Biodiversity in Agriculture

Domestication, Evolution, and Sustainability

The introduction of plant and animal agriculture represents one of the most important milestones in human evolution. It contributed to the development of cities, alphabets, new technologies, and – ultimately – to civilizations, but it has also presented a threat to both human health and the environment.

Bringing together research from a range of fields including anthropology, archaeology, ecology, economics, entomology, ethnobiology, genetics, and geography, this book addresses key questions relating to agriculture. Why did agriculture develop, and where did it originate? What are the patterns of domestication for plants and animals? How did agroecosystems originate and spread from their locations of origin? Exploring the cultural aspects of the development of agricultural ecosystems, the book also highlights how these topics can be applied to our understanding of contemporary agriculture, its long-term sustainability, the co-existence of agriculture and the environment, and the development of new crops and varieties.

Paul Gepts is Professor of Plant Sciences at the University of California, Davis.

Thomas R. Famula is Professor of Animal Science at the University of California, Davis.

Robert L. Bettinger is a Professor in the Department of Anthropology, University of California, Davis.

Stephen B. Brush is Professor Emeritus in the Department of Human and Community Development, University of California, Davis.

Ardeshir B. Damania is an Associate in the Agricultural Experiment Station, Department of Plant Sciences, University of California, Davis.

Patrick E. McGuire is Academic Coordinator in the Department of Plant Sciences, University of California, Davis.

Calvin O. Qualset is Professor Emeritus in the Department of Plant Sciences, University of California, Davis.
Biodiversity in Agriculture
Domestication, Evolution, and Sustainability

Edited by
PAUL GEPTS, THOMAS R. FAMULA, ROBERT L. BETTINGER,
STEPHEN B. BRUSH, ARDESHIR B. DAMANIA,
PATRICK E. McGUIRE, and CALVIN O. QUALSET
University of California, Davis, USA
Contents

List of tables viii
List of figures x
Foreword xv
B.D. Smith
List of contributors xvii
Acknowledgments xxiii
P. Gepts and T. Famula

Introduction: The Domestication of Plants and Animals: Ten Unanswered Questions

1 The Local Origins of Domestication

J. Diamond

Section I Early Steps in Agricultural Domestication

R. Bettinger

2 Evolution of Agroecosystems: Biodiversity, Origins, and Differential Development

D.R. Harris 21

3 From Foraging to Farming in Western and Eastern Asia

O. Bar-Yosef 57

4 Pre-Domestic Cultivation during the Late Pleistocene and Early Holocene in the Northern Levant

G. Willcox 92

5 New Archaeobotanical Information on Plant Domestication from Macro-Remains:

Tracking the Evolution of Domestication Syndrome Traits

D.Q. Fuller 110

6 New Archaeobotanical Information on Early Cultivation and Plant Domestication

Involving Microplant (Phytolith and Starch Grain) Remains

D.R. Piperno 136
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>How and Why Did Agriculture Spread?</td>
<td>P. Bellwood</td>
</tr>
<tr>
<td>8</td>
<td>California Indian Proto-Agriculture: Its Characterization and Legacy</td>
<td>M.K. Anderson and E. Wohlgemuth</td>
</tr>
<tr>
<td></td>
<td>Section II Domestication of Animals and Impacts on Humans</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Pathways to Animal Domestication</td>
<td>M.A. Zeder</td>
</tr>
<tr>
<td>10</td>
<td>Genetics of Animal Domestication</td>
<td>L. Andersson</td>
</tr>
<tr>
<td>12</td>
<td>Malaria and Rickets Represent Selective Forces for the Convergent</td>
<td>L. Cordain, M.S. Hickey, and K. Kim</td>
</tr>
<tr>
<td></td>
<td>Evolution of Adult Lactase Persistence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section III Issues in Plant Domestication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Genetic Isolation</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Domestication of Lima Beans: A New Look at an Old Problem</td>
<td>M.I. Chacón S., J.R. Motta-Aldana, M.L. Serrano S., and D.G. Debouck</td>
</tr>
<tr>
<td>15</td>
<td>Genetic Characterization of Cassava (Manihot esculenta Crantz) and Yam</td>
<td>E.A. Veasey, E.A. Bressan, M.V.B.M. Siqueira, A. Borges, J.R. Queiroz-Silva, K.J.C. Pereira, G.H. Recchia, and L.C. Ming</td>
</tr>
<tr>
<td></td>
<td>(Dioscorea trifida L.) Landraces in Swidden Agriculture Systems in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brazil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section IV Traditional Management of Biodiversity</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Ecological Approaches to Crop Domestication</td>
<td>D.B. McKey, M. Elias, B. Pujol, and A. Duputié</td>
</tr>
</tbody>
</table>
Contents

