CAMBRIDGE

Cambridge University Press

978-0-521-76414-8 - Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures
Hassan Gomaa

Excerpt

More information

PART |

Overview

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521764148

Cambridge University Press

978-0-521-76414-8 - Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures
Hassan Gomaa

Excerpt

More information

1

Introduction

1.1 SOFTWARE MODELING

Modeling is used in many walks of life, going back to early civilizations such as
Ancient Egypt, Rome, and Greece, where modeling was used to provide small-scale
plans in art and architecture (Figure 1.1). Modeling is widely used in science and
engineering to provide abstractions of a system at some level of precision and detail.
The model is then analyzed in order to obtain a better understanding of the system
being developed. According to the Object Modeling Group (OMG), “modeling is
the designing of software applications before coding.”

In model-based software design and development, software modeling is used as
an essential part of the software development process. Models are built and ana-
lyzed prior to the implementation of the system, and are used to direct the subse-
quent implementation.

A better understanding of a system can be obtained by considering it from dif-
ferent perspectives (also referred to as multiple views) (Gomaa 2006; Gomaa and
Shin 2004), such as requirements models, static models, and dynamic models of the
software system. A graphical modeling language such as UML helps in developing,
understanding, and communicating the different views.

This chapter introduces object-oriented methods and notations, an overview of
software modeling and architectural design, and an introduction to model-driven
architecture and UML. The chapter then briefly describes the evolution of software
design methods, object-oriented analysis and design methods, and concurrent, dis-
tributed, and real-time design methods.

1.2 OBJECT-ORIENTED METHODS AND THE UNIFIED
MODELING LANGUAGE

Object-oriented concepts are crucial in software analysis and design because they
address fundamental issues of software modifiability, adaptation, and evolution.
Object-oriented methods are based on the concepts of information hiding, classes,
and inheritance. Information hiding can lead to systems that are more self-contained

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521764148

Cambridge University Press
978-0-521-76414-8 - Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures
Hassan Gomaa

Excerpt
More information
4 Overview

a) A model of the great
pyramid of Egypt

b) The great pyramid of
Egypt

Figure 1.1. Example of modeling and architecture

and hence are more modifiable and maintainable. Inheritance provides an approach
for adapting a class in a systematic way.

With the proliferation of notations and methods for the object-oriented analysis
and design of software applications, the Unified Modeling Language (UML) was
developed to provide a standardized graphical language and notation for describ-
ing object-oriented models. However, because UML is methodology-independent,
it needs to be used together with an object-oriented analysis and design method.
Because the UML is now the standardized graphical language and notation for
describing object-oriented models, this book uses the UML notation throughout.

Modern object-oriented analysis and design methods are model-based and use
a combination of use case modeling, static modeling, state machine modeling, and
object interaction modeling. Almost all modern object-oriented methods use the
UML notation for describing software requirements, analysis, and design mod-
els (Booch, Rumbaugh, and Jacobson 2005; Fowler 2004; Rumbaugh, Booch, and
Jacobson 2005).

In use case modeling, the functional requirements of the system are defined in
terms of use cases and actors. Static modeling provides a structural view of the sys-
tem. Classes are defined in terms of their attributes, as well as their relationships
with other classes. Dynamic modeling provides a behavioral view of the system. The
use cases are realized to show the interaction among participating objects. Object
interaction diagrams are developed to show how objects communicate with each
other to realize the use case. The state-dependent aspects of the system are defined
with statecharts.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521764148

Cambridge University Press

978-0-521-76414-8 - Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures
Hassan Gomaa

Excerpt

More information

Introduction 5

1.3 SOFTWARE ARCHITECTURAL DESIGN

A software architecture (Bass, Clements, and Kazman 2003; Shaw and Garlan
1996) separates the overall structure of the system, in terms of components and
their interconnections, from the internal details of the individual components.
The emphasis on components and their interconnections is sometimes referred to
as programming-in-the-large, and the detailed design of individual components is
referred to as programming-in-the-small.

A software architecture can be described at different levels of detail. At a high
level, it can describe the decomposition of the software system into subsystems.
At a lower level, it can describe the decomposition of subsystems into modules or
components. In each case, the emphasis is on the external view of the subsystem/
component — that is, the interfaces it provides and requires — and its interconnec-
tions with other subsystems/components.

The software quality attributes of a system should be considered when devel-
oping the software architecture. These attributes relate to how the architecture
addresses important nonfunctional requirements, such as performance, security, and
maintainability.

