Introduction to Nanophotonics

Nanophotonics is where photonics merges with nanoscience and nanotechnology, and where spatial confinement considerably modifies light propagation and light-matter interaction. Describing the basic phenomena, principles, experimental advances and potential impact of nanophotonics, this graduate-level textbook is ideal for students in physics, optical and electronic engineering and materials science.

The textbook highlights practical issues, material properties and device feasibility, and includes the basic optical properties of metals, semiconductors and dielectrics. Mathematics is kept to a minimum and theoretical issues are reduced to a conceptual level. Each chapter ends in problems so readers can monitor their understanding of the material presented.

The introductory quantum theory of solids and size effects in semiconductors is considered to give a parallel discussion of wave optics and wave mechanics of nanostructures. The physical and historical interplay of wave optics and quantum mechanics is traced. Nanoplasmonics, an essential part of modern photonics, is also included.

Sergey V. Gaponenko is Head of the Laboratory for Nano-optics at the Stepanov Institute of Physics, National Academy of Sciences of Belarus. He is also Chairman of the Association of Lasers and Optics and Vice-president of the Laser Association.

Introduction to Nanophotonics

Sergey V. Gaponenko

National Academy of Sciences, Belarus

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521763752

© S. Gaponenko 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-76375-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

© in this web service Cambridge University Press

To Olga

Contents

Preface	<i>page</i> xiii
Notations and acronyms	XV
1 Introduction	1
1.1 Light and matter on a nanometer scale	1
1.2 What is nanophotonics?	2
1.3 Where are the photons in nanophotonics and in this book?	3
References	4
Part I Electrons and electromagnetic waves	
in nanostructures	
2 Basic properties of electromagnetic waves and quantum particles	9
2.1 Wavelengths and dispersion laws	9
2.2 Density of states	13
2.3 Maxwell and Helmholtz equations	16
2.4 Phase space, density of states and uncertainty relation	18
2.5 Wave function and the Schrödinger equation	20
2.6 Quantum particle in complex potentials	22
Problems	32
References	34
3 Wave optics versus wave mechanics I	35
3.1 Isomorphism of the Schrödinger and Helmholtz equations	35
3.2 Propagation over wells and barriers	37
3.3 Dielectric function of free electron gas and optical properties of metals	51
3.4 Propagation through a potential barrier: evanescent waves and tunneling	54
3.5 Resonant tunneling in quantum mechanics and in optics	65
3.6 Multiple wells and barriers: spectral splitting	70
3.7 Historical comments	73
Problems	76
References	77
4 Electrons in periodic structures and quantum confinement effects	79
4.1 Bloch waves	79
4.2 Reciprocal space and Brillouin zones	84

	Contents	
4.3	Electron band structure in solids	86
4.4	Quasiparticles: holes, excitons, polaritons	89
4.5	Defect states and Anderson localization	93
4.6	Quantum confinement effects in solids	97
4.7	Density of states for different dimensionalities	99
4.8	Quantum wells, quantum wires and quantum dots	100
Pro	blems	107
Ref	erences	107
5 Sen	niconductor nanocrystals (quantum dots)	110
5.1	From atom to crystal	110
5.2	Particle-in-a-box theory of electron-hole states	112
5.3	Quantum chemical theory	118
5.4	Synthesis of nanocrystals	120
5.5	Absorption spectra, electron-hole pair states and many-body effects	125
5.6	Luminescence	130
5.7	Probing the zero-dimensional density of states	133
5.8	Quantum dot matter	133
5.9	Applications: nonlinear optics	139
5.10	Applications: quantum dot lasers	142
5.11	Applications: novel luminophores and fluorescent labels	148
5.12	2 Applications: electro-optical properties	155
Pro	blems	157
Ref	erences	158
6 Nar	oplasmonics I: metal nanoparticles	166
6.1	Optical response of metals	166
6.2	Plasmons	174
6.3	Optical properties of metal nanoparticles	179
6.4	Size-dependent absorption and scattering	187
6.5	Coupled nanoparticles	191
6.6	Metal-dielectric core-shell nanoparticles	192
Pro	blems	195
Ref	erences	196
7 Ligl	nt in periodic structures: photonic crystals	199
7.1	The photonic crystal concept	199
7.2 7.3	Bloch waves and band structure in one-dimensionally periodic structures Multilayer slabs in three dimensions: band structure and omnidirectional	200
	reflection	207
		210
7.4	Band gaps and band structures in two-dimensional lattices	210
7.4 7.5	Band gaps and band structures in two-dimensional lattices Band gaps and band structure in three-dimensional lattices	210
7.4 7.5 7.6	Band gaps and band structures in two-dimensional lattices Band gaps and band structure in three-dimensional lattices Multiple scattering theory of periodic structures	210 213 215