18 Agrobiodiversity Shifts on Three Continents Since Vavilov and Harlan: Assessing Causes, Processes, and Implications for Food Security 407
 G.P. Nabhan, K. Wilson, O. Aknazarov, K.-A. Kassam, L. Monti, D. Cavagnaro, S. Kelly, T. Johnson, and F. Sekacucu

19 Indigenous Peoples Conserving, Managing, and Creating Biodiversity 426
 J. Salick

20 Land Architecture in the Maya Lowlands: Implications for Sustainability 445
 B.L. Turner II and D. Lawrence

21 Agrobiodiversity and Water Resources in Agricultural Landscape Evolution (Andean Valley Irrigation, Bolivia, 1986 to 2008) 464
 K.S. Zimmerer

Section V Uses of Biodiversity and New and Future Domestications
 P. McGuire and C. Qualset

22 Participatory Domestication of Indigenous Fruit and Nut Trees: New Crops for Sustainable Agriculture in Developing Countries 479
 R.R.B. Leakey

23 The Introduction and Dispersal of *Vitis vinifera* into California: A Case Study of the Interaction of People, Plants, Economics, and Environment 502
 J. Lapsley

24 Genetic Resources of Yeast and Other Micro-Organisms 515
 C.W. Bamforth

25 Biodiversity of Native Bees and Crop Pollination with Emphasis on California 526
 R.W. Thorp

26 Aquaculture, the Next Wave of Domestication 538
 D. Hedgecock

27 Genetic Sustainability and Biodiversity: Challenges to the California Dairy Industry 549
 J.F. Medrano

Index 562

The color plates will be found between pages 78 and 79.
Tables

2.1 Ethnohistorically documented ‘root and tuber’ food plants in Australia and western North America

2.2 Ethnohistorically documented grasses and forbs harvested for seeds in Australia and western North America

2.3 Indigenous staple food crops and domestic herd animals of ten major world agriculture regions

4.1 Counts of edible taxa from northern Levant sites with no signs of morphological domestication

4.2 Weeds of cultivation present at different sites in the Near East

5.1 Comparison of evolutionary rates of domestication syndrome traits across selected crops

7.1 Likely origin regions and archaeological correlations for the initial spreads of major language families

8.1 Common small-seeded plants in archaeological sites of interior central California

8.2 Common weeds in farmers’ fields in 1890

8.3 Proportion of frequency of disturbance-follower small-seeded plants by time period

11.1 Permutation tests of haplotype-sharing per breed with wolf populations

13.1 The recognized subpopulations of *Oryza sativa*

14.1 Vernacular names of Lima bean in the Americas, places where registered, and possible language involved

14.2 Archaeological records for Lima bean in the Americas

14.3 AMOVA results and comparisons of differentiation coefficients among wild forms of Lima bean

14.4 Nucleotide diversity and founder effect in gene pools AI and MI

15.1 Number of individuals analyzed for polymorphism, heterozygosity, and diversity for five groups of cassava

15.2 Nei genetic diversity parameters for each locus and for the total evaluated loci for five groups of cassava

15.3 Molecular variance analysis (AMOVA) for 25 landraces of *Dioscorea trifida*
List of tables

15.4 Molecular variance analysis (AMOVA) for microsatellite data of 12 Dioscorea trifida accessions 357
16.1 Global area, production, and productivity of pigeonpea during 2007 362
16.2 Gene pools of pigeonpea 364
16.3 Ten maturity groups of pigeonpea 366
18.1 Elevational shifts in crop distributions in the Western Pamirs, 1893 to 2006 413
18.2 Siwan agrobiodiversity shifts: crop varieties present or absent 418
22.1 Tree species being domesticated clonally that have potential as components of agroforestry systems 481
24.1 Some examples of organisms used in foodstuff production 517
24.2 Sources of Saccharomyces 518
24.3 Differentiation of ale and lager yeast brewing strains 519
24.4 Commercial sources of brewing yeast 519
24.5 Micro-organisms and cheese production 520
24.6 The microflora of sourdough production 521
24.7 Microbial biomass protein opportunities 521
24.8 Other uses for micro-organisms 522
24.9 Some culture collections 523
27.1 Emphasis placed in dairy traits in national genetic–economic selection indices 555
Figures

