Physical Geography
Great Systems and Global Environments

William M. Marsh taught physical geography and related courses at the University of Michigan for 30 years, where he founded the Department of Earth and Resource Science. He is now with the University of British Columbia where he teaches courses in landscape analysis. He is an experienced textbook author, having written three textbooks in physical geography and two in land use applications, one of which has become a standard in the field of environmental planning.

Martin M. Kaufman has taught Physical Geography and Geographic Information Systems at the high school, undergraduate, and graduate levels for over 20 years. He is also an experienced textbook author. Currently, he is a professor of Earth Science at the University of Michigan-Flint, where he teaches the introductory sequence of physical geography courses.

‘Marsh and Kaufman eloquently link the science of physical geography with the impacts of human activities. As such this text is a perfect tool for encouraging students to become environmentally-informed citizens.’

Professor Dean P. Lambert, Department of Geography, San Antonio College, Texas

‘At last, a textbook that successfully merges a graphic storyline with the text to describe the interconnectedness of Earth’s great physical systems. The authors do a masterful job using this approach to explain the geographic character of the planet. This textbook will be understandable to both science and non-science majors.’

Dr Richard Crooker, Department of Geography, Kutztown University, Pennsylvania

‘Authoritative, useful, balanced, and wise, this is more than a textbook. It is a modernized classic and comprehensive presentation of the physical geography perspective of the great natural systems operating on planet Earth. … should be successful with students and teachers alike as the scientific process and physical science fundamentals are presented with relevance to everyday life.’

Professor Dean Fairbanks, Department of Geography and Planning, California State University, Chico

‘Will Marsh, an excellent scientist and a talented artist, has written the best textbooks in physical geography for three decades, and [this] new offering with Marty Kaufman… continues this tradition. The book’s distinctive features include explanations that start from a comprehensible scale that the student can understand, along with gorgeous illustrations.’

Professor Jeff Dozier, Bren School of Environmental Science and Management, University of California, Santa Barbara
Dedicated to

Walter A. Schroeder
of Missouri
Brief Contents

Contents
Preface
Acknowledgments

Part I Earth’s Energy, Climate, and Ocean Systems
1 Mapping our Course of Study 1
2 An Overview of Planet Earth: Some Geographic Observations and Facts 15
3 The Sun-Earth Energy System: Fuel for a Planet 33
4 Earth’s Radiation and Heat Systems Over Land and Water 57
5 The Great Systems of Global Air and Ocean Circulation 83
6 Atmospheric Moisture, Precipitation and Weather Systems 113
7 Global Climate, Formative Systems, and Human Adaptation 147
8 Climate Change, Past, Present, and Future 171

Part II Earth’s Life Support Systems
9 Earth as an Ecosystem: Energy, Food, and Life 201
10 Biogeography: Geographic Distribution of Plant and Animal Types 231
11 Humans as Geographic Agents in a Changing World 267
12 Soil Systems, Processes, and Formation 293
13 Soil Types, Distribution, and Land-use Relations 313

Part III Earth’s Water Systems
14 The Global Water System 335
15 Runoff, Streamflow, and Watershed Systems 359
16 Groundwater Systems, Lakes, and Water Resources 385

Part IV Earth’s Rock and Mountain Systems
17 Earth’s Internal System: Heat, Convection, Rocks, and the Planet’s Skin 411
18 The Formation and Geographic Organization of the Continents and Ocean Basins 439
19 Mountain Systems, Earthquakes, and Volcanoes 469

Part V Earth’s Erosional and Landform Systems
20 Geomorphic Systems: Rock Weathering, Hillslope Processes, and Slope Formation 499
21 Stream Systems, Valley Formation, and Fluvial Landscapes 529
22 Coastal Systems: Waves, Currents, and Landforms 559
23 Glacial Systems: Growth, Motion, and Work of Glacial Ice 587
24 Wind Systems: Sand Dunes, Dust, and Deserts 613