	Contents	
	Periodic structures in Nature	217
7.9	Experimental methods of fabrication	218
7.1	0 Properties of photonic crystal slabs	225
7.1	1 The speed of light in photonic crystals	232
7.1	2 Nonlinear optics of photonic crystals	236
Pro	oblems	239
Re	ferences	240
8 Lig	ht in non-periodic structures	246
8.1	The 1/L transmission law: an optical analog to Ohm's law	246
8.2	Coherent backscattering	251
8.3	Towards the Anderson localization of light	253
8.4	Light in fractal structures	258
8.5	Light in quasiperiodic structures: Fibonacci and Penrose structures	270
8.6	Surface states in optics: analog to quantum Tamm states	278
8.7	General constraints on wave propagation in multilayer structures:	
	transmission bands, phase time, density of modes and energy localization	280
8.8	Applications of turbid structures: Christiansen's filters and	
	Letokhov's lasers	289
Pro	oblems	290
Re	ferences	291
9 Ph	otonic circuitry	295
9.1	Microcavities and microlasers	295
9.2	Guiding light through photonic crystals	298
9.3	Holey fibers	303
9.4	Whispering gallery modes: photonic dots, photonic	
	molecules and chains	305
9.5	Propagation of waves and number coding/recognition	309
9.6	Outlook: current and future trends	311
Pro	oblems	312
Re	ferences	313
10 Tu	nneling of light	317
10	1 Tunneling of light: getting through the looking glass	317
10	2 Light at the end of a tunnel: problem of superluminal propagation	320
10	3 Scanning near-field optical microscopy	330
Pro	oblems	334
Re	ferences	334
11 Na	noplasmonics II: metal-dielectric nanostructures	336
11 Na 11	noplasmonics II: metal-dielectric nanostructures 1 Local electromagnetic fields near metal nanoparticles	336 336
11 Na 11 11	 noplasmonics II: metal-dielectric nanostructures 1 Local electromagnetic fields near metal nanoparticles 2 Optical response of a metal-dielectric composite beyond 	336 336

x		Contents	
	11.3	Extraordinary transparency of perforated metal films	344
	11.5	Metal-dielectric photonic crystals	346
	11.4	Nonlinear ontics with surface plasmons	348
	11.6	Metal nanonarticles in a medium with ontical gain	350
	11.7	Metamaterials with negative refractive index	353
	11.8	Plasmonic sensors	361
	11.9	The outlook	363
	Proble	ems	363
	Refere	ences	364
	12 Wave	optics versus wave mechanics II	368
	12.1	Transfer of concepts and ideas from quantum theory of	
		solids to nanophotonics	368
	12.2	Why quantum physics is ahead	370
	12.3	Optical lessons of quantum intuition	370
	Proble	ems	372
	Refere	ences	373
		Part II Light–matter interaction in nanostructures	
	13 Light	 matter interaction: introductory quantum electrodynamics 	377
	13.1	Photons	377
	13.2	Wave-particle duality in optics	381
	13.3	Electromagnetic vacuum	382
	13.4	The Casimir effect	384
	13.5	Probability of emission of photons by a quantum system	385
	13.6	Does "Fermi's golden rule" help to understand	
		spontaneous emission?	389
	13.7	Spontaneous scattering of photons	390
	Proble	ems	392
	Refere	ences	392
	14 Densi	ity of states effects on optical processes in mesoscopic structures	395
	14.1	The Purcell effect	396
	14.2	An emitter near a planar mirror	400
	14.3	Spontaneous emission in a photonic crystal	401
	14.4	Thin layers, interfaces and stratified dielectrics	404
	14.5	Possible subnatural atomic linewidths in plasma	407
	14.6	Barnett–Loudon sum rule	408
	14.7	Local density of states: operational definition and conservation law	410
	14.8	A few hints towards understanding local density of states	411
	14.9	Thermal radiation in mesoscopic structures	413
	14.10	Density of states effects on the Raman scattering of light	415

xi	Contents		
	14.11 Directional emission and scattering of light defined by partial		
	density of states	416	
	Problems	419	
	References	419	
	15 Light–matter states beyond perturbational approach	424	
	15.1 Cavity quantum electrodynamics in the strong coupling regime	424	
	15.2 Single-atom maser and laser	428	
	15.3 Light-matter states in a photonic band gap medium	429	
	15.4 Single photon sources	431	
	Problems	433	
	References	433	
	16 Plasmonic enhancement of secondary radiation	436	
	16.1 Classification of secondary radiation	436	
	16.2 How emission and scattering of light can be enhanced	437	
	16.3 Local density of states in plasmonic nanostructures	439	
	16.4 "Hot spots" in plasmonic nanostructures	441	
	16.5 Raman scattering enhancement in metal-dielectric nanostructures	444	
	16.6 Luminescence enhancement in metal-dielectric nanostructures	447	
	Problems	452	
	References	452	
	Author index	455	
	Subject index	458	

