A MATHEMATICAL TAPESTRY

Demonstrating the Beautiful Unity of Mathematics

This easy-to-read book demonstrates how a simple geometric idea reveals fascinating connections and results in number theory, polyhedral geometry, combinatorial geometry, and group theory. Using a systematic paper-folding procedure, it is possible to construct a regular polygon with any number of sides. This remarkable algorithm has led to interesting proofs of certain results in number theory, has been used to answer combinatorial questions involving partitions of space, and has enabled the authors to obtain the formula for the volume of a regular tetrahedron in around three steps, using nothing more complicated than basic arithmetic and the most elementary plane geometry. All of these ideas, and more, reveal the beauty of mathematics and the interconnectedness of its various branches.

Detailed instructions, including clear illustrations, enable the reader to gain hands-on experience constructing these models and to discover for themselves the patterns and relationships they unearth.

PETER HILTON is Distinguished Professor Emeritus in the Department of Mathematical Sciences at the State University of New York (SUNY), Binghamton.

JEAN PEDERSEN is Professor of Mathematics and Computer Science at Santa Clara University, California.

SYLVIE DONMOYER is a professional artist and freelance illustrator (www.scientific-illustrator.com).
A MATHEMATICAL TAPESTRY

Demonstrating the Beautiful Unity of Mathematics

PETER HILTON
State University of New York, Binghamton

JEAN PEDERSEN
Santa Clara University, California

With illustrations by

SYLVIE DONMOYER
This book is dedicated
to the memory of
Martin Gardner
(1914–2010)
Contents

Preface
Acknowledgments
1 Flexagons – A beginning thread
1.1 Four scientists at play
1.2 What are flexagons?
1.3 Hexaflexagons
1.4 Octaflexagons
2 Another thread – 1-period paper-folding
2.1 Should you always follow instructions?
2.2 Some ancient threads
2.3 Folding triangles and hexagons
2.4 Does this idea generalize?
2.5 Some bonuses
3 More paper-folding threads – 2-period paper-folding
3.1 Some basic ideas about polygons
3.2 Why does the FAT algorithm work?
3.3 Constructing a 7-gon
3.4 Some general proofs of convergence
4 A number-theory thread – Folding numbers, a number trick, and some tidbits
4.1 Folding numbers
4.2 Recognizing rational numbers of the form $\frac{r}{r-1}$
4.3 Numerical examples and why $3 \times 7 = 21$ is a very special number fact
4.4 A number trick and two mathematical tidbits
5 The polyhedron thread – Building some polyhedra and defining a regular polyhedron

© in this web service Cambridge University Press
www.cambridge.org
Contents

5.1 An intuitive approach to polyhedra
5.2 Constructing polyhedra from nets
5.3 What is a regular polyhedron?

6 Constructing dipyramids and rotating rings from straight strips of triangles
6.1 Preparing the pattern piece for a pentagonal dipyramid
6.2 Assembling the pentagonal dipyramid
6.3 Refinements for dipyramids
6.4 Constructing braided rotating rings of tetrahedra
6.5 Variations for rotating rings
6.6 More fun with rotating rings

7 Continuing the paper-folding and number-theory threads
7.1 Constructing an 11-gon
7.2 The quasi-order theorem
7.3 The quasi-order theorem when $t = 3$
7.4 Paper-folding connections with various famous number sequences
7.5 Finding the complementary factor and reconstructing the symbol

8 A geometry and algebra thread – Constructing, and using, Jennifer’s puzzle
8.1 Facts of life
8.2 Description of the puzzle
8.3 How to make the puzzle pieces
8.4 Assembling the braided tetrahedron
8.5 Assembling the braided octahedron
8.6 Assembling the braided cube
8.7 Some mathematical applications of Jennifer’s puzzle