Appendices A1–A15
Glossary G1–G19
Photographic Credits P1–P6
Index I1–I17
Contents

Preface
Acknowledgments

Part I Earth’s Energy, Climate, and Ocean Systems

1 Mapping our Course of Study
1.1 Our Place on the Planet
1.2 The Great Systems of Physical Geography
1.3 The Nature of Geographic Systems
1.4 The Physical Geographer’s Perspective
1.5 Scientific Thought and its Application in Physical Geography
1.6 The Concept and Objectives of this Book
Chapter Summary and Overview
Review Questions

2 An overview of Planet Earth: Some Geographic Observations and Facts
2.1 Some Geographic Observations About Earth
2.2 The Shape, Size, and Geographic Organization of Earth
2.3 Mapping Space and Time
Chapter Summary and Overview
Review Questions

3 The Sun–Earth Energy System: Fuel for a Planet
3.1 Light, Energy, and Work
3.2 The Solar Energy System
3.3 The Measurement and Types of Radiation
3.4 The Organization and Motion of the Planets
3.5 Earth’s Motion in the Solar System
3.6 The Concept of Earth as an Energy System
3.7 Heat Energy and Temperature
3.8 The Thermal Character of Earth as a Planet
Chapter Summary and Overview
Review Questions

4 Earth’s Radiation and Heat Systems Over Land and Water
4.1 Solar Radiation and the Composition of the Atmosphere
4.2 The Effect of the Atmosphere on Solar Radiation
4.3 Geographic Distribution of Solar Radiation at the Earth’s Surface
4.4 Heat Transfer in Land, Water, and Air
4.5 The Heat Circulation System in the Landscape
4.6 The Energy Balance System at the Earth’s Surface
4.7 Global Temperature Patterns and Controls
Chapter Summary and Overview
Review Questions

5 The Great System of Global Air and Ocean Circulation
5.1 Atmospheric Mobility, Air Pressure, and Wind
5.2 The Framework of Earth’s Pressure and Circulation System
5.3 Wind Systems at the Surface and Aloft
5.4 The General Circulation of the Earth’s Atmosphere
5.5 The General Circulation of the Oceans
5.6 Thermohaline Circulation: the Hidden System
5.7 The Influence of the Oceans on the Atmosphere
Chapter Summary and Overview
Review Questions
6 Atmospheric Moisture, Precipitation, and Weather Systems
 6.1 The Water-vapor–Precipitation System 114
 6.2 Atmospheric Instability 117
 6.3 Condensation and Precipitation Processes 120
 6.4 Orographic Precipitation: Patterns and Processes 122
 6.5 Convectional Precipitation: Thunderstorms and Tornadoes 124
 6.6 Cyclonic/Frontal Precipitation: Air Masses and Frontal Waves 128
 6.7 Convergent Precipitation: Hurricanes and Related Tropical Storms 134
 6.8 Violent and Destructive Storms 138

Chapter Summary and Overview 143
Review Questions 145

7 Global Climate, Formative Systems, and Human Adaptation
 7.1 The Nature of Climate Systems 148
 7.2 The Great Engines of Global Climate 152
 7.3 Traditional Climate Classification 159
 7.4 Applied Climatology: Shelter and Clothing in a Changing World 163

Chapter Summary and Overview 167
Review Questions 169
Contents

11 Humans as Geographic Agents in a Changing World

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 The Physical Geography of Early Human Existence</td>
<td>268</td>
</tr>
<tr>
<td>11.2 Leaving Africa: The Geographic Diffusion of Early Homo sapiens</td>
<td>269</td>
</tr>
<tr>
<td>11.3 The Origin and Development of Agriculture</td>
<td>272</td>
</tr>
<tr>
<td>11.4 Some Geographic Consequences of Early Agriculture</td>
<td>278</td>
</tr>
<tr>
<td>11.5 The Industrial Revolution and its Impact on Natural Systems</td>
<td>282</td>
</tr>
<tr>
<td>11.6 The Urban Revolution and Modern Land-use Systems</td>
<td>285</td>
</tr>
<tr>
<td>11.7 The Human System in a Global Context</td>
<td>288</td>
</tr>
<tr>
<td>Chapter Summary and Overview</td>
<td>289</td>
</tr>
<tr>
<td>Review Questions</td>
<td>291</td>
</tr>
</tbody>
</table>

