Index

abscess case study, 146–7
accessibility issues
mobile mammography, 86
workplace mammography, 86
active matrix liquid crystal display (AMLCD) technology, 28
alternative forced choice (AFC) methodology, 4–5
ambient light, 59
ambient temperature, mobile units, 91–2
amorphous selenium (a-Se) detectors, 8, 20
amorphous silicon (a-Si) detectors, 7, 20
application service provider (ASP), 36–7
architectural distortion, 110, 117
case studies, 155–6, 166–7
archiving, 37. See also picture archiving and communication systems (PACS)
case study, 41–5
data compression, 37–8
influencing factors, 37
growth and new technology, 37
image size, 37
processed vs. raw images, 37
system evaluation and assessment, 39–41
availability, 39
data migration, 41
data security, 40
fault tolerance, 39
integration, 40
performance, 41
scalability, 39
system management, 40–1
artifacts, 71
breast CT, 130
detector-related, 71–5
banding artifacts, 72–4
ghosting artifacts, 74–5
misread lines, 72
multiple dead detector elements, 72
single dead detector elements, 71–2
gantry-related, 75
foreign material on the compression paddle, 73–6
grid artifacts, 76
improper collimation, 77–8
patient-related, 78–81
foreign substances on skin, 80–1
patient motion, 78–9
unwanted anatomy, 79
processing-related, 81–4
gain and offset calibration artifacts, 83–4
pixel reversal artifacts, 82–3
shading artifacts, 82
skin line processing algorithm failure, 81
storage-related, 84
atypical ductal hyperplasia (ADH)
stereotactic biopsy, 96
Audit Trail and Node Authentication (ATNA), 40
authentication, 40
authorization, 40
backing up data, 37
offsite backups, 36–7
banding artifacts, 72–4
bandwidth, 34
biopsy. See stereotactic biopsy
bit, 18
bloom artifact case study, 186
Boise mobile mammography case study, Idaho, 88–94
computed radiography (CR) digital mammography advantages and disadvantages, 91
conversion to FFDM unit, 90–1
cost analysis, 94
film-screen unit initiation, 90
initial quality assurance, 90
operational details, 93–4
problems with digital machines in mobile units, 91–3
breast abscess case study, 146–7
breast cancer mortality trends, 85
breast compression, 112
digital breast tomosynthesis, 112–13
breast computed tomography (breast CT)
background, 125
contrast use, 140–1
correlation with other modalities, 133–40
mammography, 133–40
PET/CT, 140
tomosynthesis, 140
detector, 127–8
future improvements, 141–2
dose reduction, 142
improved resolution, 142
gantry and table, 127
general design, 125–7
image quality, 128–30
contrast, 128
noise level, 129–30
signal accuracy and artifacts, 130
spatial resolution, 128–9
microcalcification detection, 125, 128, 131–6
radiation therapy planning, 141
tissue structures, 130–1
x-ray source, 127
x-ray techniques and doses, 133
byte, 18
calcifications, 134, 136
bloom artifact, 186
case studies, 148–50, 154–7, 159, 162, 175, 177, 185, 186
digital breast tomosynthesis and, 120–1
fibroadenoma, 159, 185
fibrocystic, 154–5
linear, 175
microcalcification detection, 68
breast CT, 125, 128, 131–6
specimen radiography, 104
needle localization, 100
pleomorphic, 98, 110, 137
pseudocalcifications, 162–3
residual capsule following implant removal, 175
secretory, 156–7
skin, 177
stereotactic biopsy, 99
callback rate, 64
digital breast tomosynthesis advantages, 115
carcinoma. See also ductal carcinoma in situ (DCIS)
invasive, 68, 132
case studies, 145
ductal, 106, 118, 133, 138, 167
lobular, 171
metastatic, 135
mucinous, 105
cathode ray tube (CRT) monitors, 24
charge-coupled devices (CCDs), 8
clip markers, 99
collimation errors, 77–8
communication between system components, 32–4
complementary metal-oxide semiconductor image sensors (CMOS), 8
compliance problems, 86
possible solutions, 86
addressing convenience and accessibility, 86
cost reduction, 86
mobile mammography, 86
compression. See breast compression; data compression
computed radiography (CR), 9–12, 20
advantages and disadvantages, 91
computed tomography (CT).
