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Introduction

Learning involves vital functions at different levels of consciousness, starting
with the recognition of sensory stimuli up to the acquisition of complex notions
for sophisticated abstract reasoning. Even though learning escapes precise defi-
nition there is general agreement on Langley’s idea (Langley, 1986) of learning
as a set of “mechanisms through which intelligent agents improve their behavior
over time”, which seems reasonable once a sufficiently broad view of “agent”
is taken. Machine learning has its roots in several disciplines, notably statistics,
pattern recognition, the cognitive sciences, and control theory. Its main goal is to
help humans in constructing programs that cannot be built up manually and pro-
grams that learn from experience. Another goal of machine learning is to provide
computational models for human learning, thus supporting cognitive studies of
learning.

Among the large variety of tasks that constitute the body of machine learn-
ing, one has received attention from the beginning: the acquiring of knowledge
for performing classification. From this perspective machine learning can be de-
scribed roughly as the process of discovering regularities from a set of available
data and extrapolating these regularities to new data.

Over the years, machine learning has been understood in different ways. At
first it was considered mainly as an algorithmic process. One of the first ap-
proaches to automated learning was proposed by Gold in his “learning in the
limit” paradigm (Gold, 1967). This type of learning provides an infinite sequence
of pieces of data to the learner, who generates a model that explains the data. At
each new input the learner updates its current model (the “hypothesis”), hoping,
but never knowing for sure, that it is closer to the “correct” one.

A fundamental change in machine learning was the recognition of its nature
as a search problem (Mitchell, 1982). Given a set of data and some language(s)
for describing the data and the target knowledge, learning consists in the explo-
ration of a hypothesis space, guided by a heuristic, until a specified termination
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2 Introduction

condition is met; as the search space is usually too large to be explored exhaus-
tively, the learner must have a criterion to evaluate and compare hypotheses. In
order to facilitate the search the hypothesis space is usually internally structured
according to a generality relation.

Just as learning is a fundamental task in any living organism, machine learn-
ing is a fundamental task in artificial intelligence as well. It is impossible to
conceive a truly intelligent agent that is not provided with the ability to extend
its knowledge and improve its performance over time.

Appealing as it may be, machine learning encounters severe difficulties,
which even today hinder its full exploitation. The main obstacle to be overcome

Computational is that most machine learning algorithms are very demanding in terms of compu-
complexity - tational resources, especially those that are closer to the human process of learn-
of learning ing. This concept of computational complexity in learning is the core around

which this book is constructed.

For hundreds of years the abstract nature of mathematical truths required
advances through proving theorems. Existence or constructive proofs were con-
cerned with the logical soundness of the derived results, without any atten-
tion to their concrete attainability. The same was true for algorithms: the only
relevant aspect was their correctness, not their practical execution. Mathematical
knowledge appeared to scientists as only limited by human skill in discovering
or inventing it.

With the advent of information science, things changed radically. In fact,

Gédel’s logician Kurt Godel’s work provided clear evidence that the discovery of some
incompleteness mathematical truths may be intrinsically limited (Godel, 1931). In fact, with his
theorem ¢y mous incompleteness theorem he proved that Hilbert’s belief in the existence
of an effective procedure determining the truth or falsity of any mathematical
proposition was illfounded: thus the notion of undecidability was born. In order
to understand this fundamental notion better we have to be more precise about
the concept of an algorithm. The word “algorithm” derives from the name of
the Persian mathematician Abu Abdullah Muhammad ibn Musa al-Khwarizmi,
whose work introduced Arabic numerals and algebraic concepts to the western
world. He worked in Baghdad in the ninth century, when the city was a centre
of scientific studies. The ancient word algorism originally referred only to the
rules of performing arithmetic using Arabic numerals but evolved via the Latin
translation of al-Khwarizmi’s name into algorithm by the 18th century. In its
Algorithm more intuitive formulation, an algorithm is a precise and unambiguous sequence
of steps that, given a problem to be solved and some input data, provides the

solution thereof.!