3.1 The two areas in Asia discussed in this chapter page 58
3.2 Climatic curve from Soreq cave and suggested chronological correlations with prehistoric entities 61
3.3 The location of Late Upper Paleolithic and Neolithic sites in China mentioned in the text 74
4.1 Positions of the major sites mentioned in the text along with rainfall gradient 93
4.2 Charred wild cereal spikelet bases and grains 94
4.3 Settings for three saddle querns in a room excavated at Jerf el Ahmar 97
4.4 Silicone cast of a fractured fragment of building earth from Jerf el Ahmar 98
4.5 Changes in frequencies of the most common wild food plants at sites in northern Syria 105
5.1 Charts of the quantitative growth of archaeobotany 111
5.2 Charts comparing the change in domestication traits over time in the Near East for barley 114
5.3 Charts comparing the change in domestication traits over time in the Near East for einkorn wheat 115
5.4 Charts comparing the change in domestication traits in Asian rice 119
5.5 Archaeobotanical data for the evolution of domesticated pearl millet 120
5.6 Metrical data of achene length plotted against time for two North American species of Asteraceae 121
5.7 Metrical data plotted against time for selected pulse crops 122
5.8 Metrical data on melon seed length and width from the Lower Yangzte, China 126
6.1 Postulated domestication areas for various crops in Central America and South America 137
6.2 Early crop plants recorded from microfossil evidence in Central and South America 140
6.3 Allele *ts*al and phytolith formation and morphology in *Zea* 144
6.4 Phytoliths with visible carbon inclusions from a modern maize leaf 152
7.1 Suggested homelands for the major Old World language families 162
List of figures