The software architecture is sometimes referred to as a high-level design. A soft-
ware architecture can be described from different views, as described in Section 1.7.
Itis important to ensure that the architecture fulfills the software requirements, both
functional (what the software has to do) and nonfunctional (how well it should do
it). It is also the starting point for the detailed design and implementation, when
typically the development team becomes much larger.

1.4 METHOD AND NOTATION

This section defines important terms for software design.

A software design notation is a means of describing a software design either
graphically or textually, or both. For example, class diagrams are a graphical design
notation, and pseudocode is a textual design notation. UML is a graphical nota-
tion for object-oriented software applications. A design notation suggests a partic-
ular approach for performing a design; however, it does not provide a systematic
approach for producing a design.

A software design concept is a fundamental idea that can be applied to designing
a system. For example, information hiding is a software design concept.

A software design strategy is an overall plan and direction for develop-
ing a design. For example, object-oriented decomposition is a software design
strategy.

Software structuring criteria are heuristics or guidelines used to help a designer
in structuring a software system into its components. For example, object structuring
criteria provide guidelines for decomposing the system into objects.

A software design method is a systematic approach that describes the sequence
of steps to follow in order to create a design, given the software requirements of
the application. It helps a designer or design team identify the design decisions to
be made, the order in which to make them, and the structuring criteria to use in
making them. A design method is based on a set of design concepts, employs one or
more design strategies, and documents the resulting design, using a design notation.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521764148

Cambridge University Press
978-0-521-76414-8 - Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures
Hassan Gomaa

Excerpt
More information
6 Overview

During a given design step, the method might provide a set of structuring criteria to
help the designer in decomposing the system into its components.

The Collaborative Object Modeling and Design Method, or COMET, uses the
UML notation to describe the design. COMET is based on the design concepts
of information hiding, classes, inheritance, and concurrent tasks. It uses a design
strategy of concurrent object design, which addresses the structuring of a software
system into active and passive objects and defines the interfaces between them. It
provides structuring criteria to help structure the system into objects during analy-
sis, and additional criteria to determine the subsystems and concurrent tasks during
design.

1.5 COMET: A UML-BASED SOFTWARE MODELING AND DESIGN
METHOD FOR SOFTWARE APPLICATIONS

This book describes a UML-based software modeling and architectural design
method called COMET. COMET is an iterative use case driven and object-oriented
software development method that addresses the requirements, analysis, and design
modeling phases of the software development life cycle. The functional require-
ments of the system are defined in terms of actors and use cases. Each use case
defines a sequence of interactions between one or more actors and the system. A
use case can be viewed at various levels of detail. In a requirements model, the func-
tional requirements of the system are defined in terms of actors and use cases. In
an analysis model, the use case is realized to describe the objects that participate
in the use case and their interactions. In the design model, the software architec-
ture is developed, addressing issues of distribution, concurrency, and information
hiding.

1.6 UML AS A STANDARD

This section briefly reviews the evolution of UML into a standard modeling lan-
guage and notation for describing object-oriented designs. The evolution of UML
is described in detail by Kobryn (1999). UML 0.9 unified the modeling notations of
Booch, Jacobson (1992), and Rumbaugh et al. (1991). This version formed the basis
of a standardization effort, with the additional involvement of a diverse mix of ven-
dors and system integrators. The standardization effort culminated in submission of
the initial UML 1.0 proposal to the OMG in January 1997. After some revisions,
the final UML 1.1 proposal was submitted later that year and adopted as an object
modeling standard in November 1997.

The OMG maintains UML as a standard. The first adopted version of the stan-
dard was UML 1.3. There were minor revisions with UML 1.4 and 1.5. A major
revision to the notation was made in 2003 with UML 2.0. The latest books on UML
conform to UML 2.0, including the revised editions of Booch, Rumbaugh, and
Jacobson (2005), Rumbaugh, Booch, and Jacobson (2005), Fowler (2004), Eriks-
son et al. (2004), and Douglass (2004). There have been minor revisions since then.
The current version of the standard is referred to as UML 2.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521764148

Cambridge University Press

978-0-521-76414-8 - Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures
Hassan Gomaa

Excerpt

More information

Introduction 7

1.6.1 Model-Driven Architecture with UML

In the OMG’s view, “modeling is the designing of software applications before cod-
ing.” The OMG promotes model-driven architecture as the approach in which UML
models of the software architecture are developed prior to implementation. Accord-
ing to the OMG, UML is methodology-independent; UML is a notation for describ-
ing the results of an object-oriented analysis and design developed via the method-
ology of choice.