12 Soil Systems, Processes, and Formation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Perspectives on Soil</td>
<td>293</td>
</tr>
<tr>
<td>12.2 Soil as a Geomorphic System</td>
<td>294</td>
</tr>
<tr>
<td>12.3 Soil as an Ecosystem</td>
<td>296</td>
</tr>
<tr>
<td>12.4 Soil as a Hydrologic System</td>
<td>298</td>
</tr>
<tr>
<td>12.5 Soil as a Biochemical System</td>
<td>300</td>
</tr>
<tr>
<td>12.6 Soil Horizons, Profiles, and Formative Systems</td>
<td>304</td>
</tr>
<tr>
<td>Chapter Summary and Overview</td>
<td>307</td>
</tr>
<tr>
<td>Review Questions</td>
<td>311</td>
</tr>
</tbody>
</table>

13 Soil Types, Distribution, and Land-use Relations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Soil Formation and the Geographic Environment</td>
<td>313</td>
</tr>
<tr>
<td>13.2 Influences on Soil Formation at the Local Scale</td>
<td>315</td>
</tr>
<tr>
<td>13.3 Soil Classification and Distribution at the Regional Scale</td>
<td>319</td>
</tr>
<tr>
<td>13.4 Soil and Civilization in the Ancient World</td>
<td>319</td>
</tr>
<tr>
<td>13.5 Soil and Land Use in the Modern World</td>
<td>327</td>
</tr>
<tr>
<td>Chapter Summary and Overview</td>
<td>329</td>
</tr>
<tr>
<td>Review Questions</td>
<td>332</td>
</tr>
</tbody>
</table>

14 The Global Water System

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 How the Earth Got Its Water</td>
<td>335</td>
</tr>
<tr>
<td>14.2 The Global Water System</td>
<td>336</td>
</tr>
<tr>
<td>14.3 The Hydrologic Cycle on the Continents</td>
<td>339</td>
</tr>
<tr>
<td>14.4 The Water-budget Concept</td>
<td>343</td>
</tr>
<tr>
<td>14.5 The Hydrologic Landscape</td>
<td>346</td>
</tr>
<tr>
<td>14.6 The Nature of Drought</td>
<td>348</td>
</tr>
<tr>
<td>14.7 Modification of the Hydrologic System by Nature and Humans</td>
<td>349</td>
</tr>
<tr>
<td>14.8 Global Warming and the Hydrologic Cycle</td>
<td>354</td>
</tr>
<tr>
<td>Chapter Summary and Overview</td>
<td>356</td>
</tr>
<tr>
<td>Review Questions</td>
<td>357</td>
</tr>
</tbody>
</table>

15 Runoff, Streamflow, and Watershed Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 From Rainfall to Streamflow: The Role of Landscape in Runoff</td>
<td>359</td>
</tr>
<tr>
<td>15.2 Streamflow Responses to Precipitation</td>
<td>360</td>
</tr>
<tr>
<td>15.3 Watersheds, Channel Networks, and Streamflow</td>
<td>364</td>
</tr>
<tr>
<td>15.4 Geographic Influences on Watersheds and Streamflow</td>
<td>367</td>
</tr>
<tr>
<td>15.5 The Causes and Consequences of Flooding</td>
<td>370</td>
</tr>
<tr>
<td>15.6 Watersheds of the World</td>
<td>372</td>
</tr>
<tr>
<td>Chapter Summary and Overview</td>
<td>376</td>
</tr>
<tr>
<td>Review Questions</td>
<td>381</td>
</tr>
</tbody>
</table>

