FIELD THEORIES OF CONDENSED MATTER PHYSICS

Presenting the physics of the most challenging problems in condensed matter using the conceptual framework of quantum field theory, this book is of great interest to physicists in condensed matter and high-energy and string theorists, as well as to mathematicians. Revised and updated, this second edition features new chapters on the renormalization group, the Luttinger liquid, gauge theory, topological fluids, topological insulators, and quantum entanglement.

The book begins with the basic concepts and tools, developing them gradually to bring readers to the issues currently faced at the frontiers of research, such as topological phases of matter, quantum and classical critical phenomena, quantum Hall effects, and superconductors. Other topics covered include one-dimensional strongly correlated systems, quantum ordered and disordered phases, topological structures in condensed matter and in field theory and fractional statistics.

EDUARDO FRADKIN is a Professor in the Department of Physics, University of Illinois at Urbana-Champaign. His research interests are in condensed matter physics; disordered systems, high-temperature superconductors, and electronic liquid-crystal phases of strongly correlated systems; quantum Hall fluids and other topological phases of matter; and quantum field theory in condensed matter.

FIELD THEORIES OF CONDENSED MATTER PHYSICS

SECOND EDITION

EDUARDO FRADKIN University of Illinois at Urbana-Champaign

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521764445

© E. Fradkin 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First edition published by Addison Wesley, 1991 Second edition published by Cambridge University Press, 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Fradkin, Eduardo. Field theories of condensed matter physics / Eduardo Fradkin. – Second edition. pages cm Includes bibliographical references and index. ISBN 978-0-521-76444-5 1. High temperature superconductivity. 2. Hubbard model. 3. Antiferromagnetism. I. Title. QC611.98.H54F73 2013 537.6'23-dc23 2012039026

ISBN 978 0 521 76444 5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface to the second edition Preface to the first edition		
1	Introduction		1
	1.1	Field theory and condensed matter physics	1
	1.2	What has been included in this book (first edition)	2
	1.3	What was left out of the first edition	3
	1.4	What has been included in the second edition	4
2	The Hubbard model		8
	2.1	Introduction	8
	2.2	Symmetries of the Hubbard model	10
	2.3	The strong-coupling limit	14
	2.4	The weak-coupling limit	17
	2.5	Correlation functions	21
3	The magnetic instability of the Fermi system		27
	3.1	Mean-field theory	27
	3.2	Path-integral representation of the Hubbard model	39
	3.3	Path integrals and mean-field theory	46
	3.4	Fluctuations: the non-linear sigma model	51
	3.5	The Néel state and the non-linear sigma model	57
4	The renormalization group and scaling		63
	4.1	Scale invariance	63
	4.2	Examples of fixed points	67
	4.3	Scaling behavior of physical observables	72
	4.4	General consequences of scale invariance	75
	4.5	Perturbative renormalization group about a fixed point	78
	4.6	The Kosterlitz renormalization group	82

v

vi		Contents	
5	One-dimensional quantum antiferromagnets		
-	5.1	The spin-1/2 Heisenberg chain	90
	5.2	Fermions and the Heisenberg model	100
	5.3	The quantum Ising chain	112
	5.4	Duality	116
	5.5	The quantum Ising chain as a free-Majorana-fermion system	118
	5.6	Abelian bosonization	126
	5.7	Phase diagrams and scaling behavior	141
6	6 The Luttinger liquid		145
	6.1	One-dimensional Fermi systems	145
	6.2	Dirac fermions and the Luttinger model	149
	6.3	Order parameters of the one-dimensional electron gas	153
	6.4	The Luttinger model: bosonization	155
	6.5	Spin and the Luttinger model	159
	6.6	Scaling and renormalization in the Luttinger model	164
	6.7	Correlation functions of the Luttinger model	169
	6.8	Susceptibilities of the Luttinger model	176
7	Sigma	a models and topological terms	189
	7.1	Generalized spin chains: the Haldane conjecture	189
	7.2	Path integrals for spin systems: the single-spin problem	190
	7.3	The path integral for many-spin systems	198
	7.4	Quantum ferromagnets	199
	7.5	The effective action for one-dimensional quantum	
		antiferromagnets	202
	7.6	The role of topology	205
	7.7	Quantum fluctuations and the renormalization group	209
	7.8	Asymptotic freedom and Haldane's conjecture	213
	7.9	Hopf term or no Hopf term?	218
	7.10	The Wess–Zumino–Witten model	227
	7.11	A (brief) introduction to conformal field theory	233
	7.12	The Wess–Zumino–Witten conformal field theory	238
	7.13	Applications of non-abelian bosonization	243
8	Spin-	liquid states	251
	8.1	Frustration and disordered spin states	251
	8.2	Valence bonds and disordered spin states	253
	8.3	Spinons, holons, and valence-bond states	261
	8.4	The gauge-field picture of the disordered spin states	263
	8.5	Flux phases, valence-bond crystals, and spin liquids	270

