MODELLING PERCEPTION WITH ARTIFICIAL NEURAL NETWORKS

Studies of the evolution of animal signals and sensory behaviour have more recently shifted from considering ‘extrinsic’ (environmental) determinants to ‘intrinsic’ (physiological) ones. The drive behind this change has been the increasing availability of neural network models. With contributions from experts in the field, this book provides a complete survey of artificial neural networks. The book opens with two broad, introductory level reviews on the themes of the book: neural networks as tools to explore the nature of perceptual mechanisms, and neural networks as models of perception in ecology and evolutionary biology. Later chapters expand on these themes and address important methodological issues when applying artificial neural networks to study perception. The final chapter provides perspective by introducing a neural processing system in a real animal. The book provides the foundations for implementing artificial neural networks, for those new to the field, along with identifying potential research areas for specialists.

COLIN R. TOSH is a postdoctoral researcher currently based at the Institute of Integrative and Comparative Biology, University of Leeds. He began his career as an experimental behavioural biologist, specialising in the host utilisation behaviour of insects. More recently he has extended his interests to theoretical biology and is currently interested in applying neural network models to study the impact of information degradation and bias between trophic levels (predator–prey, herbivore–plant, etc.). He is the author of numerous papers in international journals of ecology and evolution and recently published a major review on insect behaviour.

GRAEME D. RUXTON is Professor of Theoretical Ecology at the University of Glasgow. He began academic life as a physicist, but ended up in behavioural ecology after a detour into statistics. His research focuses on the use of mathematical models as tools for understanding animal behaviour, with particular interest in cognitive aspects of predator–prey interactions. He has co-authored over 200 peer-reviewed papers, one textbook and two monographs. Ruxton and Tosh have several years’ experience of fruitful collaboration centred on the use of neural networks as representations of the sensory and decision-making processes of predators.
MODELLING PERCEPTION WITH ARTIFICIAL NEURAL NETWORKS

COLIN R. TOSH
Faculty of Biological Sciences, University of Leeds

GRAEME D. RUXTON
Faculty of Biomedical Life Sciences, University of Glasgow
Contents

List of contributors vii

Introduction: Modelling perception with artificial neural networks 1

Part I General themes 5

1 Neural networks for perceptual processing: from simulation tools to theories 7
Kevin Gurney

2 Sensory ecology and perceptual allocation: new prospects for neural networks 35
Steven M. Phelps

Part II The use of artificial neural networks to elucidate the nature of perceptual processes in animals 61

3 Correlation versus gradient type motion detectors: the pros and cons 63
Alexander Borst

4 Spatial constancy and the brain: insights from neural networks 74
Robert L. White III and Lawrence H. Snyder

5 The interplay of Pavlovian and instrumental processes in devaluation experiments: a computational embodied neuroscience model tested with a simulated rat 93
Francesco Mannella, Marco Mirolli and Gianluca Baldassarre

6 Evolution, (sequential) learning and generalisation in modular and nonmodular visual neural networks 114
Raffaele Calabretta

7 Effects of network structure on associative memory 134
Hiraku Oshima and Tokashi Odagaki

8 Neural networks and neuro-oncology: the complex interplay between brain tumour, epilepsy and cognition 149
L. Douw, C. J. Stam, M. Klein, J. J. Heimans and J. C. Reijneveld
Contents

Part III Artificial neural networks as models of perceptual processing in ecology and evolutionary biology 185

9 Evolutionary diversification of mating behaviour: using artificial neural networks to study reproductive character displacement and speciation 187
 Karin S. Pfennig and Michael J. Ryan

10 Applying artificial neural networks to the study of prey colouration 215
 Sami Merilaita

11 Artificial neural networks in models of specialisation, guild evolution and sympatric speciation 236
 Noël M. A. Holmgren, Niclas Norström and Wayne M. Getz

12 Probabilistic design principles for robust multi-modal communication networks 255
 David C. Krakauer, Jessica Flack and Nihat Ay

13 Movement-based signalling and the physical world: modelling the changing perceptual task for receivers 269
 Richard A. Peters

Part IV Methodological issues in the use of simple feedforward networks 293

14 How training and testing histories affect generalisation: a test of simple neural networks 295
 Stefano Ghirlanda and Magnus Enquist

15 The need for stochastic replication of ecological neural networks 308
 Colin R. Tosh and Graeme D. Ruxton

16 Methodological issues in modelling ecological learning with neural networks 318
 Daniel W. Franks and Graeme D. Ruxton

17 Neural network evolution and artificial life research 334
 Dara Curran and Colm O’Riordan

18 Current velocity shapes the functional connectivity of benthiscapes to stream insect movement 351
 Julian D. Olden

19 A model biological neural network: the cephalopod vestibular system 374
 Roddy Williamson and Abdul Chrachri

Index 390
Contributors

Nihat Ay
Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22–26, D-04103 Leipzig, Germany

