
Introduction: Modelling perception with artificial

neural networks

Colin R. Tosh and Graeme D. Ruxton

This book represents a substantial update of a theme issue of the Philosophical Trans-

actions of the Royal Society B Journal, ‘The use of artificial neural networks to study

perception in animals’ (Phil Trans R Soc B 2007 March 29; 362(1479)). Most of the 14

papers in that theme issue have been significantly updated and we include a further five

entirely new chapters, reflecting emerging themes in neural network research. Our rea-

sons for undertaking the theme issue and this book were not entirely altruistic. Having a

young but growing interest in the use of artificial neural networks, we hoped that the

publications would be an excuse for us to learn about areas in neural network research

that seemed interesting to us and of potential application to our research. The people who

will get most from the book are, therefore, ecologists and evolutionary biologists, perhaps

with a notion of using neural network models of perception, but with little experience of

their use. That said, the content of this book is extremely broad and we are confident that

there is something in it for any scientist with an interest in animal (including human)

perception and behaviour.

We organise the book into four fairly loose categories. The chapters by Kevin Gurney

and Steve Phelps are broad reviews and introduce the two main themes of the book:

neural networks as tools to explore the nature of perceptual processes, and neural net-

works as models of perception in ecology and evolutionary biology. Kevin Gurney’s

chapter is an excellent general introduction to the theory and use of neural networks and

tackles the question: what can simple neural network models tell us about real neural

circuits and the brain? Steve Phelps’s chapter is a ‘where it’s at and where it’s going’ of

artificial neural network models used to explore perceptual allocation and bias, and the

models and ideas in it can be applied to many other areas of ecology and evolutionary

biology. Like most of the articles in the book, both of these chapters can be appreciated

by those with little or no mathematical expertise.

The next six chapters are research or focused review articles on neural network models

and their use in elucidating the nature of perceptual processes in animals. Axel Borst’s

chapter describes and compares the properties of different neural models of motion
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detection: specifically Reichardt and gradient detectors. We (the editors) are excited about

the potential of applying such models to issues in predator–prey interactions, to address

how predator-targeting accuracy is affected by the speed and number of moving prey

items. Robert White and Larry Snyder use a recurrent neural network model to investigate

how accurate internal representations of visual space are formed in primates. Francesco

Manella et al. use a novel computational model which is strongly rooted in the anatomy

and physiology of the mammalian brain to investigate the role of the amygdala in the

phenomenon of devaluation in an instrumental conditioning task. Raffaele Calabretta

explores the concept of ‘genetic interference’: a phenomenon that can reduce the evol-

vability of both modular and nonmodular visual neural networks but can be alleviated by

‘sexual reproduction’ in neural networks. The last two chapters of this section represent a

distinct sub-theme: the relationship between connective architecture of neural networks

and their functioning. Hiraku Oshima and Takashi Odagaki investigate the influence of

regular, small world, random network structures on the storage capacity and retrieval time

of Hopfield networks. Linda Douw et al. consider whether the neural and behavioural

consequences of brain tumours are due to disruption of the small world properties of

whole brain networks. The issue of the relationship between network structure and

functioning in a burgeoning theme in wider network theory (e.g. social and communi-

cation networks) should be of interest to anyone interested in how animal behaviour

evolves in response to the environment.

The next five chapters are by ecologists and evolutionary biologists and apply neural

networks to classic questions in these disciplines. Karin Pfennig and Michael Ryan apply

Elman networks to study the evolution of character displacement and mate choice using the

calls of tundra frogs as network input. Sami Merilaita reviews recent work on the anti-

predator benefits of prey colouration that uses simple neural network models. Noél