A UML model can be either a platform-independent model (PIM) or a platform-
specific model (PSM). The PIM is a precise model of the software architecture
before a commitment is made to a specific platform. Developing the PIM first is
particularly useful because the same PIM can be mapped to different middleware
platforms, such as COM, CORBA, .NET, J2EE, Web Services, or another Web
platform. The approach in this book is to use the concept of model-driven architec-
ture to develop a component-based software architecture, which is expressed as a
UML platform-independent model.

1.7 MULTIPLE VIEWS OF SOFTWARE ARCHITECTURE

A software architecture can be considered from different perspectives, which are
referred to as different views. Kruchten (Kruchten 1995) introduced the 4+1 view
model of software architecture, in which he advocated a multiple-view modeling
approach for software architectures, in which the use case view is the unifying view
(the 1 view of the 4+1 views). The views are the logical view, which is a static mod-
eling view; the process view, which is a concurrent process or task view; and the
development view, which is a subsystem and component design view. Hofmeister et
al. (2000) describe an industrial perspective on applied software architecture con-
sisting of four views: a conceptual view, which describes the main design elements
and the relationships between them; a code view, which consists of the source code
organized into object code, libraries, and directories; a module view, which consists
of subsystems and modules; and an execution view, which is a concurrent and dis-
tributed execution perspective.

In this book, we will describe and depict the different modeling views of the
software architecture in UML. The views are as follows:

m Use case view. This view is a functional requirements view, which is an input
to develop the software architecture. Each use case describes the sequence of
interactions between one or more actors (external users) and the system.

= Static view. The architecture is depicted in terms of classes and relationships,
which can be associations, whole/part relationships (compositions or aggrega-
tions), or generalization/specialization relationships. Depicted on UML class
diagrams.

= Dynamic interaction view. This view describes the architecture in terms of
objects as well as the message communication between them. This view can also
be used to depict the execution sequence of specific scenarios. Depicted on UML
communication diagrams.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521764148

Cambridge University Press
978-0-521-76414-8 - Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures
Hassan Gomaa

Excerpt
More information
8 Overview

= Dynamic state machine view. The internal control and sequencing of a control
component can be depicted using a state machine. Depicted on UML statechart
diagrams.

= Structural component view. The software architecture is depicted in terms of
components, which are interconnected through their ports, which in turn support
provided and required interfaces. Depicted on UML structured class diagrams.

= Dynamic concurrent view. The software architecture is viewed as concurrent
components, executing on distributed nodes, and communicating by messages.
Depicted on UML concurrent communication diagrams.

= Deployment view. This depicts a specific configuration of the distributed archi-
tecture with components assigned to hardware nodes. Depicted on UML deploy-
ment diagrams.

1.8 EVOLUTION OF SOFTWARE MODELING AND DESIGN METHODS

In the 1960s, programs were often implemented with little or no systematic require-
ments analysis and design. Graphical notations — in particular, flowcharts — were
often used, either as a documentation tool or as a design tool for planning a detailed
design prior to coding. Subroutines were originally created as a means of allowing a
block of code to be shared by calling it from different parts of a program. They were
soon recognized as a means of constructing modular systems and were adopted as a
project management tool. A program could be divided up into modules, where each
module could be developed by a separate person and implemented as a subroutine
or function.

With the growth of structured programming in the early seventies, the ideas
of top-down design and stepwise refinement (Dahl 1972) gained prominence as
program design methods, with the goal of providing a systematic approach for struc-
tured program design. Dijkstra developed one of the first software design methods
with the design of the T.H.E. operating system (Dijkstra 1968), which used a hier-
archical architecture. This was the first design method to address the design of a
concurrent system, namely, an operating system.

In the mid- to late 1970s, two different software design strategies gained
prominence: data flow—oriented design and data structured design. The data flow
oriented—design approach as used in Structured Design (see Budgen [2003] for an
overview) was one of the first comprehensive and well-documented design methods
to emerge. The idea was that a better understanding of the functions of the system
could be obtained by considering the flow of data through the system. It provided a
systematic approach for developing data flow diagrams for a system and then map-
ping them to structure charts. Structured Design introduced the coupling and cohe-
sion criteria for evaluating the quality of a design. This approach emphasized func-
tional decomposition into modules and the definition of module interfaces. The first
part of Structured Design, based on data flow diagram development, was refined and
extended to become a comprehensive analysis method, namely, Structured Analysis
(see Budgen [2003] for an overview).