7.2 The Austronesian language family and major Austronesian language groups 168
7.3 The linkages between Neolithic assemblages in Taiwan and the northern Philippines 169
7.4 The surviving distribution of the Uto-Aztecans language family and its closest neighbors 172
7.5 The distributions of Indo-European and Dravidian languages prior to the colonial era 176
8.1 California hunter–gatherer and agriculturalist linguistic groups 192
8.2 Major modern agricultural areas in the California Floristic Province 193
8.3 Harvesting hay in the Sacramento Valley, 1915 194
8.4 Major modern agricultural areas overlaid with tribal territories at European contact 195
8.5 California Indian population densities at European contact 196
8.6 Historic photograph of Letah Garcia (Wukchumni Yokuts) with shelled acorns 196
8.7 Trends in prehistoric plant use in interior central California 197
8.8 Grace Tex, North Fork Mono, cooking acorn mush 198
8.9 Marie Coho, Mono, remembering how to harvest the greens of California thistle 198
8.10 Ruby Pomona, North Fork Mono, holding two native forbs with edible seeds 198
8.11 Melba Beecher, Mono, holding Sagayu, an edible mushroom 198
8.12 Lois Conner (North Fork Mono/Chuckchansi) harvesting soaproot 198
8.13 Soaproot crown left in the ground 198
8.14 California Indian burning, coppicing, and pruning imitating natural disturbances 205
8.15 California Indian digging of geophytes and replanting bulblets and cormlets imitate disturbance and landslides 206
8.16 Human–plant interaction continuum 207
8.17 The continuum of human-induced vegetation change from gathering to domestication 209
8.18 Widespread use of red maids (Calandrinia ciliata) for their edible seeds 211
8.19 Rancher John Wick of Nicasio, California, poses in a meadow barley pasture 218
8.20 Teacher and homemaker Elizabeth Barnett, of Inverness, with muffins of native California brome grain 218
8.21 Judith Lowry, Larner Seeds in Bolinas, California: oatmeal with red maids seeds and wild huckleberries 218
8.22 Teacher and artist Rebecca R. Burgess and a workshop with native plants as dye stuff for local fiber 218
9.1 Multiple axes of domestication 229
9.2 Pre-adaptive behavioral characteristics in animal domestication 231
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>Reduction in brain size in different groups of domestic animals</td>
<td>233</td>
</tr>
<tr>
<td>9.4</td>
<td>Reduction in total brain mass and size of fundamental brain structures in domesticated animals</td>
<td>234</td>
</tr>
<tr>
<td>9.5</td>
<td>Reduction in the volume of brain structures in different functional systems in domesticated animals</td>
<td>235</td>
</tr>
<tr>
<td>9.6</td>
<td>Possible pathways to domestication of animal species</td>
<td>240</td>
</tr>
<tr>
<td>9.7</td>
<td>Pathways to domestication: commensal, prey, and directed</td>
<td>249</td>
</tr>
<tr>
<td>10.1</td>
<td>Phenotypic diversity of domestic chicken in comparison with ancestral red junglefowl</td>
<td>261</td>
</tr>
<tr>
<td>10.2</td>
<td>Camouflage coat color in wild boar piglets and black-spotted Swedish Linderöd piglets</td>
<td>264</td>
</tr>
<tr>
<td>10.3</td>
<td>Young Icelandic hen with bright yellow legs due to homozygosity at the yellow skin gene</td>
<td>268</td>
</tr>
<tr>
<td>10.4</td>
<td>Two white Lippizaner mares with their colored foals</td>
<td>270</td>
</tr>
<tr>
<td>11.1</td>
<td>Neighbor-joining tree of wolf and dog mitochondrial DNA control region sequences</td>
<td>278</td>
</tr>
<tr>
<td>11.2</td>
<td>Canine SNP microarray variation, SNP-based estimates of heterozygosity, and observed heterozygosity</td>
<td>281</td>
</tr>
<tr>
<td>11.3</td>
<td>Principal components analysis of 171 dogs and 58 Eurasian wolves for 48,036 SNPs</td>
<td>283</td>
</tr>
<tr>
<td>11.4</td>
<td>STRUCTURE analysis of ancient dog breeds and 58 Eurasian wolves for 43,000 unlinked SNPs</td>
<td>284</td>
</tr>
<tr>
<td>11.5</td>
<td>Neighbor-joining cladogram of 574 dogs and wolves, rooted with coyote data for 43,954 unlinked SNPs</td>
<td>285</td>
</tr>
<tr>
<td>11.6</td>
<td>Principal components analysis of 106 SNP genotypes from dogs and gray wolf, coyote, and other wild canids</td>
<td>290</td>
</tr>
<tr>
<td>11.7</td>
<td>Correlation between extent of LD and log of the number of registered individuals (14 AKC breeds)</td>
<td>291</td>
</tr>
<tr>
<td>11.8</td>
<td>IGF-1 intron 2 neighbor-joining tree</td>
<td>293</td>
</tr>
<tr>
<td>12.1</td>
<td>The biosynthetic Shikimate pathway and its branches</td>
<td>301</td>
</tr>
<tr>
<td>12.2</td>
<td>The geographic distribution of the adult lactase persistence allele in contemporary Europeans</td>
<td>303</td>
</tr>
<tr>
<td>12.3</td>
<td>The geographic distribution of hair and eye pigmentation in contemporary Europeans</td>
<td>304</td>
</tr>
<tr>
<td>12.4</td>
<td>The Old World geographic distribution for dermal pigmentation</td>
<td>305</td>
</tr>
<tr>
<td>14.1</td>
<td>Mesoamerican and Andean domestication centers proposed for Lima beans</td>
<td>337</td>
</tr>
<tr>
<td>15.1</td>
<td>Map of Brazil showing the municipalities where cassava landraces were sampled</td>
<td>347</td>
</tr>
<tr>
<td>15.2</td>
<td>Dendrogram (Jaccard similarity coefficient and UPGMA method) for 42 landraces of cassava</td>
<td>349</td>
</tr>
<tr>
<td>15.3</td>
<td>Dendrogram (UPGMA method and Jaccard similarity coefficient) for 25 landraces of yam with 64 isoenzymatic bands</td>
<td>353</td>
</tr>
</tbody>
</table>
List of figures