Preface

It is an extraordinary paradox of Nature that, being seemingly the only creatures capable of understanding its harmony, we naively attempt to chase its very essence through our daily experience based on mass-point mechanics and ray optics, while its elusive structure is mainly contained in wave phenomena. It may be nanophotonics where many pathways happily merge that promises not only mental satisfaction in our scientific quest but also an extra bonus in the form of new technologies and devices.

In this book I have tried to give a consistent description of the basic physical phenomena, principles, experimental advances and potential impact of light propagation, emission, absorption, and scattering in complex nanostructures. Introductory quantum theory of solids and quantum confinement effects are considered to give a parallel discussion of wave optics and wave mechanics of complex structures as well as to outline the beneficial result of combined electron wave and light wave confinements in a single device. Properties of metal nanostructures with unprecedented capability to concentrate light and enhance its emission and scattering are discussed in detail.

Keeping mathematics to a reasonable minimum and reducing theoretical issues to a conceptual level, the book is aimed at assisting diploma and senior students in physics, optical and electronic engineering and material science. The contents include a vast diversity of phenomena from guiding and localization of light in complex dielectrics to single molecule detection by surface enhanced spectroscopy. The physical and historical interplay of wave optics and quantum mechanics is traced whenever possible to highlight the internal concordance inherent in physics and nature. Nanophotonics is presented as an open field of science and technology which has been conceived as an organic junction of quantum mechanics, quantum electrodynamics, optical physics, material science and engineering to offer an impressive impact on information and communication technology.

The book is principally based upon scientific experience the author gained while working at the Institute of Molecular and Atomic Physics in Minsk, Belarus, in the decade from 1997 to 2007. I am indebted to many colleagues from this institute for the creative atmosphere and high research grade. I gratefully acknowledge the fruitful cooperation and ongoing discussions with many colleagues in Belarus, Russia and other countries with special thanks to the European network of excellence "PHOREMOST" (Nanophotonics to realize molecular scale technologies) which has been organized and successfully driven for several years by Clivia Sotomayor Torres within the 6th Framework Programme of the European Union. Many of my PhD students have made their theses in nanophotonics and their results have been included in this book. I would specially acknowledge that Chapter 3 has been seriously influenced by cooperation with Sergey Zhukovsky and Chapter 16 has been written

xiv

Preface

based on continuous discussions with Dmitry Guzatov. I am grateful to these colleagues as well as to Dmitry Mogilevtsev, Maxim Ermolenko, Andrey Lutich, Maxim Gaponenko, and Andrey Nemilentsau for reading selected chapters and critical comments on their style and content. My colleague and friend Andrey Lavrinenko made a strong influence on my understanding of wave phenomena in complex structures and kindly provided the cover image for this book based on his calculations of light propagation in a photonic crystal with guiding defects. Great efforts by Tamara Chystaya for arranging the compuscript of the book are deeply appreciated.

This book would never have been accomplished without fruitful cooperation with Cambridge University Press, mainly with John Fowler, Lindsay Barnes and Caroline Brown. I am also indebted to the referees for encouraging comments and helpful advice in the early stages of this book project.

> S. V. Gaponenko Minsk, 2009

Notations and acronyms

A	amplitude
а	length, radius, width
a^0	$= 5.292 \dots \cdot 10^{-11}$ m, atomic length unit
a _B	Bohr radius of a hydrogen atom, $a_{\rm B} \approx a^0$ holds
$a_{ m B}^*$	Bohr radius of an exciton
a	acceleration
ai	elementary translation vectors
a_{L}	crystal lattice constant
b _i	elementary translation vectors in reciprocal space
b_i	reciprocal lattice constants
B	magnetic induction vector
С	cross-section
$C_{\rm abs}$	absorption cross-section
C_{ext}	extinction cross-section
$C_{\rm scat}$	scattering cross-section
С	$= 299792458 \mathrm{ms}^{-1}$, speed of light in vacuum
D	density of modes, density of states
D	diffusion coefficient
D	electric displacement vector
d	thickness
d	dimensionality
е	= $1.6021892 \cdot 10^{-19}$ C, elementary electric charge
Ε	a particle energy
Ec	energy at the bottom of the conduction band
$E_{\rm F}$	Fermi energy
Eg	band gap energy
$E_{\rm v}$	energy at the top of the valence band
Е, Е	electric field vector, amplitude
F	distribution function
F	force
f	volume fraction
G	generator of a fractal structure
Н	magnetic field vector, Hamiltonian operator
h	$= 6.626069 \cdot 10^{-34} \text{ J} \cdot \text{s}$, Planck constant
ħ	$=h/2\pi$
Ι	intensity