 See breast computed tomography
computer-aided detection (CADe), 1, 53–9, 92–3
commercially available systems, 187
digital breast tomosynthesis application, 123
time taken, 58
usage of, 52
variation between systems, 57
computer languages, 32–4
cone-beam computed tomography (CBCT), 125
confidence, 40
contrast detail phantom, 4
contrast-limited adaptive histogram equalization (CLAEH), 23–4
cost analysis, mobile units, 94
cupping artifacts, 128, 130
cut-off spatial frequency, 2
cyst, 116
aspiration case study, 163
data compression, 37–8
 lossless compression, 38
 lossy compression, 38
data migration, 41
data redundancy, 40
data security, 39, 40
 authentication, 40
 authorization, 40
 confidentiality, 40
 encryption, 40
 integrity, 40
data transmission, 38–9
 telecommunications carrier, 39
deodorant, 80
detector quantum efficiency (DQE), 4, 129
detector elements (DEls), 20
 multiple dead detector elements, 72
single dead detector elements, 71–2
detectors, 20.
 See also artifacts;
detector elements (DEls) breast CT, 127–8
development of, 1–2
digital cassette
 mammography, 9–12
direct conversion, 8–9, 20
 indirect conversion, 20
 with prompt readout, 6–8
mobile units, 91–2
photo counting
 mammography, 12
developing mass case study, 160–1
digital breast tomosynthesis, 110–11
 breast compression, 112–13
 breast CT correlation, 140
 clinical implementation, 122
 commercially available systems, 187
 contrast-enhanced, 123
 dose, 113
 equipment, 114–15, 122
 FDA approval, 115, 122
 future applications, 122–3
 image acquisition, 111–13
 image interpretation, 113–14
 time taken, 114
 image reconstruction, 113
 literature review, 118–22
 calcifications, 120–1
 diagnostic performance, 119–20
 masses and asymmetries, 121–2
 reader preference, 119
 potential advantages, 115–17
 decreased recall rate, 115
 localization of lesion, 115
 mass characterization, 115
 mass detection, 115
 potential disadvantages, 117–18
 costs, 117
 interpretation time, 117
 lack of uniformity, 117
 not all breasts fit the detector, 118
 training requirements, 117
 workflow issues, 122
digital cassette
 mammography, 9–12
Digital Imaging and Communications in Medicine (DICOM), 32–4
grey-scale display function (GSDF), 30
standards, 29
Digital Mammographic Imaging Screening Trial (DMIST), 22, 63
digital mammography, 18, 109.
 See also interpretation of digital mammograms;
mammography; mobile mammography
 available units, 19, 187
 development of, 1–2, 85
 detectors, 1–2
 efficacy, 63–9
 future trends, 13–16
 physics of, 18
 upgrading a film-screen mobile unit to FFDM, 88
 versus film-screen mammography, 20–1, 88, 102–4
practical improvements, 104
 speed improvements, 104
 digital radiography (DR), 20
 digital telemammography, 88
 digital visual interface (DVI), 28
 digitization of film mammograms, 1, 51
 direct access storage (DAS), 35
 direct conversion detectors, 8–9, 20
double reading, 33–9
ductal carcinoma in situ (DCIS), 141
case studies, 148–9, 152–4,
 167, 179, 181–4
 detection rate, 68
 stereotactic biopsy, 96
ductography, 99
galactography, 99
 improvements in digital mammography, 106
 geometric magnification, 129
 ghosting artifacts, 74–5
 granulomatous mastitis case study, 165
 graphics cards, 27–30
 grid artifacts, 76
hamartoma case study, 173
 hanging protocols, 25–6, 50–1
 hard-copy display, 25
 hardware, 34–5
 network infrastructure, 34–5
 storage infrastructure, 35
Health Insurance Portability and Accountability Act (HIPAA), 39
Health Level 7 (HL7), 32
hematoma, 105, 107, 136
image acquisition, 18–20
 See also detectors
digital breast tomosynthesis (DBT), 111–13
image display, 24–5, 27
equipartition, 104
hanging protocols, 25–6, 50–1
monitors, 28–9
 classification, 29
 image size considerations, 47–50
 quality management, 29–31
 workstations, 27–8
image interpretation.
 See interpretation of digital mammograms
image management, 41
image plate (IP), 9
image processing, 22–4, 51–3, 104
contrasted-limited adaptive histogram equalization (CLAEH), 23–4
intensity windowing, 22–3, 52–3
 peripheral equalization, 23
 processing-related artifacts.