15.4 Dendrogram (UPGMA method and Jaccard similarity coefficient) for 12 landraces of yam with 8 SSR loci 356
16.1 A two-year-old pigeonpea tree in Antigua 365
16.2 Performance of ICPH 2671 over three years and 21 locations in India 369
17.1 Stages in selective incorporation of volunteer manioc plants from seeds in fields of Amerindian cultivators 388
17.2 Morphology and germination strategies of seedlings of maniocs and its closest wild relative 390
17.3 Growth strategy of *Dioscorea praehensilis*, a wild ancestor of the guinea yam, in southeastern Cameroon 394
17.4 An ant at extraloral nectaries on cataphylls of *Dioscorea praehensilis* in southeastern Cameroon 395
18.1 Perched valleys in the Khuf tributary of the River Panj, within the Pamiri highlands of Tajikistan 411
18.2 Overview of the ancient Shali and date groves at Siwa, Egypt 417
19.1 Diversity of cocona (*Solanum sessiliflorum*) fruit size and shape 428
19.2 Species diversity in Yanesha agriculture 429
19.3(a) At Mt Khawa Karpo on the Tibetan border 430
19.3(b) Richness and diversity of herb-shrubs, useful plants, and trees 431
19.4(a) Cassava varieties of the same Yanesha were systematically sampled in 1983–86 and in 1999 433
19.4(b) Cladistic analyses of morphological characteristics of cassava varieties sampled in 1983–86 434
19.4(c) Cladistic analyses of morphological characteristics of cassava varieties sampled in 1999 435
19.5 Yanesha agricultural diversity over time 436
19.6 Tibetans recognize and respond to climate change 440
20.1 The central Maya lowlands in the Yucatán Peninsula 448
20.2 Simplified Pre-Maya Land Architecture: example from a part of the Central Maya Lowlands 454
20.3 Simplified Classic Period land architecture: example from a part of the Central Maya Lowlands 455
22.1 Definition of domestication 482
22.2 Domestification strategy for agroforestry trees 485
22.3 Agroforestry approach to closing the Yield Gap 490
22.4 Evolution of agriculture and the IAASTD Goals 493
22.5 The globalization and localization pathways to rural development 494
23.1 Acreage by decade of wine grape production in California from 1860 to 2000 504
26.1 World production from capture fisheries and aquaculture 540
26.2 Aquaculture production, by species 541
26.3 Phyletic diversity of aquacultural vs. agricultural species 541
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.4</td>
<td>Growth heterosis (hybrid vigor), evident in the contrast of inbred and hybrid Pacific oysters</td>
<td>543</td>
</tr>
<tr>
<td>27.1</td>
<td>Comparative changes in the California dairy industry from 1950 to 2007</td>
<td>550</td>
</tr>
<tr>
<td>27.2</td>
<td>Change in the level of inbreeding and daughter pregnancy rate in US Holsteins from 1960 to 2006</td>
<td>552</td>
</tr>
<tr>
<td>27.3</td>
<td>Diagram of designs utilized in the estimation of breeding value of dairy sires</td>
<td>554</td>
</tr>
<tr>
<td>27.4</td>
<td>Diagram of new enabling genomic resources and technologies available to query the bovine genome</td>
<td>557</td>
</tr>
<tr>
<td>27.5</td>
<td>Animal breeding and reproduction are at the top of the animal production pyramid</td>
<td>559</td>
</tr>
</tbody>
</table>
Foreword

Bruce D. Smith

This landmark volume eloquently underscores the enduring legacy of Jack Harlan's broad-ranging and multiple-perspective approach to considering the past development and future challenges of agricultural economies, world-wide. It also highlights the remarkable degree to which plant and animal domestication and agricultural origins continue to expand as a general research question across a wide spectrum of different disciplines in the biological and social sciences.

General areas of inquiry are continually emerging in science, and for widely varying periods of time, they attract and reward researchers, providing interesting and unfolding sequences of questions before eventually closing down as their research potential is exhausted. The evolution of agricultural economies, from first origins to future developments, is an excellent example of an extremely long-lived problem area which not only has witnessed substantial growth since the pioneering efforts of Vavilov, Braidwood, Harlan, Heiser, MacNeish, and others, but also holds the very real promise of continuing to expand and provide new research questions for generations to come.