9 A polyhedral geometry thread – Constructing braided Platonic solids and other woven polyhedra
9.1 A curious fact
9.2 Preparing the strips
9.3 Braiding the diagonal cube
9.4 Braiding the golden dodecahedron
9.5 Braiding the dodecahedron
9.6 Braiding the icosahedron
9.7 Constructing more symmetric tetrahedra, octahedra, and icosahedra
9.8 Weaving straight strips on other polyhedral surfaces

10 Combinatorial and symmetry threads
10.1 Symmetries of the cube
10.2 Symmetries of the regular octahedron and regular tetrahedron 149
10.3 Euler’s formula and Descartes’ angular deficiency 154
10.4 Some combinatorial properties of polyhedra 158

11 Some golden threads – Constructing more dodecahedra 163
11.1 How can there be more dodecahedra? 163
11.2 The small stellated dodecahedron 165
11.3 The great stellated dodecahedron 168
11.4 The great dodecahedron 171
11.5 Magical relationships between special dodecahedra 173

12 More combinatorial threads – Collapsoids 175
12.1 What is a collapsoid? 175
12.2 Preparing the cells, tabs, and flaps 176
12.3 Constructing a 12-celled polar collapsoid 179
12.4 Constructing a 20-celled polar collapsoid 182
12.5 Constructing a 30-celled polar collapsoid 183
12.6 Constructing a 12-celled equatorial collapsoid 184
12.7 Other collapsoids (for the experts) 186
12.8 How do we find other collapsoids? 186

13 Group theory – The faces of the trihexaflexagon 195
13.1 Group theory and hexaflexagons 195
13.2 How to build the special trihexaflexagon 195
13.3 The happy group 197
13.4 The entire group 200
13.5 A normal subgroup 203
13.6 What next? 203

14 Combinatorial and group-theoretical threads – Extended face planes of the Platonic solids 206
14.1 The question 206
14.2 Divisions of the plane 206
14.3 Some facts about the Platonic solids 210
14.4 Answering the main question 212
14.5 More general questions 222

15 A historical thread – Involving the Euler characteristic, Descartes’ total angular defect, and Pólya’s dream 223
15.1 Pólya’s speculation 223
15.2 Pólya’s dream 224
*15.3 . . . The dream comes true 229
*15.4 Further generalizations 232

16 Tying some loose ends together – Symmetry, group theory, homologues, and the Pólya enumeration theorem 236
16.1 Symmetry: A really big idea 236
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>*16.2</td>
<td>Symmetry in geometry</td>
<td>239</td>
</tr>
<tr>
<td>*16.3</td>
<td>Homologues</td>
<td>247</td>
</tr>
<tr>
<td>*16.4</td>
<td>The Pólya enumeration theorem</td>
<td>248</td>
</tr>
<tr>
<td>*16.5</td>
<td>Even and odd permutations</td>
<td>253</td>
</tr>
<tr>
<td>16.6</td>
<td>Epilogue: Pólya and ourselves – Mathematics, tea, and cakes</td>
<td>256</td>
</tr>
<tr>
<td>17</td>
<td>Returning to the number-theory thread – Generalized quasi-order</td>
<td></td>
</tr>
<tr>
<td>17.1</td>
<td>Setting the stage</td>
<td>260</td>
</tr>
<tr>
<td>17.2</td>
<td>The coach theorem</td>
<td>260</td>
</tr>
<tr>
<td>17.3</td>
<td>The generalized quasi-order theorem</td>
<td>264</td>
</tr>
<tr>
<td>*17.4</td>
<td>The generalized coach theorem</td>
<td>267</td>
</tr>
<tr>
<td>17.5</td>
<td>Parlor tricks</td>
<td>271</td>
</tr>
<tr>
<td>17.6</td>
<td>A little linear algebra</td>
<td>275</td>
</tr>
<tr>
<td>17.7</td>
<td>Some open questions</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>286</td>
</tr>
</tbody>
</table>
Preface

This is a book of 17 chapters, each of which provides some arithmetic, some geometry, or some algebra. The basic ideas in each chapter we call threads, and there are at least nine threads in this book – paper-folding threads, number-theory threads, polyhedral threads, geometry threads, algebra threads, combinatorial threads, symmetry threads, group-theory threads, and historical threads. So this book utilizes, exploits, and develops, by weaving these threads of a very different kind together, many parts of mathematics. At the end of this preface we will give a table showing how you might read this book in the very unlikely event that you are interested in just one of these threads.