		Contents	vii
	8.6	Is the large- <i>N</i> mean-field theory reliable?	277
	8.7	SU(2) gauge invariance and Heisenberg models	279
9	Gauge	theory, dimer models, and topological phases	286
	9.1	Fluctuations of valence bonds: quantum-dimer models	286
	9.2	Bipartite lattices: valence-bond order and quantum criticality	290
	9.3	Non-bipartite lattices: topological phases	291
	9.4	Generalized quantum-dimer models	292
	9.5	Quantum dimers and gauge theories	294
	9.6	The Ising gauge theory	298
	9.7	The \mathbb{Z}_2 confining phase	301
	9.8	The Ising deconfining phase: the \mathbb{Z}_2 topological fluid	305
	9.9	Boundary conditions and topology	309
	9.10	Generalized \mathbb{Z}_2 gauge theory: matter fields	314
	9.11	Compact quantum electrodynamics	319
	9.12	Deconfinement and topological phases in the $U(1)$ gauge theory	321
	9.13	Duality transformation and dimer models	325
	9.14	Quantum-dimer models and monopole gases	336
	9.15	The quantum Lifshitz model	342
10	Chiral	spin states and anyons	359
	10.1	Chiral spin liquids	359
	10.2	Mean-field theory of chiral spin liquids	366
	10.3	Fluctuations and flux phases	371
	10.4	Chiral spin liquids and Chern–Simons gauge theory	375
	10.5	The statistics of spinons	382
	10.6	Fractional statistics	389
	10.7	Chern–Simons gauge theory: a field theory of anyons	393
	10.8	Periodicity and families of Chern–Simons theories	398
	10.9	Quantization of the global degrees of freedom	400
	10.10	Flux phases and the fractional quantum Hall effect	402
	10.11	Anyons at finite density	405
	10.12	The Jordan–Wigner transformation in two dimensions	412
11	Anyor	a superconductivity	414
	11.1	Anyon superconductivity	414
	11.2	The functional-integral formulation of the	
		Chern–Simons theory	415
	11.3	Correlation functions	417
	11.4	The semi-classical approximation	418
	11.5	Effective action and topological invariance	424

viii		Contents	
12 T	Topolo	bgy and the quantum Hall effect	432
1	2.1	Quantum mechanics of charged particles in magnetic fields	432
1	2.2	The Hofstadter wave functions	438
1	2.3	The quantum Hall effect	445
1	2.4	The quantum Hall effect and disorder	447
1	2.5	Linear-response theory and correlation functions	449
1	2.6	The Hall conductance and topological invariance	456
1	2.7	Quantized Hall conductance of a non-interacting system	468
1	2.8	Quantized Hall conductance of Hofstadter bands	472
13 T	The fra	actional quantum Hall effect	480
1	3.1	The Laughlin wave function	480
1	3.2	Composite particles	499
1	3.3	Landau–Ginzburg theory of the fractional quantum Hall effect	502
1	3.4	Fermion field theory of the fractional quantum Hall effect	512
1	3.5	The semi-classical excitation spectrum	523
1	3.6	The electromagnetic response and collective modes	525
1	3.7	The Hall conductance and Chern–Simons theory	528
1	3.8	Quantum numbers of the quasiparticles: fractional charge	530
1	3.9	Quantum numbers of the quasiparticles: fractional statistics	534
14 T	Topolo	ogical fluids	536
1	4.1	Quantum Hall fluids on a torus	536
1	4.2	Hydrodynamic theory	542
1	4.3	Hierarchical states	547
1	4.4	Multi-component abelian fluids	552
1	4.5	Superconductors as topological fluids	556
1	4.6	Non-abelian quantum Hall states	563
1	4.7	The spin-singlet Halperin states	573
1	4.8	Moore–Read states and their generalizations	575
1	4.9	Topological superconductors	587
1	4.10	Braiding and fusion	597
15 P	Physic	s at the edge	603
1	5.1	Edge states of integer quantum Hall fluids	603
1	5.2	Hydrodynamic theory of the edge states	609
1	5.3	Edges of general abelian quantum Hall states	620
1	5.4	The bulk-edge correspondence	624
1	5.5	Effective-field theory of non-abelian states	641
1	5.6	Tunneling conductance at point contacts	647
1	5.7	Noise and fractional charge	661