Holmgren et al. review recent work on the use of neural networks to study ecological

specialisation and sympatric speciation: an interesting approach that offers a potentially

powerful alternative to traditional mathematical simulation models in these areas. All of

these papers additionally use or discuss genetic algorithms, an optimisation framework also

applicable to models other than neural networks that tune model parameters through a

selective process analogous to natural selection. This powerful ‘organic’ selection method

can be applied to a variety of systems. David Krakauer et al. use analytical mathematics

with simple feedforward neural networks to show that multimodal signals (animal signals

that exploit multiple sensory organs) can increase the robustness of signals through multiple

channels (e.g. frequencies in vocalisation). Finally, Richard Peters investigates the diffi-

culties involved in signal recognition by a species of lizard using a saliency map and a

winner-take-all neural network of leaky integrate-and-fire neurons. This model is based on

some of the known properties of visual processing in primates and will appeal to ecologists

who want to explore what the most salient object is in a particular visual scene, but are

discouraged by the abstraction of simple connectionist approaches.

The next five chapters are generally on methodological issues in the use simple

feedforward networks. Chapter 14 by Stephano Ghirlanda and Magnus Enquist and
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Chapter 15 by Colin Tosh and Graeme Ruxton (the editors) are on the phenomenon

coined ‘path dependence’ by the former authors. This is the tendency of certain neural

networks with commonly used architectures and training methods to vary in predictive

properties, depending on the order of presentation of training inputs, or with stochastic

variation in the starting properties of networks. This effect could have important bio-

logical as well as methodological implications. In their chapter, Dan Franks and Graeme

Ruxton argue that training methods such as back propagation that researchers have used

with feedforward nets to study learning in animals are inappropriate as normally applied

because learning is too slow. They offer a modified protocol for the application of training

procedures that better replicates the tempo of learning in real animals. Dara Curran and

Colm O’Riordan review methods used to effect adaptive evolution in both the weights

and architecture of artificial neural networks. We also place the chapter by Julian Olden in

this section. This chapter, as well as being an interesting research paper on the rela-

tionship between landscape properties and animal movements, applies methods that allow

one to dissect the functioning of neural networks. These methods should help to dispel the

common myth that neural networks are ‘black boxes’ that produce interesting results but

whose functioning and action cannot be analysed. Finally, the chapter by Roddy Wil-

liamson and Abdul Chrachri does not fit into any of the aforementioned categories and

describes a real neural network: the cephalopod vestibular system. This chapter empha-

sises the fact that real neural networks are considerably more complex than most of the

simple artificial ones described in the book, and in some (perhaps many) neural systems

this complexity must be embraced in order to fully understand the system.

One of our loftier objectives in putting together this book was to attract readers from a

broad and disparate range of disciplines and so foster cross-fertilisation of ideas. Papers in

the book should interest readers from psychology, neurobiology, mathematics, ethology,

ecology and evolutionary biology. It is hoped that readers from each of these disciplines

might find something from another discipline that interests them and gives them new

ideas for their own research. For example, many psychologists and neurobiologists could

undoubtedly benefit from an increased appreciation of the evolutionary context of their

study system, while many ecologists and evolutionary biologists could benefit from a

greater appreciation of the neural mechanisms underlying phenomena at the level of the

whole organism. We also hope that greater use of artificial neural networks might reduce

the need for invasive animal experimentation. The study of nervous systems, using

artificial models or otherwise, will always be founded on experiments with real nervous

systems, but models can reduce the need for experimentation at particular stages of a

research programme. A reliable model can simulate multiple scenarios and inform

researchers on which areas of endeavour are likely to be most rewarding, thereby redu-

cing the need for experimentation in areas that could lead up ‘blind alleys’.

We keep this introduction short and leave the job of covering broad scientific themes in

the use of neural network models to study animal perception to the first two chapters of

the book.
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Part I

General themes
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Neural networks for perceptual processing:

from simulation tools to theories

Kevin Gurney

1.1 Introduction

This paper has two main aims. First, to give an introduction to some of the construction

techniques – the ‘nuts-and-bolts’ as it were – of neural networks deployed by the authors

in this book. Our intention is to emphasise conceptual principles and their associated

terminology, and to do this wherever possible without recourse to detailed mathematical

descriptions. However, the term ‘neural network’ has taken on a multitude of meanings

over the last couple of decades, depending on its methodological and scientific context. A

second aim, therefore, given that the application of the techniques described in this book

may appear rather diverse, is to supply some meta-theoretical landmarks to help under-

stand the significance of the ensuing results.