 See artifacts
unsharp masking, 23
image quality
 breast CT, 128–30
 metrics, 2–6
 image size, 37, 47–50
 image transmission, 88
mobile units, 92
implant removal
 calcified residual capsule, 175
 silicone mass, 158–9
indirect conversion detectors, 20
 with prompt readout, 6–8
photodetector, 7–8
scintillator, 6
inflammatory mass case study, 146
integrated imaging system (IIS), 31
Interoperable Healthcare Enterprise (IHE) initiative, 32, 40
intensity windowing, 22–3, 52–3
interobserver variability, 68
true mobile units, 86–8
upgrading a film-screen mobile unit to FFDM, 88
modulation transfer function (MTF), 2, 20
monitors, 28–9, 92. See also liquid crystal display (LCD) monitors
classification, 29
image size considerations, 47–50
quality management, 29–31
frequency of QC checks, 31
mortality trends, 85

needle localization, 99
improvements with digital mammography, 105
network attached storage (NAS), 35
network infrastructure, 34–5
noise equivalent quanta (NEQ), 4
noise level, breast CT, 129–30
noise power spectrum (NPS), 3
normalized noise power spectrum (NPS), 3
Nyquist frequency, 2
oil cyst case study, 147–8
optical magnification use, 53
organic light-emitting diode (OLED), 27
papilloma, 102, 106
parallax shift, 111, 112
patient compliance. See compliance problems
pendant geometry, 125, 127
peripheral equalization, 23
personal health information (PHI), 39
photomultiplier tube (PMT), 12
photon-counting mammography, 12
picture archiving and communication systems (PACS), 27.
See also archiving
monitors, 29
pixel, 18
pixel binning, 15
pixel pitch, 2
pixel reversal artifacts, 82–3
pneumocystography case study, 163
point spread function (PSF), 2
temporary mammography units, 86
positive predictive value, 64–8
post-processing. See image processing
power supply, mobile units, 92
processed images, 37
project management, 41

pseudoangiomatous stromal hyperplasia (PASH), 139
case study, 151–2
pseudocalcifications, 162–3
quality assurance (QA) Boise mobile mammography
case study, Idaho, 90
monitors, 29–31
quality control (QC) monitors, 29–31
frequency of QC checks, 31
radial scar case study, 150–1
radiation therapy planning, 141
raw images, 37
reading environment, 59
ambient light, 59
rebinning, 47
recall rate, 64
digital breast tomosynthesis
advantages, 115
receiver operating characteristic (ROC), 5
redundant array of independent disks (RAID), 35
replication, 40
scalability of archiving system, 39
scheduling, mobile units, 93
screen-film mammography. See film-screen mammography
screening mammography. See digital mammography; film-screen mammography; mammography
seroma, 134
shading artifacts, 82
signal difference to noise ratio (SDNR), 4
silicone mass from ruptured implant, 158–9
skin calcifications, 177
foreign substances on, 80–1
visualization of, 104
skin-line processing algorithm failure, 81
skin mole case study, 164
snowstorm appearance, 158–9
spatial resolution, 2, 19
breast CT, 128–9
specimen radiography, 101–2, 110
improvements with digital mammography, 105–6
staffing, mobile units, 93
step-and-shoot image acquisition method, 111
stereotactic biopsy, 96–9
improvements with digital mammography, 104–5
storage
data compression, 37–8
influencing factors, 37
growth and new technology, 37
image size, 37
processed vs. raw images, 37
infrastructure, 35
direct access storage (DAS), 35
network attached storage (NAS), 35
removable media, 35
storage area network (SAN), 35
redundant array of independent disks (RAID), 35
storage-related artifacts, 84
tiers, 35–7
offsite backups, 36–7
offline or long-term storage, 36
online or short-term storage, 35–6
storage area network (SAN), 35
online or short-term storage, 36
system maintenance, 41
telemammography, 88
digital breast tomosynthesis application, 123
thin-film transistor (TFT), 9, 20
timing of screening mammography, 62–3	
tomography, 111. See also breast computed tomography
mammography. See also digital breast tomosynthesis
Trex processing, 23
tubular carcinoma case study, 166
underexposure, 157–8
uninterruptible power supply (UPS), 92
unsharp masking, 23
vacuum-assisted device (VAD), 98
video graphics array (VGA), 28
virtual private network (VPN), 40
wire localization, 99
workplace mammography, 86
workstations, 27–8
Xerox mammography, 85
zooming, 51–3. See also image size