16 Groundwater Systems, Lakes, and Water Resources

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1 Pathways and Linkages Underground</td>
<td>385</td>
</tr>
<tr>
<td>16.2 Groundwater Systems: Aquifers and Basins</td>
<td>386</td>
</tr>
<tr>
<td>16.3 Human Impacts on Groundwater</td>
<td>387</td>
</tr>
<tr>
<td>16.4 Groundwater, Streamflow, and Caverns</td>
<td>391</td>
</tr>
<tr>
<td>16.5 Lake and Wetland Systems</td>
<td>394</td>
</tr>
<tr>
<td>16.6 Water Use, Water Supply, and Land Use</td>
<td>395</td>
</tr>
<tr>
<td>16.7 Human Impacts on Water-resource Systems</td>
<td>403</td>
</tr>
<tr>
<td>Chapter Summary and Overview</td>
<td>406</td>
</tr>
<tr>
<td>Review Questions</td>
<td>408</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press www.cambridge.org
Part IV Earth’s Rock and Mountain Systems

17 Earth’s Internal System: Heat, Convection, Rocks, and the Planet’s Skin 411
17.1 Origin and Development of the Terrestrial Planets 412
17.2 Extraterrestrial Sources of Geographic Change 414
17.3 Earth’s Inner Structure and Composition 417
17.4 Earth’s Internal Energy System 423
17.5 The Rocks and Minerals of the Crust 425
17.6 The Rock Recycling System 433
Chapter Summary and Overview 435
Review Questions 437

18 The Formation and Geographic Organization of the Continents and Ocean Basins 439
18.1 Major Features of the Lithosphere 441
18.2 Essential Processes of Plate Tectonics 444
18.3 Distribution and Motion of Tectonic Plates 449
18.4 Formation of Ocean Basins and Island Systems 454
18.5 Growth and Breakup of Continents 459
18.6 Geographic Significance of Plate Tectonics 462
Chapter Summary and Overview 465
Review Questions 467

19 Mountain Systems, Earthquakes, and Volcanoes 469
19.1 Geographic Scale and Deformation of the Crust 470
19.2 Folds, Faults, and Mountain Types 471
19.3 Earthquakes and Seismic Hazards 480
19.4 Volcanism, Volcanic Events, and History 489
19.5 Mountain Systems and the Global Environment 494
Chapter Summary and Overview 495
Review Questions 497

Part V Earth’s Erosional and Landform Systems

20 Geomorphic Systems: Rock Weathering, Hillslope Processes, and Slope Formation 499
20.1 Geomorphic Systems and the Rock Cycle 501
20.2 The Denudation System and the Erosion Cycle 503
20.3 How Geomorphic Systems Operate 505
20.4 Weathering Systems and the Breakdown of Rock 508
20.5 Basic Types of Weathering Processes 511
20.6 The Hillslope Segment of the Denudational System 516
20.7 Denudation Rates and Trends 518
20.8 Mass Movement Processes and Features 519
20.9 The Systems of Hillslope Form and Formation 523
Chapter Summary and Overview 526
Review Questions 527

21 Stream Systems, Valley Formation, and Fluvial Landscapes 529
21.1 Streams as Geomorphic Systems 530
21.2 Streamflow and the Energy of Running Water 532
21.3 Channel Erosion and Sediment Transport 534
21.4 Channel Forms, Processes, and Meanders 538
21.5 The Watershed as a Sediment System 543
21.6 Watershed Systems, Landforms, and Landscape Development 547
21.7 The Geographic Cycle and Other Grand Ideas 550
21.8 Human Impact on Stream Systems 553
Chapter Summary and Overview 555
Review Questions 557
Contents

22 Coastal Systems: Waves, Currents, and Landforms
- 22.1 The Geomorphic Systems of Earth’s Coastlines 560
- 22.2 Wave Types, Origin, and Motion 563
- 22.3 Wave-energy Distribution and Nearshore Circulation Systems 566
- 22.4 Wave Erosion, Sediment Transport, and Coastal Landforms 569
- 22.5 Coastal Development, Plate Tectonics and Sediment Supply: The Big Picture 575
- 22.6 Classes of Ocean Coasts 577
- 22.7 Land Use, Engineering, and the Coastal Challenge of the Twenty-first Century
 - Chapter Summary and Overview 583
 - Review Questions 585