An alternative software design approach was that of data structured design. This
view was that a full understanding of the problem structure is best obtained from
consideration of the data structures. Thus, the emphasis is on first designing the

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521764148

Cambridge University Press

978-0-521-76414-8 - Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures
Hassan Gomaa

Excerpt

More information

Introduction 9

data structures and then designing the program structures based on the data struc-
tures. The two principal design methods to use this strategy were Jackson Structured
Programming (Jackson 1983) and the Warnier/Orr method.

In the database world, the concept of separating logical and physical data was
key to the development of database management systems. Various approaches were
advocated for the logical design of databases, including the introduction of entity-
relationship modeling by Chen.

Parnas (1972) made a great contribution to software design with his advocacy
of information hiding. A major problem with early systems, even in many of those
designed to be modular, resulted from the widespread use of global data, which
made these systems prone to error and difficult to change. Information hiding pro-
vided an approach for greatly reducing, if not eliminating, global data.

A major contribution for the design of concurrent and real-time systems came
in the late 1970s with the introduction of the MASCOT notation and later the
MASCOT design method. Based on a data flow approach, MASCOT formalized the
way tasks communicate with each other, either through channels for message com-
munication or through pools (information-hiding modules that encapsulate shared
data structures). The data maintained by a channel or pool are accessed by a task
only indirectly by calling access procedures provided by the channel or pool. The
access procedures also synchronize access to the data, typically using semaphores,
so that all synchronization issues are hidden from the calling task.

There was a general maturation of software design methods in the 1980s, and
several system design methods were introduced. Parnas’s work with the Naval Re-
search Lab (NRL), in which he explored the use of information hiding in large-
scale software design, led to the development of the Naval Research Lab Software
Cost Reduction Method (Parnas, Clements, and Weiss 1984). Work on applying
Structured Analysis and Structured Design to concurrent and real-time systems led
to the development of Real-Time Structured Analysis and Design (RTSAD) (see
Gomaa [1993] for an overview) and the Design Approach for Real-Time Systems
(DARTS) (Gomaa 1984) methods.

Another software development method to emerge in the early 1980s was Jackson
System Development (JSD) (Jackson 1983). JSD views a design as being a simula-
tion of the real world and emphasizes modeling entities in the problem domain by
using concurrent tasks. JSD was one of the first methods to advocate that the design
should model reality first and, in this respect, predated the object-oriented analysis
methods. The system is considered a simulation of the real world and is designed
as a network of concurrent tasks, in which each real-world entity is modeled by
means of a concurrent task. JSD also defied the then-conventional thinking of top-
down design by advocating a middle-out behavioral approach to software design.
This approach was a precursor of object interaction modeling, an essential aspect of
modern object-oriented development.

1.9 EVOLUTION OF OBJECT-ORIENTED ANALYSIS
AND DESIGN METHODS

In the mid- to late 1980s, the popularity and success of object-oriented program-
ming led to the emergence of several object-oriented design methods, including

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521764148

Cambridge University Press

978-0-521-76414-8 - Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures
Hassan Gomaa

Excerpt

More information

10 Overview

Booch, Wirfs-Brock, Wilkerson, and Wiener (1990), Rumbaugh et al. (1991), Shlaer
and Mellor (1988, 1992), and Coad and Yourdon (1991, 1992). The emphasis in
these methods was on modeling the problem domain, information hiding, and
inheritance.

Parnas advocated using information hiding as a way to design modules that were
more self-contained and therefore could be changed with little or no impact on
other modules. Booch introduced object-oriented concepts into design initially with
information hiding, in the object-based design of Ada-based systems and later
extended this to using information hiding, classes, and inheritance in object-oriented
design. Shlaer and Mellor (1988), Coad and Yourdon (1991), and others introduced
object-oriented concepts into analysis. It is generally considered that the object-
oriented approach provides a smoother transition from analysis to design than the
functional approach.

Object-oriented analysis methods apply object-oriented concepts to the analysis
phase of the software life cycle. The emphasis is on identifying real-world objects
in the problem domain and mapping them to software objects. The initial attempt
at object modeling was a static modeling approach that had its origins in informa-
tion modeling, in particular, entity-relationship (E-R) modeling or, more generally,
semantic data modeling, as used in logical database design. Entities in E-R modeling
are information-intensive objects in the problem domain. The entities, the attributes
of each entity, and relationships among the entities, are determined and depicted
on E-R diagrams; the emphasis is entirely on data modeling. During design, the
E-R model is mapped to a database, usually relational. In object-oriented analy-
sis, objects in the problem domain are identified and modeled as software classes,
and the attributes of each class, as well as the relationships among classes, are
determined (Coad 1991; Rumbaugh et al. 1991; Shlaer and Mellor 1988).