In general terms, neural networks are tools for building models of systems that are

characterised by data sets which are often (but not always) derived by sampling a system

input-output behaviour. While a neural network model is of some utility if it mimics the

behaviour of the target system, it is far more useful if key mechanisms underlying the

model functionality can be unearthed, and identified with those of the underlying system.

That is, the modeller can ‘break into’ the model, viewed initially as an input-output ‘black

box’, and find internal representations, variable relationships, and structures which may

correspond with the underlying target system. This target system may be entirely non-

biological (e.g. stock market prices), or be of biological origin, but have nothing to do with

brains (e.g. ecologically driven patterns of population dynamics). In these instances, we can

ask whether the internal network machinations are informative of specific relationships

between system inputs and outputs, and any internal variables. However, the mechanistic

elements of a network have names which are evocative of processing in the animal brain;

there is talk of ‘artificial neurons’, their interconnection strengths and ‘learning’. If,

therefore, a neural network is a model of part of the brain, the problem of interpretation of

internal mechanisms is particularly acute. For, if these mechanisms are based on those in

the brain, is it the case that they reflect genuine, biological neural mechanisms? These and

related questions are explored in the second half of the chapter.
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1.2 Neural network principles

This section gives a high-level view of some of the principles and techniques used in this

book. A more comprehensive treatment at this level can be found in Gurney (1997) while

the books by Haykin (1999) and Bishop (1996) take a more mathematical approach.

We start with a pragmatic, working definition of a neural network: A neural network is

an interconnected assembly of simple processing elements, units or nodes whose func-

tionality is loosely based on the animal neuron. The processing ability of the network is

stored in the inter-unit connection strengths, or weights, obtained by a process of adap-

tation to, or learning from, a set of training patterns. The rest of this section is devoted to

unwrapping these terms with special emphasis on those networks that appear in sub-

sequent chapters in this book.

1.2.1 Artificial neurons

Figure 1.1 is a graphical description of a typical neural network node.

Input signals x1,x2,. . .xn are combined to form an output y via an activation variable a.

The latter is formed by taking a weighted sum of inputs. That is,

a ¼
X
i

wixi ð1Þ

The weights wi may be positive or negative. The activation is then usually transformed by

some kind of squashing function which limits the output y to a specified range (usually the

interval [0,1]) and introduces a nonlinearity; this latter feature proves to be crucial in

endowing neural nets with their powerful functionality (see next section). In the figure,

the squashing function has been chosen to be the logistic sigmoid

y ¼ 1

1þ expð�ða� hÞÞ ð2Þ

x1

x2
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w2
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Figure 1.1. Simple model neuron.
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although other, similar functions are occasionally used. The constant h defines the point at
which y takes its mid-point value. Moreover, it is the point where the function is changing

most rapidly and is therefore the value of the activation at which the node is most

sensitive to small changes in the inputs. The negative of h is therefore sometimes referred

to as the bias. Notice that y approaches 0 and 1 asymptotically as the activation decreases

and increases respectively (so, y is never equal to 0 or 1, but may be made as close to

these as we please).

The basic node described above has a long lineage. The first artificial neural node was

the Threshold Logic Unit (TLU) introduced by McCulloch & Pitts (1943). This was also a

two-stage device with the first stage given by (1) but with the output nonlinearity defined

by a discontinuous step function, rather than the smooth ramp described by (2). Thus, the

output of the TLU had only two values, 0 or 1, depending on whether the activation was

less than or greater than the threshold h, respectively. A more complex node – the

Perceptron – was introduced by Rosenblatt (1958) which retained the Boolean (0,1)

output of the TLU, but allowed pre-processing of Boolean input variables with arbitrary

functions (so-called ‘association units’) whose outputs then formed the variables xi in (1).