xvi	Notations and acronyms		
	J	electric current density	
	k	wave number	
	k, K	wave vector	
	k _R	$= 1.380662 \cdot 10^{-23}$ J/K, Boltzman constant	
	ℓ	mean free path	
	L	angular momentum	
	L	length	
	т	mass	
	m_0	$= 9.109534 \dots \cdot 10^{-31}$ kg, an electron's rest mass	
	m^*	effective mass	
	М	exciton mass	
	Μ	magnetic polarization vector	
	n	the principal quantum number	
	п	refractive index	
	n_1	real part of refractive index	
	n_2	imaginary part of refractive index	
	p, p	momentum	
	P	electric polarization vector	
	0	efficiency factor	
	\tilde{R}	reflection coefficient for intensity	
	R, r	radius	
	r	reflection coefficient for amplitude	
	r	radius vector	
	Ry	\approx 13.60 eV, Rydberg constant, Rydberg energy	
	Ry*	exciton Rydberg energy	
	S	Poynting vector	
	t	transmission coefficient for amplitude	
	t	time	
	Т	period of oscillations	
	Т	temperature	
	Т	transmission coefficient for intensity	
	Т	translation vector	
	U, u	potential energy	
	v, \mathbf{v}	velocity	
	v_{g}, \mathbf{v}_{g}	group velocity	
	V	volume	
	W	light energy	
	Wabs	light energy absorption rate	
	W _{ext}	light energy extinction rate	
	W _{scat}	light energy scattering rate	
	$W(\mathbf{r})$	spontaneous emission rate at point r	
	W_0	spontaneous emission rate in vacuum	
	Y_{lm}	spherical Bessel functions	
	x. v. z	Cartesian coordinates	

xvii		Notations and acronyms		
	α	polarizability		
	α α	absorption coefficient		
	и _{аbs} Г	scattering rate		
	r r	relative dielectric permittivity		
	e Eo	$-$ 8 8541878 \cdot 10 ⁻¹² F/m dielectric constant (the dielectric		
	20	nermittivity of a vacuum)		
	V	evanescence narameter		
	λ	wavelength		
	<i>х</i>	relative magnetic permeability		
	μ	dipole moment, chemical notential		
	μ.	$-1.256637 \cdot 10^{-6}$ H/m magnetic permeability of vacuum		
	μ_0	electron hole reduced effective mass		
	$\mu_{\rm eh}$	frequency		
	0	electric charge density		
	ρ	material registivity ner unit area and unit length		
	ρ	and unit length		
	0			
	t A	decay constant, scattering time, phase time		
	Ψ	potential		
	φ	phase		
	Xnl			
	X	susceptionity		
	Ψ	time-dependent wave function		
	ψ	time-independent wave function		
	ω	circular irequency		
	$\omega_{ m p}$	plasma circular frequency		
	AAAS	American Association for the Advancement of Science		
	AIP	American Institute of Physics		
	bcc	body-centered cubic (lattice)		
	CCD	charge coupled device		
	CD	compact disk		
	CIE	Comission Internationale de l'Eclairage (International Commission		
		for Illumination)		
	CMOS	complementary metal-oxide-semiconductor (notation for modern		
		microelectronics technology platform)		
	CNDO/S	complete neglect of differential orbital, spectroscopic version (a quantum		
		chemical technique)		
	cw	continuous wave		
	DOS	density of states		
	EM	electromagnetic		
	fcc	face-centered cubic (lattice)		
	FTIR	frustrated total internal reflection		
	IR	infrared		
	LED	light emitting diode		

xviii	Notations and acronyms	
LDOS	local density of states	
MBE	molecular beam epitaxy	
MOCV	D metal-organic chemical vapor deposition	
MOVP	E metal-organic vapor phase epitaxy	
NA	numerical aperture	
RBG	red-blue-green	
SEF	surface enhanced fluorescence	
SEM	scanning electron microscopy	
SERS	surface enhanced Raman scattering	
SNOM	scanning near field optical microscope	
SOI	silicon on insulator	
SPP	surface plasmon polariton	
TE	transverse electric (mode)	
TEM	transmission electron microscopy	
TIR	total internal reflection	
TM	transverse magnetic (mode)	
UV	ultraviolet	