23 Glacial Systems: Growth, Motion, and Work of Glacial Ice
- 23.1 Glacier Types, Environments, and Distribution 587
- 23.2 Glaciers as Systems: Growth, Motion, and Decay 588
- 23.3 Glacial Erosion, Debris Transportation, and Erosional Landforms 591
- 23.4 Glacial Deposition and Depositional Landforms 598
- 23.5 Pleistocene Glaciation and Global Change 600
- 23.6 Ideas on the Cause of the Ice Age 604
- 23.7 Periglacial Environments and Landforms
 - Chapter Summary and Overview 609
 - Review Questions 611

24 Wind Systems: Sand Dunes, Dust, and Deserts
- 24.1 The System of Airflow Over the Earth’s Surface 614
- 24.2 Some Geographic Patterns in Surface Winds 618
- 24.3 Wind Erosion and Sediment Transport 620
- 24.4 Sand-dune Formation, Movement, and Forms 623
- 24.5 Global Distribution of Dunes, Loess, and Related Wind Deposits 627
- 24.6 Long-distance Transport and Relations to Other Earth Systems 629

- Chapter Summary and Overview 631
- Review Questions 633

- Appendices A1–A15
- Glossary G1–G19
- Photographic Credits P1–P6
- Index I1–I17
If you give our planet a hard poke somewhere, it is apt to set off a chain of reactions leading to change somewhere else, maybe in many places, and often far away. We live in a broadly interconnected geographic environment, one laced with multitudes of systems, a veritable planetary network of wiring and plumbing in three-dimensional space.

These interconnections are astounding. Among them are systems linking temperatures of tropical seas with the size and number of hurricanes that strike midlatitude coastlines, dust storms over the Sahara of North Africa with the fertility of soils in the Amazon Basin of South America, soil erosion on the plains of northern China with the quality of air over Seattle, fertilizer applications on cornfields in Iowa with sick and dying ecosystems on the Mississippi Delta, and earthquakes in Indonesia with giant ocean waves capable of killing hundreds of thousands of people on the other side of the Indian Ocean more than 3000 miles away.

Yet we find it difficult to think in broad patterns and networks because we have learned to see the world in geographic compartments. To physical geography, which is interested in the distribution of natural phenomena, this is a dilemma because it implies that the nature operating in one place may have little or nothing to do with the nature operating in another place. This sort of thinking is reinforced again and again in our lives. The way we studied geography and history in school, for example, tended to signify it by drawing stiff boundaries between the pink and green patches on world maps. And international politics has also ascribed artificial significance to national borders, lines that nature can neither see nor follow. In short, we have a habit of defining Earth in terms of its subdivisions rather than its integrated whole.

This book employs a different tactic. It argues the geographic character of Earth is best understood when viewed through the window of systems. The largest of these systems, which we call great systems, operate throughout the planet. They include an energy system that begins when solar radiation enters the top of the atmosphere, systems of water and air circulation that range over the entire planet, systems of currents coursing throughout the vastness of the oceans, systems of running water flowing over the land, and systems of organisms forming a living skin over all the Earth's lands and waters. These systems and their offspring, operating in large spaces or small ones, shape all things geographical, mountain chains, coastlines, plains, watersheds, climates, forests, lakes, and swamps. They are Earth's kinetic elements, the very foundation of physical geography.

Our planet is a geographic wonder and for centuries geographers have documented its diversity, producing maps of virtually every part of the lands, seas, and atmosphere. But we have also discovered that nothing on the planet is truly permanent. The patterns of rainfall, forest cover, river networks, coastlines, virtually everything mapped in one decade turns up different in the next, sometimes dramatically so. But knowing about change does not tell us what produces it. And this brings us to the principal objective of this book: to discover the nature of geographic change on Earth, not only how it takes place but what drives it. And this brings us back to systems, because they are the planet's big geographic drivers.