! Actually, one may clarify the difference between procedures and algorithms by reserving the
latter name for procedures that terminate. As we are concerned only with the halting case, we will
use the two terms interchangeably.
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Introduction 3

In general, a particular problem to be solved is a specific instance of a class of
problems. For example, the problem of sorting in ascending order the elements
of a vector X of n integer numbers belongs to a class II of similar problems
containing all such vectors, each with a different length n and different content. Decidability
The notion of decidability refers to the class of problems as a whole, not to a
single instance. More precisely, given a class of problems II, we will say that the
class is decidable if there exists an algorithm that, given as an input any instance
of the problem class, provides a solution. Then, undecidability does not prevent
any single instance from being solved but, rather, it limits the generality of the
algorithm for finding the solution in any instance. In other words, for a decidable
class a single algorithm is able to solve any instance of the class whereas for an
undecidable class every problem instance must be solved with, in principle, a
different algorithm.?

In order to prove that a problem class is undecidable one has to show that
no unique algorithm solves all its instances. This is usually done by reducing
the problem (class) to a known undecidable problem. A basic undecidable prob-
lem is the halting problem, proved undecidable by Alan Turing in 1936 (Turing,
1936). The halting problem consists of writing a general algorithm that, taking Halting problem
as input any algorithm .4 and some input data, outputs YES or NO, depending
on whether A halts or continues ad infinitum. Clearly, given a specific algorithm
it is usually possible, with more or less ease, to decide whether it will stop for
any specific input. However, there is no general algorithm that is able to provide
this decision for any input algorithm.

Even though undecidability may be interesting from a philosophical point of
view, in that it might be considered as a limiting factor to human knowledge,
this notion is not a subject of this book, in which we are concerned only with
decidable problem classes.

But, even limiting the study to decidable problems, difficulties of another na-
ture come up. These difficulties have been again brought to our attention in recent
times by computer science, which stresses a concept that was not previously con- Efficient algorithms
sidered important in mathematics. As already mentioned, mathematical results
are achieved by proving theorems or by designing abstract algorithms to solve
problems. In computer science this is not sufficient: the algorithm for solving a
problem must be efficient, i.e., it must run on a computer in reasonable time. In
order to define what “reasonable” time means, the concept of the computational
complexity of an algorithm must be introduced.

Given an algorithm A, working on some data, its computational complexity
is related to its run time. However, the run time depends on the programming
language used to implement the algorithm and on the specific machine on which

%In the following we will use, for the sake of simplicity and where no ambiguity may arise, the
terms “class of problems” and “problem” interchangeably.
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4 Introduction

the program is run. In order to make its definition more precise, and indepen-
dent of the specific implementation, the complexity is evaluated in terms of the
number of elementary steps performed by the algorithm and not in terms of the
time it takes to execute them. But, even so, there are uncertainties about what has
to be considered an elementary “step” in an algorithm, because this depends on
the granularity of the observation. To overcome this difficulty an ideal, abstract,
computer model is used, for which the notion of a “step” is precisely defined.
Turing machine There is more than one “ideal” computer, but one of the simplest and best
known is the Turing machine, an abstract computational device introduced by
Alan Turing in the late 1930s (Turing, 1936), long before the first actual com-
puter was built. The simplest version of the Turing machine consists of a tape,
a read—write head, and a control unit. The tape, infinite in both directions, is
divided into squares which contain a “blank” symbol and at least one other sym-
bol belonging to an alphabet 3. A square numbered O separates the left and right
parts of the tape. The head can read or write these symbols onto the tape. The
control unit of the machine specifies a finite set of states in which the machine
can be; at any point in time a Turing machine is in exactly one of these states.
The control unit can be thought of as a finite state automaton. This automaton
encodes the “program”. The computation proceeds in steps: at each step the head
reads the content of the square in which it is positioned and, according to this
content and the current state of the automaton, it writes another symbol on the
same square and then moves one square to the left or to the right. At the be-
ginning the input data are written on the right-hand part of the tape, starting at
position 0, and the rest of the tape is filled with “blanks”. When the computation
is over the machine stops, and the output can be read on the tape.
Notwithstanding the simplicity of its mechanism, the Turing machine is be-
lieved to be able to compute any computable algorithm that one can conceive.
This assertion was hypothesized by Alonzo Church (1936) through the definition
of the \-calculus and the introduction of the notion of effective calculability: a
function is said to be effectively calculable if its values can be found by some
purely mechanical process. Later, Turing showed that his computation model
(the Turing machine) and the A-calculus are equivalent, so the assertion is now
Church—Turing known as Church—Turing thesis. This thesis is almost universally accepted now,
thesis even though the extent of its applicability is still a subject of debate.
Implementing an algorithm on a Turing machine allows the notion of com-
putational complexity to be precisely defined. A “step” in an algorithm is a cycle
<read a symbol, write a symbol, move the head> and the execution of any pro-
gram is a sequence of such steps. Given a (decidable) class II of problems, let 7
be the particular Turing machine used to find the solution. If we take an instance
7 belonging to II, let C(Z) be the exact number of steps 7 uses to solve Z.
Clearly, however, C7(Z) is too detailed a measure, impossible to evaluate before
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Introduction 5