The main difference between classes in static object-oriented modeling and entity
types in E-R modeling is that classes have operations but entity types do not have
operations. In addition, whereas information modeling only models persistent enti-
ties that are to be stored in a database, other problem domain classes are also
modeled in static object modeling. The advanced information modeling concepts of
aggregation and generalization/specialization are also used. The most widely used
notation for static object modeling before UML was the Object Modeling Tech-
nique (OMT) (Rumbaugh et al. 1991).

Static object modeling was also referred to as class modeling and object modeling
because it involves determining the classes to which objects belong and depicting
classes and their relationships on class diagrams. The term domain modeling is also
used to refer to static modeling of the problem domain (Rosenberg and Scott 1999;
Shlaer and Mellor 1992).

The early object-oriented analysis and design methods emphasized the structural
aspects of software development through information hiding and inheritance but
neglected the dynamic aspects. A major contribution by the OMT (Rumbaugh et al.
1991) was to clearly demonstrate that dynamic modeling was equally important. In
addition to introducing the static modeling notation for the object diagrams, OMT
showed how dynamic modeling could be performed with statecharts for showing the
state-dependent behavior of active objects and with sequence diagrams to show the
sequence of interactions between objects. Rumbaugh et al. (1991) used statecharts,

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521764148

Cambridge University Press

978-0-521-76414-8 - Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures
Hassan Gomaa

Excerpt

More information

Introduction 11

which are hierarchical state transition diagrams originally conceived by Harel (1988,
1998), for modeling active objects. Shlaer and Mellor (1992) also used state transi-
tion diagrams for modeling active objects. Booch initially used object diagrams to
show the instance-level interactions among objects and later sequentially numbered
the interactions to more clearly depict the communication among objects.

Jacobson (1992) introduced the use case concept for modeling the system’s
functional requirements. Jacobson also used the sequence diagram to describe the
sequence of interactions between the objects that participate in a use case. The use
case concept was fundamental to all phases of Jacobson’s object-oriented software
engineering life cycle. The use case concept has had a profound impact on modern
object-oriented software development.

Prior to UML, there were earlier attempts to unify the various object-oriented
methods and notations, including Fusion (Coleman et al. 1993) and the work of
Texel and Williams (1997). The UML notation was originally developed by Booch,
Jacobson, and Rumbaugh to integrate the notations for use case modeling, static
modeling, and dynamic modeling (using statecharts and object interaction model-
ing), as described in Chapter 2. Other methodologists also contributed to the devel-
opment of UML. An interesting discussion of how UML has evolved and how it is
likely to evolve in the future is given in Cobryn [1999] and Selic (1999).

1.10 SURVEY OF CONCURRENT, DISTRIBUTED, AND REAL-TIME
DESIGN METHODS

The Concurrent Design Approach for Real-Time Systems (CODARTS) method
(Gomaa 1993) built on the strengths of earlier concurrent design, real-time design,
and early object-oriented design methods by emphasizing both information-hiding
module structuring and concurrent task structuring.

Octopus (Awad, Kuusela, and Ziegler ) is a real-time design method based
on use cases, static modeling, object interactions, and statecharts. For real-time sys-
tems, ROOM (Selic, Gullekson, and Ward 1994) is an object-oriented real-time
design method that is closely tied in with a CASE (Computer-Assisted Software
Engineering) tool called ObjecTime. ROOM is based around actors, which are
active objects that are modeled using a variation on statecharts called ROOMcharts.
A ROOM model is capable of being executed and thus could be used as an early
prototype of the system.

Buhr (1996) introduced an interesting concept called the use case map (based
on the use case concept) to address the issue of dynamic modeling of large-scale
systems.

For UML-based real-time software development, Douglass (2004, 1999) has
provided a comprehensive description of how UML can be applied to real-time
systems.

An earlier version of the COMET method for designing concurrent, real-time,
and distributed applications, which is based on UML 1.3, is described in Gomaa
(2000). This new textbook expands on the COMET method by basing it on UML
2, increasing the emphasis on software architecture, and addressing a wide range of
software applications, including object-oriented software architectures, client/server
software architectures, service-oriented architectures, component-based software

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521764148