Many of the reasons for this continued expansion of interest and research are obvious. Initial domestication and the subsequent development of agricultural economies was not a single isolated event, for example, but rather occurred in perhaps a dozen different world regions or more, as our distant ancestors independently domesticated a wide variety of different species at different times and in different temporal sequences, providing a rich set of complex regional-scale developmental puzzles for comparative analysis. The subsequent diffusion of domesticates and agricultural economies out of these centers of agricultural origin add to the set of regional-scale comparative examples available for study, with almost every world area experiencing the eventual transition from hunting and gathering to food production economies.

Along with offering complex regional-scale developmental puzzles world-wide, the general research topic of agricultural origins also encompasses the domestication of a rich variety of plants and animals. Each of these in turn provides another complex set of interrelated questions at the species level of analysis for both archaeologists and geneticists: where and when and from which wild progenitor population did different domesticates develop, and in what kinds of environmental and cultural contexts? The past decade in particular has witnessed remarkable advances in our understanding of the early history of a rapidly expanding list of domesticated plants and animals.
Along with establishing clear and lasting templates for how to approach domestication and agricultural origins at both the regional and species levels of analysis, focusing on sub-Saharan Africa and its crop plants, Jack Harlan also framed the central issues involved in the larger-scale comparative analysis of different centers (and noncenters) of domestication. In a series of classic papers, Harlan and colleagues also illuminated the cause and effect of evolutionary relationships at work during the initial domestication of seed plants; how human planting and harvesting of stored seed stock created new sets of selective pressures, with the resultant automatic adaptive response of the cultivated plant populations reflected in the genetic and morphological changes identified today under the general heading of the adaptive syndrome of domestication.

Jack Harlan clearly recognized that as a general area of inquiry, agricultural origins and evolution encompasses a vast landscape of different research questions and calls for sustained communication and collaboration between researchers in many different disciplines. The Harlan II Symposium, and the rich variety of cross-illuminating perspectives that are represented in this volume, reflect the enduring importance of such scholarly interaction, as well as the continuing expansion of interest in this fascinating and rewarding topic.
Contributors

Ogonazar Aknazarov
Desert Research Institute, Khorog, Gorno-Badakhshan Autonomous Oblast, Tajikistan

M. Kat Anderson
USDA-Natural Resources Conservation Service, National Plant Data Center, c/o Department of Plant Sciences, University of California, Davis CA USA

Leif Andersson
Department of Medical Biochemistry and Microbiology, Uppsala University and Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden

C.W. Bamforth
Dept. of Food Science and Technology, University of California, Davis CA USA

Ofer Bar-Yosef
Department of Anthropology, Harvard University, Boston MA USA

Peter Bellwood
School of Archaeology and Anthropology, Australian National University, Canberra ACT Australia

Robert L. Bettinger
Department of Anthropology, University of California, Davis CA USA

Aline Borges
Genetics Department, Luiz de Queiroz College of Agriculture, São Paulo University, Piracicaba, SP, Brazil

Eduardo A. Bressan
Agriculture Nuclear Energy Center, São Paulo University, Piracicaba, SP, Brazil
List of contributors

Stephen B. Brush
Department of Human and Community Development, University of California, Davis CA USA

David Cavagnavo
Seed Savers Exchange, Decorah IA USA

M.I. Chacón S.
Facultad de Agronomía, Universidad Nacional de Colombia, Bogotá, Colombia

Loren Cordain
Department of Health and Exercise Science, Colorado State University, Fort Collins CO USA

Ardeshir B. Damania
Department of Plant Sciences, University of California, Davis CA USA

D.G. Debouck
Genetic Resources Unit, International Center for Tropical Agriculture (CIAT), Cali, Colombia

Jared Diamond
Department of Geography, University of California, Los Angeles CA USA

A. Duputié
Centre d’Ecologie Fonctionnelle et Evolutive, Montpellier, France and Section of Integrative Biology, University of Texas at Austin, Austin TX USA

M. Elias
Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-UP), Campus Agrário de Vairão, Vairão, Portugal

Thomas R. Famula
Department of Animal Science, University of California, Davis CA USA

Dorian Q. Fuller
Institute of Archaeology, University College London, London, UK

Paul Gepts
Department of Plant Sciences, University of California, Davis CA USA

C.L. Laxmipathi Gowda
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India
Melissa M. Gray
Department of Ecology and Evolutionary Biology, University of California, Los Angeles CA USA