the program is executed. Thus we need a less detailed measure; to this end let n

be an integer characterizing the size of the problem at hand. For instance, coming

back to the sorting problem, n can be the length of the vector to be sorted. We

can partition the class II into subclasses 11,,, each containing only instances Z,,

of length n. Even so, running the algorithm on the Z,, requires different num-

bers of steps, depending on the specific instance. As we want a safe measure of

complexity, we take the pessimistic approach of attributing to the subclass II,, Formal definition

the highest complexity found in the Z,,, i.e., the complexity of the worst case. ©f computational

Formally, we define the complexity as complexity
Cr(n) = Max {C1(Z,)}.

As it can be proved that the complexity Cr(n) is independent of the abstract

Turing machine used and that it is the same for any concrete computer, we will

drop the subscript 7 from the complexity and simply write

Cr(n) =C(n).

The complexity C(n) defined above is called the fime complexity, because it
refers to the time resource consumption of the algorithm. In a similar way, the
space complexity can be defined as the maximum amount of memory simultane-
ously occupied during the program’s run. In this book, the word “complexity”
will always refer to the time complexity unless otherwise specified.

The introduction of the subclasses I1,, is fundamental because the very goal
of computational complexity theory is to estimate how the time complexity of
an algorithm scales up with increasing n. In order to better understand this idea,
let us consider two functions f and g from the integers to the integers:

f: Nt = NT, g: N" = NT,

What we are interested in is the relative order of magnitude of the two functions
rather than their actual values. So, let us consider the ratio of f(n) and g(n).
There are three cases:

(n)

lim —= = o¢; (1.1)
n—oo g(n)
lim M =a #0,00; (1.2)
5 g(n)
lim M = 0. (1.3)
5 g(n)

In the first case f(n) is of an order of magnitude greater than g(n); in the second
case it is of the same order; and in the third case it is of a lower order of magni-
tude. Introducing the O (“big O”) notation, we will say that f(n) = O(g(n)) in
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6 Introduction

the second and third cases, namely:

fn)=0(g(n)) < lim Jn) = a # 0. (1.4)
n—o0 g(n)

From definition (1.4) we deduce that in f(n) and g(n) all terms of lower orders
of magnitude can be omitted, as well as multiplicative constants. It is worth not-
O notation ing explicitly that the O notation tells us only that f(n) is of order of magnitude
not greater than that of g(n), not that f(n) and g(n) have the same order in
the mathematical sense. If f(n) and g(n) have exactly the same order of magni-
tude (case (1.2)), we will say that f(n) = ©(g(n)). If f(n) has order of magni-

tude strictly greater than g(n), we will write f(n) = Q(g(n)).