Many of the chapters involve the construction of models and these take time and effort, but we believe that if you choose to carry out the constructions you will find the activity satisfying. As Benno Artmann, reviewing one of Pedersen’s articles in Mathematical Reviews, said about the construction of the golden dodecahedron: “I tried a dodecahedron. It sits on my desk, looks nice and makes me feel like an artist.” On the other hand, we understand that many of our readers won’t want to construct these models, but we think that they can be appreciated without actually constructing them. Surely you yourselves have enjoyed eating a piece of cake that someone else baked; and, even though you didn’t actually do the baking, you might be interested in its ingredients and how it came to be in its final shape. So we include the instructions for building the models for those of you who want to construct them and hope that our other readers will at least appreciate what goes into making them.

We have had the immense benefit of the cooperation of the artist Sylvie Donmoyer who has provided beautiful, highly illustrative pictures, Hans Walser who has provided the figures for Chapter 13, and Byron Walden who took responsibility for the proofs in Chapter 17.

In addition to the various threads, there is one technical feature of this book which we would like to mention. We adopt, when appropriate, the notation of using radian measure, writing π (without the word “radians” following it) instead of 180°. The advantages of adopting this notation will, we believe, become obvious...
Preface

to our readers when it is used; since it clearly emphasizes that the straight angles of \(180^\circ(=\pi)\) at the edge of the strip of paper being folded play a special role in the geometry, and subsequently in the number theory – as they obviously do. A feature which we use throughout the book, to make it easier for the reader to spot when a new idea is being named, is to use **bold italic** print to alert you that we are introducing a technical term that will be used subsequently. On the other hand, we use *ordinary italic* print for emphasis. We – and our readers – have found this convention helpful in some of our previous publications.

The topics of this book were chosen because of their interconnectedness; and the aim of the book is to show how pursuing a single idea in mathematics can lead in many different directions forming a unified whole. We think this book should be of interest to bright high-school students and all other intelligent people with an interest in mathematics because it touches on so many fascinating aspects of mathematics and the people who do it. We give some highlights below for number-theorists and geometers.

For those interested in number theory there are at least two very significant theorems in this book. It is intriguing to think that these two striking theorems about numbers came about naturally by following the mathematics of paper-folding described in Chapter 2, which was motivated by the hexaflexagons introduced in Chapter 1. Just to whet your appetite we will tell you now that the first of these important theorems, the quasi-order theorem, enables one to determine for any given odd number \(b \geq 3\), using an algorithm that involves only subtraction and division by the number 2, the smallest power \(k\) to which 2 must be raised in order that either \(2^k - 1\), or \(2^k + 1\) is exactly divisible by \(b\). And it tells us whether the sign should be “−” or “+”. Furthermore, the algorithm never uses any number larger than \(b\) itself. The proof of this theorem is the most delicate result we present, but it seems, in the context of our development, to be a perfectly natural result. It leads, indeed, to a proof that the Fermat number, \(F_5\), which is \(2^{32} + 1\), is not prime (see Chapter 7). It is, in fact, the smallest Fermat number to be composite. Our proof is based on an algorithm that uses only subtraction and division by 2, and involves no number larger than 641.

The second significant number-theoretic result occurs in Chapter 7. We call that result the coach theorem because the mathematical symbols in the statement of the theorem look like coaches on a train to the English author, and we yielded to his wording, since to have called it a “car theorem” (because Americans refer to cars on a train) didn’t sound nearly so nice to either of the authors. In Chapter 17 the coach theorem enables us, by a logical extension of the quasi-order theorem, to determine for any given \(b \geq 3\) the number of proper divisors of the number \(b\). In other words it gives us the value of what is well-known among number-theorists as the Euler totient function of \(b\), that we denote \(\Phi(b)\) (as defined in Section 17.1). This result
is obtained through repeated use of the algorithm used for the quasi-order theorem. We have described both of these theorems in terms of the number 2 but they both have generalizations involving a general positive number \(t \geq 2 \), which we also give in Chapter 17 for the benefit of those truly interested in number theory.