Gianluca Baldassarre
Laboratory of Computational Embodied Neuroscience, Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche (LOCEN-ISTC-CNR), Via San Martino della Battaglia 44, I-00185 Roma, Italy

Alexander Borst
Max Planck Institute for Neurobiology, Systems and Computational Neurobiology, Am Klopferspitz 18, 82152 Martinsried-Planegg, Germany

Raffaele Calabretta
Institute of Cognitive Sciences and Technologies, Italian National Research Council, Rome, Italy

Abdul Chrachri
Faculty of Science, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK

Dara Curran
Cork Constraint Computation Centre, Western Gateway Building, University College Cork, Cork, Ireland

L. Douw
Department of Neurology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, the Netherlands

Magnus Enquist
Group for Interdisciplinary Cultural Research/Zoology Institution, Stockholm University, SE-106 91 Stockholm, Sweden

Jessica Flack
Living Links, Yerkes National Primate Research Center,
List of contributors

Emory University,
201 Dowman Drive,
Atlanta,
Georgia 30322,
USA

Daniel W. Franks
York Centre for Complex Systems Analysis (YCCSA),
Department of Biology,
& Department of Computer Science,
University of York,
YO10 5YW,
UK

Wayne M. Getz
Department of Environmental Sciences,
Policy and Management,
University of California at Berkeley,
201 Wellman Hall,
CA 94720–3112,
California,
USA

Stefano Ghirlanda
Group for Interdisciplinary Cultural Research,
Stockholm University,
SE-106 91 Stockholm,
Sweden

Kevin Gurney
Adaptive Behaviour Research Group,
Department of Psychology,
University of Sheffield,
Sheffield S10 2TP,
UK

J. J. Heimans
Department of Neurology,
VU University Medical Centre,
PO Box 7057,
1007 MB Amsterdam,
the Netherlands

Noël M. A. Holmgren
Department of Life Sciences,
University of Skövede,
P.O. Box 408,
SE-541 46 Skövde,
Sweden

M. Klein
Department of Medical Psychology,
VU University Medical Centre,
PO Box 7057,
1007 MB Amsterdam,
the Netherlands

David C. Krakauer
Santa Fe Institute,
1399 Hyde Park Road,
Santa Fe,
NM 87501,
USA

Francesco Mannella
Laboratory of Computational Embodied Neuroscience,
Istituto di Scienze e Tecnologie della Cognizione,
Consiglio Nazionale delle Ricerche (LOCEN-ISTC-CNR),
Via San Martino della Battaglia 44,
I-00185 Roma,
Italy

Sami Merilaita
Environmental and Marine Biology,
Åbo Akademi University,
Biocity,
Tykistökatu 6 A,
FIN-20520,
Turku,
Finland

Marco Mirolli
Laboratory of Computational Embodied Neuroscience,
List of contributors

Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche (LOCEN-ISTC-CNR), Via San Martino della Battaglia 44, I-00185 Rome, Italy

Niclas Norrström
Department of Life Sciences, University of Skövde, P.O. Box 408, SE-541 46 Skövde, Sweden

Colm O’Riordan
Department of Information Technology, National University of Ireland, Galway, Ireland

Takashi Odagaki
Department of Physics, Kyushu University, Fukuoka 812–8581, Japan

Julian D. Olden
School of Aquatic and Fishery Sciences, Box 355020, University of Washington, Seattle, Washington 98195, USA

Hiraku Oshima
Department of Physics, Kyushu University, Fukuoka 812–8581, Japan

Richard A. Peters
Centre for Visual Sciences, Research School of Biological Sciences, Australian National University, Canberra ACT 0200, Australia

Karin S. Pfennig
Department of Biology, CB #3280, University of North Carolina, Chapel Hill, NC 27599, USA

Steven M. Phelps
P.O. Box 118525, Department of Zoology, University of Florida, Gainesville, FL 32611, USA

J. C. Reijneveld
Department of Neurology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, the Netherlands

Michael J. Ryan
Section of Integrative Biology C0930, University of Texas, Austin, TX 78712, USA

Graeme D. Ruxton
Division of Environmental and Evolutionary Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
List of contributors

Lawrence H. Snyder
Department of Anatomy and Neurobiology,
Box 8108,
Washington University School of Medicine,
660 S. Euclid Ave.,
St. Louis,
MO 63110,
USA

Robert L. White III
Department of Anatomy and Neurobiology,
Washington University School of Medicine,
660 S. Euclid Ave.,
St. Louis,
MO 63110,
USA

Colin R. Tosh
Institute of Integrative and Comparative Biology,

C. J. Stam
Department of Clinical Neurophysiology,
VU University Medical Centre,
PO Box 7057,
1007 MB Amsterdam,
the Netherlands

Roddy Williamson
Faculty of Science,
University of Plymouth,
Drake Circus,
Plymouth PL4 8AA,
UK