covariant functors, then a natural transfor-

mation n : F → G assigns to each A ∈ Ob(C) a morphism n(A) ∈ Hom(F (A),G(A)) such

that if f ∈ Hom(A,B) is a morphism in C, the diagram

F (A) F (B)

G(A) G(B)

�

n(A)

�
F (f )

�

n(B)

�

G(f )

commutes. A similar definition works for contravariant functors.

Definition 1.2.1 Let T denote the category of topological spaces with base points

(or, to be safe, CW complexes) and continuous maps, and A the category of

(graded) abelian groups. Let S : T → T be the suspension functor, i.e., SX =

X × [0, 1]/ ∼, where X × {0, 1} ∪ {p} × [0, 1] is collapsed to a point.

A (reduced) cohomology theory is a contravariant functor h : T → A together

with a degree 1 natural transformation e : h ◦ S → h satisfying the following

axioms:

(i) (Homotopy) If f0, f1 : X → Y are (based) homotopic, then

h(f0) = h(f1) : h(Y ) → h(X).

(ii) (Exactness) If X ⊂ Y , then the sequence

h(X/Y ) → h(Y ) → h(X)

is an exact sequence.

(iii) (Suspension) For each X, the natural transformation

e(X) : h(SX) → h(X)

is an isomorphism.
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