David R. Harris
Institute of Archaeology, University College London, London, UK

Dennis Hedgecock
Department of Biological Sciences, University of Southern California, Los Angeles CA USA

Matthew S. Hickey
Department of Health and Exercise Science, Colorado State University, Fort Collins CO USA

Tai Johnson
Department of History, University of Arizona, Tucson AZ USA

Hui Jiang
Bratnell Lab, Boyce Thompson Institute for Plant Research, Ithaca NY USA

Karim-Aly Kassam
Department of Natural Resources, Cornell University, Ithaca NY USA

Shawn Kelly
Parametrics Inc., Albuquerque NM USA

Kami Kim
Departments of Medicine and of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY USA

Michael J. Kovach
Department of Plant Breeding and Genetics, Cornell University, Ithaca NY USA

James Lapsley
Dept. of Viticulture and Enology and the Agricultural Issues Center, University of California, Davis CA USA

Deborah Lawrence
Department of Environmental Science, University of Virginia, Charlottesville VA USA

Roger R.B. Leakey
Agroforestry and Novel Crops Unit, School of Marine and Tropical Biology, James Cook University, Cairns, Queensland, Australia
List of contributors

Susan R. McCouch
Department of Plant Breeding and Genetics, Cornell University, Ithaca NY USA

Patrick E. McGuire
Department of Plant Sciences, University of California, Davis CA USA

D.B. McKey
Centre d’Ecologie Fonctionnelle et Evolutive, Montpellier, France and Université Montpellier II, Place Eugène Bataillon, Montpellier, France

Juan F. Medrano
Department of Animal Science, University of California, Davis CA USA

Lin Chau Ming
Horticulture Sector, Agronomical Sciences College, São Paulo State University, Botucatu, SP, Brazil

Laurie Monti
The Christensen Fund, San Francisco CA USA

J.R. Motta-Aldana
Escuela de Biologia, Universidad Industrial de Santander, Bucaramanga, Colombia

Gary Paul Nabhan
Southwest Center, University of Arizona, Tucson AZ USA

Kayo J.C. Pereira
Genetics Department, Luiz de Queiroz College of Agriculture, São Paulo University, Piracicaba, SP, Brazil

Dolores R. Piperno
Department of Anthropology, The Program in Human Ecology and Archaeobiology, National Museum of Natural History, Washington DC USA and Smithsonian Tropical Research Institute, Balboa, Republic of Panama

B. Pujol
Laboratoire Evolution et Diversité Biologique, Université Paul Sabatier, Toulouse, France

Calvin O. Qualset
Department of Plant Sciences, University of California, Davis CA USA
List of contributors

Jurema R. Queiroz-Silva
Genetics Department, Luiz de Queiroz College of Agriculture, São Paulo University, Piracicaba, SP, Brazil

Gustavo H. Recchia
Genetics Department, Luiz de Queiroz College of Agriculture, São Paulo University, Piracicaba, SP, Brazil

Jan Salick
William L. Brown Center, Missouri Botanical Garden, St Louis MO USA

K.B. Saxena
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India

Ferrell Sekacucu
Second Mesa, CDP, Hopi Reservation, Navajo County AZ USA (deceased)

Mande Semon
Africa Rice Center (AfricaRice), Cotonou, Benin

M.L. Serrano S.
Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia

S.N. Silim
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya

Marcos V.B.M. Siqueira
Genetics Department, Luiz de Queiroz College of Agriculture, São Paulo University, Piracicaba, SP, Brazil

Bruce D. Smith
The Program in Human Ecology and Archaeobiology, National Museum of Natural History, Smithsonian Institution, Washington DC USA

R.K. Srivastava
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India

Megan Sweeney
Department of Plant Sciences, University of Arizona, Tucson AZ USA
List of contributors

Robbin W. Thorp
Department of Entomology, University of California, Davis CA USA

B.L. Turner II
School of Geographical Sciences and School of Sustainability, Arizona State University, Tempe AZ USA

H.D. Upadhyaya
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India

Elizabeth A. Veasey
Genetics Department, Luiz de Queiroz College of Agriculture, São Paulo University, Piracicaba, SP, Brazil