		Contents	ix
	15.8	Quantum interferometers	662
	15.9	Topological quantum computation	667
16	Topole	ogical insulators	669
	16.1	Topological insulators and topological band structures	669
	16.2	The integer quantum Hall effect as a topological insulator	670
	16.3	The quantum anomalous Hall effect	672
	16.4	The quantum spin Hall effect	687
	16.5	\mathbb{Z}_2 topological invariants	696
	16.6	Three-dimensional topological insulators	701
	16.7	Solitons in polyacetylene	705
	16.8	Edge states in the quantum anomalous Hall effect	714
	16.9	Edge states and the quantum spin Hall effect	718
	16.10	\mathbb{Z}_2 topological insulators and the parity anomaly	720
	16.11	Topological insulators and interactions	733
	16.12	Topological Mott insulators and nematic phases	736
	16.13	Topological insulators and topological phases	745
17	Quant	um entanglement	753
	17.1	Classical and quantum criticality	753
	17.2	Quantum entanglement	756
	17.3	Entanglement in quantum field theory	758
	17.4	The area law	762
	17.5	Entanglement entropy in conformal field theory	765
	17.6	Entanglement entropy in the quantum Lifshitz universality class	769
	17.7	Entanglement entropy in ϕ^4 theory	778
	17.8	Entanglement entropy and holography	780
	17.9	Quantum entanglement and topological phases	785
	17.10	Outlook	795
	Refere	nces	799
	Index		826

Preface to the second edition

I am extremely happy to, at long last, be able to present the second edition of this book. In spite of what I stated in the preface of the 1991 edition, I ended up not only writing a second edition but, in a sense, a new book. So one can say, once again, that we have met the enemy and it is us. I have been pleased that the 1991 edition of this book was appreciated by many people who found it useful and stimulating. I am really happy that my effort was not in vain.

My motivation for writing this book, in 1991 and now, was to present quantum field theory as a conceptual framework to understand problems in condensed matter physics that cannot be described perturbatively, and hence do not admit a straightforward reduction to some non-interacting problem. In essence, almost all interesting problems in condensed matter physics have this character. Two prime examples of problems of this type in condensed matter physics that developed in the late 1980s, and even more so in the 1990s, are the understanding of high-temperature superconductors and the quantum Hall effects. In both areas field theory played (and plays) a central role. If anything, the use of these ideas has become widespread and increasingly plays a key role. It was lucky that the first edition of this book appeared at just about the right time, even though this meant that I had to miss out on research that was and still is important. This was probably the only time that I was on time, as people who know me can relate. Much has happened since the first edition appeared in print. The problem of the quantum Hall effects has developed into a full-fledged framework to understand topological phases of matter. Although it is still an unsolved problem, the research in high-temperature superconductors (and similar problems) has motivated theorists to look for new ways to think of these problems, and the ideas of quantum field theory have played a central role. The concepts, and subtleties, of gauge theory have come to play a key role in many areas, particularly in frustrated quantum magnetism. The interactions between condensed matter and other areas of physics, particularly high-energy physics and string theory, have become more xii

Preface to the second edition

important. Concepts in topology and other areas of mathematics rarely frequented by condensed matter physicists have also entered the field with full force. More recent developments have seen the incorporation of ideas of general relativity and quantum entanglement into the field.

These developments motivated me to work on a second edition of this book. I have to thank Simon Capelin, my editor from Cambridge University Press, who took the time to persuade me that this was not a foolish project. So, some time in 2007 (I think) I finally agreed to do it. Of course, this was a more complex project than I had expected (nothing new there!). For this reason it took until now, the Spring of 2012, for me to finish what I thought would take just one year (or so). I wish to thank Simon Capelin and the people at Cambridge University Press for working with me throughout this project.

This second edition contains essentially all that was included in the ten chapters of the first edition, with a substantial editing of misprints and "misprints." However, it has grown to have seven more chapters to incorporate some important material that I left out in 1991 and to add new material to reflect some of the new developments. The result is that this is essentially a new book. I hope that in the process of writing this second edition I have not ruined what was good in the first one, and that the new material will be useful to a wide spectrum of people, not only in condensed matter. Although the book is significantly larger than its first edition, I had to leave out some really important material. In particular, I incorporated hardly any discussion of Fermi liquids, non-Fermi liquids (except for Luttinger liquids), and superconductors, among many important problems that are also of interest to me.

Several notable books that cover some parts of the material I cover have appeared in print since 1991, such as Xiao-Gang Wen's *Quantum Field Theory of Many Body Systems* (published in 2003) and Subir Sachdev's *Quantum Phase Transitions* (published in 1999). Other books that cover some aspects of the material are Assa Auerbach's *Interacting Electrons and Magnetism* (published in 1994) and the book by A. Gogolin, A. Nersesyan, and A. Tsvelik, *Bosonization and Strongly Correlated Systems* (published in 2004), as well as the superb *Principles on Condensed Matter Physics* by Paul Chaikin and Tom Lubensky (published in 1995) and John Cardy's *Scaling and Renormalization in Statistical Physics* (published in 1996).