The TLU is therefore a special case of the Perceptron when ‘association units’ just pass a

single input through to each weight.

The neurobiological inspiration for the structure of Figure 1.1 is as follows. The input

xi corresponds to the presynaptic input on afferent i, while the weight wi encapsulates the

corresponding synaptic strength. The product wixi is akin to the post-synaptic potential

(PSP) which is inhibitory/excitatory according to whether wi is negative/positive. The

integration of PSPs over the dendritic arbour and soma is represented by simple arith-

metic addition, and the quantity a corresponds to the somatic membrane potential. This is

then transformed by the squashing function to give a firing rate y. Clearly some of these

correspondences are, at best, merely qualitative analogues. The issue of realism is

revisited in the second half of the chapter.

1.2.2 Feedforward networks and classification

A ubiquitous problem in perception is that of classification or pattern recognition. As an

example, consider the problem of identifying letters of the alphabet. Humans are able to

recognise letters in many sizes, orientations and fonts (including handwritten variations)

with ease. Any individual person can never see all possible letter variants, but, instead,

will learn idealised letter shapes from a very small set of possibilities (usually a plain font

in children’s reading books). This latter point demonstrates that generalisation is a key

component in the classification process. That is, the ability to generalise knowledge of

specific pattern exemplars to a wide variety of related cases.

Based on this example we now formalise the general problem of classification as

follows. Given an arbitrary sensory input pattern drawn from some universal set of

patterns, is it possible to place that pattern in its appropriate class or category, where there

are generally many fewer classes than the patterns themselves? Further, we suppose that
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we do not have an exhaustive list of the entire universe of patterns; rather, we only have

immediate access to some subset of patterns P, and knowledge of the category that each

member of P belongs to. By way of terminology P is the training set referred to in the

motivational definition of a neural network at the start of this section. The problem is to

construct an input-output model, based on this limited knowledge, which will generalise

so that, if it is presented with a pattern not in P, it will elicit the correct classification for

that pattern. Notice that a ‘model’ which simply classifies P but does not generalise is

easy to construct but of no real interest – it is just a lookup table of pattern-class pairings.

We will return to the relationship between neural processing and generalisation later. In

the meantime we will look at how the classification problem may be solved in principle

by a neural network.

Figure 1.2 shows a feedforward network which consists of a layered structure with

information flowing from the inputs, at the bottom of the diagram, to the outputs at the top.

The inputs have no functionality as such, but are simply points which receive pattern

information and distribute this information to the first layer of neural nodes per se (of the

type described above). In the example, there are four inputs, and so all patterns for

classification would have to be defined by a list of four numbers. In more formal analyses,

these lists of numbers are properly referred to as vectors with numeric components, and

we sometimes speak of pattern vectors. This first layer of functional nodes is sometimes

referred to as a hidden layer since we are not supposed to inspect or control the output

values on these nodes (y in Eq. 2) during the process of setting the network weights;

that is during training or learning. The outputs of the hidden layer are subsequently

processed by an output layer which is used to read out the category in which the input

pattern is placed. There are several ways of doing this depending on the way information

is represented in the network. We will refer to a network of the kind shown in Figure 1.2

as a two-layer network since it contains two layers of processing nodes. Some authors

include the input layer in the layer count so that the network in Figure 1.2 would

constitute a 3-layer net. The final point to make here is that networks of the kind depicted

pattern inputs

output layer

weighted links

category readout

weighted links

hidden layer

Figure 1.2. Simple two-layer feedforward neural network.
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in Figure 1.2 are sometimes called multi-layer perceptrons or MLPs, in deference to the

important role played by Rosenblatt’s original perceptron in shaping the theory of neural

network learning (Minsky & Papert, 1969).