Bridgett M. vonHoldt
Department of Ecology and Evolutionary Biology, University of California, Los Angeles CA USA

Robert K. Wayne
Department of Ecology and Evolutionary Biology, University of California, Los Angeles CA USA

George Willcox
Archéorient, CNRS, Jalès, Berrias, France

Ken Wilson
The Christensen Fund, San Francisco CA USA

Eric Wohlgemuth
Far Western Anthropological Research Group, Inc., Davis CA USA

Melinda A. Zeder
The Program in Human Ecology and Archaeobiology, National Museum of Natural History, Smithsonian Institution, Washington DC USA

Karl S. Zimmerer
Department of Geography, Pennsylvania State University, State College PA USA
Acknowledgments

We thank the Local Advisory Committee for their untiring contribution towards making this Harlan II Symposium a success. They provided much-needed advice on the program and speakers, in conjunction with the International Advisory Committee. The excellent logistics of the meeting, the organization of the reception and dinner and coffee breaks, and registration is owed to Alma Contreras, Event Coordinator of the UC Davis Conference and Event Services Office.

Staff from the Department of Plant Sciences contributed enthusiastically to a smooth running of the sessions. They include Angela Oates (event planning), Lauri Brandeberry (webmaster), Rob Kerner (IT manager), and Deidra Madderra, Dana Chavez, Sue DiTomaso, Najwa Marrush, Theresa McWayne, and Sabrina Morgan (department business office). Pat Bailey of the UC Davis News Service provided timely assistance with the media. From the Gepts group, James Kami, Matthew Hufford, Kraig Kraft, Shelby Repinski, Margaret Worthington, José Vicente Gomes dos Santos, Raúl Durán, and Vicken Hillis assisted with the visual displays. To all of you a heartfelt thanks.

Our sponsors provided greatly appreciated financial support without which this international symposium would not have been possible. We would like to highlight our home units and heads at the time for their special effort: Depts. of Animal Science (Chair: Mary Delany) and Plant Sciences (Chair: Chris van Kessel).

On a personal note, we would like to thank Adi Damania for assistance with the symposium secretariat under the auspices of the UC Genetic Resources Conservation Program. His perseverance and attention to detail were a great part of the success of the symposium and a foundation for this book.

Local Organizing Committee

Charles Bamforth, Robert Bettinger, Eric Bradford (deceased), Francine Bradley, Steve Brush, Adi Damania, Ellen Dean, Serge Doroshov, Jan Dvořák, Tom Famula (Co-chair), Paul Gepts (Co-chair), Gurdev Khush, Ming-Cheng Luo, Patrick McGuire, Eric Mussen, Dan Potter, Cal Qualset, Leanna Sweha, and Tom Tomich.
Acknowledgments

International Advisory Committee

Patricia C. Anderson (France), Ofer Bar-Yosef (USA), Fredrick A. Bliss (USA), Michael T. Clegg (USA), Patrick Cunningham (Ireland), Cary Fowler (Italy), Emile Frison (Italy), Arturo Gómez-Pompa (Mexico), David Harris (UK), Roger Leakey (Australia), Stephen O’Brien (USA), Ed Rege (Kenya), Jan Salick (USA), Barbara Schaal (USA), and Stephen Smith (USA).

Sponsors

UC Davis College of Agricultural and Environmental Sciences
 Department of Animal Science
 Department of Human and Community Development
 Department of Plant Sciences
 Department of Viticulture and Enology
UC Davis Department of Anthropology, College of Letters and Science
UC Davis Agricultural Sustainability Institute
UC Davis Foundation Plant Services
UC Genetic Resources Conservation Program
California Rice Research Foundation
California Crop Improvement Association
California League of Food Processors
Missouri Botanic Garden
International Maize and Wheat Improvement Center (CIMMYT)
International Center for Agricultural Research in the Dry Areas (ICARDA)
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)
Bioversity International
System-wide Genetic Resources Program (SGRP) of the Consultative Group on International Agricultural Research (CGIAR)
Food and Agriculture Organization of the United Nations
Harris Moran Seed Company
Mars, Inc. and Howard-Yana Shapiro
Pioneer, A DuPont Company
Seminis Vegetable Seeds, Inc.
Syngenta

Paul Gepts and Thomas Famula
co-chairs, Local Organizing Committee
Harlan II Symposium