The content of physical geography is huge and the story told in textbooks can be overwhelming. The maps and diagrams alone can be daunting. The problem facing all writers in the field is how to make the medium, a book, work most effectively in support of the message, the physical geography of a changing planet. This was a real challenge for us, because with new research discoveries appearing almost daily, the message keeps getting bigger and in many ways more complicated. Among the options, we considered simplifying the message, distilling it down to its bare essence, but concluded that would sell our audience short. We also considered amplifying the medium by adding more accessories such as bigger and fancier graphics, special essays and guest commentary, items from the news media, and so on, but decided that would only detract from the central message. What we settled on was a back-to-basics approach based on two main objectives:
The first addresses the medium, which in its simplest form is just words and graphics. We decided to write the text in a somewhat narrative style of prose, and to create a set of graphics that feature single concepts rather than a gang of concepts bunched together in a few large, complex graphics. The resultant graphics not only tend to be small and clear but easy to tie to the storyline in the text. Next, the graphic storyline and the word (text) storyline had to be woven together. This was accomplished by using an “arm-in-arm” page design, that is, one that places most graphics (figures) alongside the related passages in the text.

The second objective addresses the message, and this we reasoned had to feature a story about a planet on which geographic change is the norm rather than the exception, where systems are more significant, extensive, and interconnected than we could possibly have guessed only a few decades ago, and where geography is more central to understanding our magnificent home than at any other time in the long history of the field.

The Book as a Learning and Teaching Tool

The systems approach is capped in each chapter with an eclectic end-of-chapter summary diagram featuring key concepts in a big-picture format, a useful learning and teaching tool.

To further round out each chapter, two sets of summaries are provided: in-chapter summaries at the ends of selected sections, and chapter-end summaries made up of a concluding paragraph followed by a series of overview statements. The overview statements are topped off with a set of review questions, 10 to 15 queries to help the student gauge his/her comprehension of the chapter’s main points.

Systems-based teaching can be a rewarding experience, especially if it is preceded by a little planning, and to help the teacher-scholar focus the learning experience, a companion volume is provided. The online Instructor’s Guidebook highlights the core concepts of each chapter including the relevant graphics in the text, and suggests strategies to help teach the material from a systems perspective.

Online Resources

Online at www.cambridge.org/mk, alongside the Instructor’s Guidebook, you will find Powerpoints of figures from the book, example responses for selected questions and flashcards.

WMM and MMK
Every book benefits from a host of participants and this book is no exception. Although students seldom see how they influence the character of a book, they are a major force in shaping the voice of a textbook, that is, the way the message is communicated. And so we humbly acknowledge the thousands of students who, over several decades of teaching, have helped us understand how to tell the story of physical geography.

The production of a volume such as this one requires an entire team of people and we are indebted to the team at Cambridge University Press not only for the heavy lifting with editing, graphics, and design, but for the constructive project climate they created which has fostered thoughtful exchanges and innovative thinking at many levels.

We acknowledge our colleagues in physical geography and related fields who provided manuscript reviews and suggestions on how to improve the book. The list is long and includes colleagues from colleges and universities in the United States, Canada, and Europe.

Finally, we acknowledge an inner circle of colleagues, friends, and relatives whom we used as sounding boards, who lent a hand when needed, and who willingly altered personal agendas to accommodate writing schedules. Chief among these is Alison Mewett, wife of the senior author. This circle also includes the participants in the chapter opening stories: William Steinhoff, Jeff Dozier, Alison Mewett, Earl Steinhoff, Roberta Steinhoff, Jack Goodnoe, Bruce D. Marsh, William R. Marsh, James G. Marsh, M. Leonard Bryan, John Koerner, Charles Douthitt, Ray Adair, and Vernie Anderson. It was all great fun.

WMM
MMK