Notice that processing by any particular node can be performed independently of that

in any other. Thus, processing could, in principle, be performed in parallel if we had the

necessary hardware resources to assign to each node. In spite of this, most networks find

their implementation in software simulation in a conventional computer in which each

node has to be visited serially to compute its output.

There is a mathematical framework which is particularly useful for describing quan-

titatively the process of classification in networks. It is based on the notion that patterns

reside in some pattern space and is evocative of geometric analogies that enable the

problem to be visualised. Suppose, for example, we have patterns belonging to two

classes, A and B. If each pattern was defined by only two numerical components, then it

could be represented quantitatively as a point in Cartesian axes as shown in Figure 1.3a.

If, in fact, each pattern is a vector with n > 2 components, Figure 1.3 is just a cartoon

schematic which is simply illustrative of the case in n-dimensions. In Figure 1.3a, the

patterns are shown as being separated by a straight line. In 3-D this situation implies a
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Figure 1.3. Geometric view of pattern classification.

Neural networks for perceptual processing 11

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76395-0 - Modelling Perception with Artificial Neural Networks
Colin R. Tosh and Graeme D. Ruxton
Excerpt
More information

http://www.cambridge.org/9780521763950
http://www.cambridge.org
http://www.cambridge.org


plane, and in n-D (n > 3) a hyperplane. In all these cases we say that the patterns are

linearly separable, and the straight line is schematically indicative of this.

Suppose we have a single artificial neuron with n-inputs, then it could attempt to solve

the classification problem in Figure 1.3a by indicating output values of 1,0 for classes A,B

respectively. This could occur exactly if the node was a TLU, and approximately using a

node of the form shown in Figure 1.1 (since, in this case, the output approaches 0 and 1

asymptotically). It may be shown that linearly separable problems can indeed be solved

by a single artificial neuron; a result which follows from the linearity of signal com-

bination in Eq. 1. To see this, consider, the two-input case and assume, for simplicity,

a TLU. The critical condition that defines classification occurs when the activation

a equals the threshold h, since small changes in a around this value cause the node to

switch its output between 0 and 1. Putting a ¼ h, gives w1x1 þ w2x2 ¼ h. This may be

solved for x2 in terms of x1 to give

x2 ¼ � w1

w2

� �
x1 þ h

w2

� �

which is a straight line with slope –w1 / w2 and intercept h / w2. Now put, for example, w1

¼ w2 ¼ 1, and h ¼ 1.5. This defines a line x2 ¼ �x1 þ 1.5 as shown in Figure 1.3b. Here,

pairs of values (x1,x2) defining points on the same side of the line as the origin give TLU

outputs of 0, while values defining points on the other side of this line give TLU outputs

of 1. In particular, the Boolean inputs (1,1) give an output of 1, while the other three

Boolean input pairs give an output of 0 (in this case the TLU is acting as a classical logic

AND gate).

Figure 1.3c shows a harder problem in pattern space which may only be solved by a

decision line (in n-D, a decision surface) consisting of two straight, but non-colinear

segments (shown by the solid line in the figure). The dotted lines show the extension of

the line segments which make each of them a continuous straight line throughout pattern

space (similar to the line in Figure 1.3a). Each extended straight line then defines a

linearly separable problem which may be solved by nodes with outputs h1 and h2. While

each of these separate classifications mixes patterns A and B together, the table in the

figure shows how the original classification problem may now be solved by taking

suitable combinations of h1 and h2; that is, class B is signalled if and only if both h1 and

h2 are zero. This 2-component classification problem is linearly separable and may be

solved with a single 2-input neural node. The original A/B classification problem has

therefore been decomposed into two stages which may be solved by a two-layer net with

two hidden nodes (yielding h1 and h2) and a single output node.

As the classification becomes more complex, we may now ask the following question:

is it possible to solve an arbitrary classification problem with a two-layer net – or do we

need to resort to more complex structures? That is, in an analogous way to the example

above, can we describe the decision surface of the problem in a piecewise linear way,

solve the resulting decomposition using hidden units, and then combine their outputs in a
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