—— EXAMPLE

We give here some examples of the O notation:
f(n) = 50n* +20n + 3 = O(n?)
f(n) = n® +30n* + 100 = O(n?)
f(n) = 3" +100° = O(3")

Given two functions f(n) and g(n), we can provide a formal definition of
f(n) = O(g(n)) as follows:

fn)=0(g(n)) < TngIc[Vn>ng: f(n)<cg(n), (1.5)

where c is a positive constant and ny is a positive integer. Definition (1.5) tells
that what happens for low values of n (i.e., lower than ng) is not important;
on the contrary, only the asymptotic behavior of f(n) is relevant. A graphical
illustration of definition (1.5) is given in Figure 1.1. We are now in a position
to define precisely what a reasonable complexity is. An algorithm A will be
said to be efficient if it runs with a complexity that is at most polynomial in the

Polynomial size n of the input. Actually, many problems that are relevant in practice show a

complexity much more rapid (exponential) increase in the time required to obtain a solution,
when the size of the problem increases; such problems cannot be solved within
acceptable time spans.

In computer science the study of the computational complexity of algorithms
takes a central place; since its beginnings, scientists have studied problems from
the complexity point of view, categorizing their behavior into a well-known
complexity class hierarchy. According to the needs of this book we show, in
Figure 1.2, an oversimplified version of this hierarchy, including only three types
of problem: P, NP, and NP-complete. The class P contains problems that can
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Introduction 7

f(n), g(n)

Figure 1.1 Graphical illustration of the O notation. If f(n) = O(g(h)) then
after a given threshold n, the function f(n) must be smaller than cg(n), where
c is a positive constant. What happens for n < ng does not matter.

NP-complete

Figure 1.2 Simplified version of the complexity class hierarchy. The class NP
includes both the class P and the class of NP-complete problems.

be solved in polynomial time by a Turing machine like the one described above,
i.e., a deterministic Turing machine. In order to define the class NP the behav-
ior of a deterministic Turing machine must be extended with a nondeterminis-
tic phase, to be executed at the beginning, thus becoming a non-deterministic
Turing machine. In the non-deterministic phase, a potential solution is gener-
ated; this is then verified by the subsequent deterministic phase. The NP class
contains those problems that can be solved in polynomial time by such a non-
deterministic machine. Whereas the deterministic Turing machine captures the
notion of the polynomial solvability of a problem class, the non-deterministic
Turing machine captures the notion of the polynomial verifiability of a problem
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8 Introduction

class. In other words, if one is able to suggest a potential solution to a problem,
the non-deterministic Turing machine can verify in polynomial time whether it
is indeed a solution. It should be clear from the definition that P is a subclass of
NP: polynomial solvability implies polynomial verifiability.
Today, the question whether P = NP is still an important open problem
in computer science. On the one hand it has not been possible to prove that
P = NP and on the other hand no polynomial algorithm has been found for
P = NP? many problems in NP, notwithstanding the amount of effort devoted to the task.
Thus, the general opinion is that P % NNP. This opinion is strongly supported
by the existence of the subclass NP-complete. This subclass contains (a large
number of) problems that share the following property: each problem in NP (in-
cluding P) can be reduced in polynomial time to any problem in NP-complete;
as a consequence, it would be sufficient to solve in polynomial time just one
problem in NP-complete to prove that P = INP. Given the amount of work al-
ready devoted to this task, it seems highly unlikely that this will turn out to be
the case. In this book we will assume as an underlying hypothesis that P # NP.
Combinatorial A class of problems that are particularly prone to a dramatic increase in com-
problems pytational complexity with increasing problem size is the class of combinatorial
problems, many among which are NP-complete. Informally, a combinatorial
problem is one that requires combinations of objects belonging to a set to be
explored, with the goal of deciding whether a specified property holds true or of
finding some optimal combination according to a specified criterion. Combinato-
rial problems are well represented in artificial intelligence, operational research,
complex system analysis, and optimization and search. Among the large variety
of existing combinatorial problems, two have received a great deal of attention,
namely the satisfiability (SAT) problem (Cook, 1971) and the constraint satis-
faction problem (CSP) (see for instance Kumar, 1992). In Chapters 3 and 4 these
two problems will be introduced and described in detail, because they are inti-
mately related to machine learning and to the sources of its complexity.
Reconsidering the definition of computational complexity provided earlier,
it is not necessarily a good idea to take the worst-case complexity as that rep-
Typical complexity resentative of an algorithm A. In fact, .4 might be able to provide a solution
in reasonable time for the majority of the instances in II,,, running for a very
long time in only a few particular instances; this is the case, for example, for the
branch-and-bound optimization algorithm (Lawler and Wood, 1966). For this
reason a new paradigm has emerged, which uses the fypical running behavior of
an algorithm instead of its worst case. The notion of the typical complexity has
a precise meaning. Namely, it requires two conditions:

o The typical complexity is the most probable complexity over the class of
problem instances considered.
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e As each problem instance has its own run time, there is a difference in
complexity between that for the specific instance and the most probable
complexity. When the size of the considered instances grows to infinity,
the difference between their complexity and the most probable complexity
must go to 0 with probability 1.

This new perspective on the complexity of algorithms was suggested by
the discovery of interesting and fruitful links (previously unsuspected) between
combinatorial problems and systems obeying the laws of statistical physics. It
turns out that combinatorial problems share several characteristics with physical
systems composed of a large number of particles and that a precise parallel can
be established between such physical entities on the one hand and combinatorial
functions to be optimized on the other hand.

Among the many parallels that can be drawn from the link between such Phase transitions
many-body physical systems and computational systems, one aspect is particu-
larly relevant for this book, namely, the emergence of a phase transition (see for
instance Hogg, 1996). Some physical systems composed of a large number of
particles may exist in different phases. A phase is a homogeneous (with respect
to some specified physical quantity) state of the system. A well-known case in
everyday life is water, which can exist in solid, liquid, and gaseous phases. The
phase that water is in depends on the values of the macroscopic variables describ-
ing the physical state, for instance, the temperature and pressure. In Figure 1.3 a
qualitative schema of the phases in which water may exist is shown. In a phase
transition we distinguish between the order and control parameters: an order
parameter is a quantity that shows a marked difference in behavior across the
transition line whereas a control parameter is one that determines the location
of the transition. In the case of water, a possible order parameter is the density Order and control
whereas a possible control parameter is the temperature. The order and control parameters
parameters characterize the phase transition.

According to Ehrenfest’s classification, there are two types of phase transi- Types of phase
tion, namely first-order and second-order. A precise definition of these types will transitions
be given in Chapter 2. We just mention, here, that we are interested in first-order
phase transitions; in this type of transition, in addition to the discontinuity in the
order parameters, there is usually another quantity that goes to infinity when the
size of the system tends to infinity as well. Moreover, at the transition point
the two phases coexist. In the case of water, for example, the specific heat di-
verges at the transition between liquid and vapor, because heat is being supplied
to the system but the temperature remains constant.

In computational problems the order parameters are usually quantities that
characterize aspects of the algorithm’s behavior (for instance, the probability
that a solution exists) and the control parameters describe the internal structure
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Figure 1.3 Qualitative diagrams of the phases in which water can exist. The
temperature 1" and pressure P are the control parameters of the transition be-
tween phases. Along the separation lines two of the phases coexist. At the triple
point C' all three phases are present. Beyond the critical point A the water is said
to be in a supercritical fluid state. In this state the molecules are too energetic and
too close to each other for a clear transition between liquid and vapor to exist.

of the problem, whereas the quantity that diverges at a “phase transition” is the
computational complexity of the algorithm.

There are various motivations for studying the emergence of phase transi-
tions. First, their emergence seems to be an ubiquitous phenomenon in many-
body systems, capturing some essential properties of their nature. They occur not
only in physical and computational systems but also in human perception and so-
cial sciences, as will be described later in this book. Second, systems that show a
phase transition exhibit, at the transition point, interesting singularities in behav-
ior called “critical phenomena”, which elucidate their real essence, in a way not
evident by other means. Third, phase transitions are interesting in themselves, as
they explain ensemble or macroscopic behaviors in terms of short-range micro-
scopic interactions.

For computational systems the discovery of a phase transition in a problem
class has several important consequences. The phase transition region contains
the most difficult problem instances, those for which the computational com-
plexity shows an exponential increase with the problem size. Also, the phase
transition can be used as a source of “difficult” test problems for assessing the
properties and the power of algorithms and for comparing them in meaning-
ful problem instances. Moreover, very small variations in the control parameter
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