I am deeply indebted to many people whose work has influenced my views. I have to particularly thank Steve Kivelson for his long-term friendship and collaboration, which has had a strong impact on my work, as reflected here. I also thank my collaborators in many projects, some of which are reflected here, Chetan Nayak, Claudio Chamon, Paul Fendley, Shivaji Sondhi, Joel Moore, and Fidel Schaposnik. I am also indebted to Lenny Susskind and Steve Shenker, who played a great role during my formative years as a theorist and whose outlook has strongly influenced these pages. I also thank my former students Ana López, Christopher Mudry,

Preface to the second edition

Antonio Castro Neto, Eun-Ah Kim, Michael Lawler, Kai Sun, and Benjamin Hsu, whose work is also reflected here. I am also indebted to my colleagues Mike Stone and Rob Leigh, with whom I collaborated in several projects and had countless stimulating discussions. Their work has strongly influenced my own. I also wish to thank Taylor Hughes and Shinsei Ryu for explaining their work (and others) on topological insulators, and motivating me to think on these problems. I am also grateful to Pouyan Ghaemi for reading the chapter on topological insulators and catching several misprints, and to Rodrigo Soto Garrido and to Ponnuraj Krishnakumar for proofreading the entire book and for their great help in generating the skyrmion figures for the cover.

I must also acknowledge the constant and permanent support of the Department of Physics of the University of Illinois, and my colleagues in our department. Some of the material presented here was also used in several special-topics courses I taught in Urbana over the years. I am particularly grateful to Professor Dale van Harlingen, our Department Head, for his constant support. I also wish to thank the many people who over the years have pointed out to me several conceptual issues present in the first edition as well as numerous misprints. I hope the editing of the second edition is substantially better than that of the first. I also wish to thank the National Science Foundation, which supported my research for many years.

This second edition, much like the first, could not have existed without the emotional support and love of Claudia, my wife and lifetime companion. Our children have fortunately (for them) been spared this second edition, which also could not have existed without my father constantly asking when I was going to be done with it.

> Eduardo Fradkin Urbana, Illinois, USA

xiii

Preface to the first edition

This volume is an outgrowth of the course "Physics of Strongly Correlated Systems" which I taught at the University of Illinois at Urbana-Champaign during the Fall of 1989. The goal of my course was to present the field-theoretic picture of the most interesting problems in Condensed Matter Physics, in particular those relevant to high-temperature superconductors. The content of the first six chapters is roughly what I covered in that class. The remaining four chapters were developed after January 1, 1990. Thus, that material is largely the culprit for this book being one year late! During 1990 I had to constantly struggle between finalizing the book and doing research that I just could not pass on. The result is that the book is one year late and I was late on every single paper that I thought was important! Thus, I have to agree with the opinion voiced so many times by other people who made the same mistake I did and say, don't ever write a book! Nevertheless, although the experience had its moments of satisfaction, none was like today's when I am finally done with it.

This book exists because of the physics I learned from so many people, but it is only a pale reflection of what I learned from them. I must thank my colleague Michael Stone, from whom I have learned so much. I am also indebted to Steven Kivelson, Fidel Schaposnik, and Xiao-Gang Wen, who not only informed me on many of the subjects which are discussed here but, also, more importantly, did not get too angry with me for not writing the papers I still owe them.

This book would not have existed either without the extraordinary help of Christopher Mudry, Carlos Cassanello, and Ana López, who took time off their research to help me with this crazy project. They have done an incredible job in reading the manuscript, finding my many mistakes (not just typos!), making very useful comments, and helping me with the editing of the final version. I am particularly indebted to Christopher, who made very important remarks and comments concerning the presentation of very many subjects discussed here. He also generated the figures. Mrs. Phyllis Shelton-Ball typeset the first six chapters. My wife, xvi

Preface to the first edition

Claudia, made this project possible by learning $\[\] ET_E X \]$ at great speed and typesetting the last four chapters, correcting some of my very boring and awkward writing style.

This book was also made possible by the love and help of my children Ana, Andrés, and Alejandro, who had to live with a father who became a ghost for a while. Ana and Andrés helped in the proofreading, and took care of their little brother, who helped by keeping everybody happy.

Finally, I must acknowledge the support of the Department of Physics and the Center for Advanced Study of the University of Illinois. The help and understanding of the staff at Addison Wesley is also gratefully acknowledged.

> Eduardo Fradkin Urbana, Illinois, USA