There are also results about divisibility that are quite counter-intuitive. For example, in Chapter 4 we take the basic number fact \(7 \times 3 = 21 \) and show that the two related number facts

\[
7 \text{ divides } 21
\]

and

\[
3 \text{ divides } 21
\]

have very different generalizations to arbitrary bases!

Readers who are especially interested in geometry will find here a completely systematic method for constructing arbitrarily good approximations to regular \(b \)-gons, for any \(b \geq 3 \); this is a result that we believe the Greeks and Gauss would surely have liked to know about. These constructions led one of the authors to discover a construction of braided polyhedra (Chapters 8 and 9) with remarkable geometric properties of their own. Surprisingly, these same braided polyhedra are useful in determining the number of unbounded regions created in space by the extended face planes of the Platonic solids (Chapter 14).

The following table suggests which chapters to read for those of you with an overpowering interest in one or another of the nine threads. It should not be assumed, however, that if a chapter is not mentioned in one of the threads, then the thread does not appear at all there – this table lists the chapters that have some substantial parts devoted to the topic mentioned. For example, you may note that all chapters are listed under symmetry; and you will find that some are of an intensely geometric nature, while in other chapters the symmetry is in the statement of number-theoretic results, and in yet other chapters the symmetry is only present subtly without being mentioned explicitly.

<table>
<thead>
<tr>
<th>Thread</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>paper-folding</td>
<td>2, 3, 7</td>
</tr>
<tr>
<td>number theory</td>
<td>2, 3, 4, 7, 17</td>
</tr>
<tr>
<td>polyhedral</td>
<td>5, 6, 8, 9, 10, 11, 12, 13, 14, 15</td>
</tr>
<tr>
<td>geometry</td>
<td>1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16</td>
</tr>
<tr>
<td>algebra</td>
<td>1, 2, 3, 4, 5, 7, 17</td>
</tr>
<tr>
<td>combinatorial</td>
<td>10, 12, 14</td>
</tr>
<tr>
<td>symmetry</td>
<td>1–17</td>
</tr>
<tr>
<td>group theory</td>
<td>9, 11, 13, 14, 16</td>
</tr>
<tr>
<td>historical</td>
<td>1, 10, 15, 16</td>
</tr>
</tbody>
</table>
We realize that not all readers will be interested in reading highly technical proofs. So we have placed an asterisk by the titles of certain sections, where the mathematics gets more intense, to let you know you can, with impunity, skip all (or part of) those sections on first reading and go straight on to the examples in those sections, or to other concepts. In almost all cases you will still be able to understand the subsequent material without having digested the proofs.
Acknowledgments

We are grateful to Don Albers for his support and guidance during the pre-publication stage of this book, and to Silvia Barbina, Clare Dennison, and Dawn Preston at Cambridge University Press, along with the copy-editor, Mike Nugent, who shepherded this project through the final publishing process. Alas! Long before the book came to be, we were encouraged by, and received excellent advice from, our colleagues and students about the content of the book – and we owe all of them a debt of gratitude for their enthusiasm and helpfulness.

We particularly wish to thank Gerald L. Alexanderson, Monika Caradonna, Victor Garcia, Jennifer Hooper, and Byron Walden for their careful attention to detail in helping with the proof-reading of this book. We also owe a huge special thanks to our spouses, Margaret Hilton and Kent Pedersen, and to our families for their ongoing support, and encouragement, of our joint work over the past 30 years!

Peter Hilton
Binghamton, New York

Jean Pedersen
Santa Clara, California

April 2010