PARTICLE DARK MATTER
Observations, Models and Searches

Dark matter is among the most important open problems in modern physics. Aimed at graduate students and researchers, this book describes the theoretical and experimental aspects of the dark matter problem in particle physics, astrophysics and cosmology. Featuring contributions from 46 leading theorists and experimentalists, it presents many aspects, from astrophysical observations to particle physics candidates, and from the prospects for detection at colliders to direct and indirect searches.

The book introduces observational evidence for dark matter along with a detailed discussion of the state-of-the-art of numerical simulations and alternative explanations in terms of modified gravity. It then moves on to the candidates arising from theories beyond the Standard Model of particle physics, and to the prospects for detection at accelerators. It concludes by looking at direct and indirect dark matter searches, and the prospects for detecting the particle nature of dark matter with astrophysical experiments.

GIANFRANCO BERTONE is Coordinator of the Theoretical Physics group at the Institut d’Astrophysique de Paris, and Visiting Professor at the Institute for Theoretical Physics, University of Zurich. His technical work mainly focuses on theoretical and phenomenological aspects of the dark matter problem, and he participates in important experimental collaborations on the elaboration of optimal strategies for the detection of dark matter particles.
PARTICLE DARK MATTER
Observations, Models and Searches

Edited by

GIANFRANCO BERTONE
Institut d’Astrophysique de Paris
Contents

List of contributors page xii
Preface xvii
Acknowledgements xx
List of symbols and abbreviations xxi

Part I Dark matter in cosmology 1

1 Particle dark matter G. Bertone and J. Silk 3
1.1 Introduction 3
1.2 The baryon budget 4
1.3 The case for cold dark matter: good news and bad news 5
1.4 Portrait of a suspect 7
1.5 Observing cold dark matter 10
1.6 The future 12

2 Simulations of cold dark matter haloes B. Moore and J. Diemand 14
2.1 From cold collapse to hierarchical clustering – a brief history 14
2.2 Results from collisionless simulations 17
2.3 Predictions for direct and indirect detection experiments 34

3 Milky Way satellites J. Bullock, M. Kaplinghat and L. Strigari 38
3.1 Satellite galaxies 38
3.2 Streams 46
3.3 Central profiles and the nature of dark matter 48
3.4 Indirect detection of dark matter from Milky Way satellites 51
3.5 Future prospects 55
4 Gravitational lensing and dark matter
Y. Mellier

4.1 Introduction 56
4.2 Gravitational lensing theory 57
4.3 Evidence for dark matter from strong lenses 63
4.4 Cold dark matter confronted to gravitational lenses 65
4.5 Hot dark matter: limits on neutrino masses from lensing 77
4.6 Dark matter or modified gravity? 78
4.7 Conclusion and outlook 80

5 Dark matter at the centres of galaxies
D. Merritt

5.1 Phenomenology of galactic nuclei 83
5.2 Dark matter models 86
5.3 Dark matter in collisionless nuclei 88
5.4 Dark matter in collisional nuclei 92
5.5 The Galactic centre 94
5.6 Dwarf spheroidal galaxies 97

6 Modified gravity as an alternative to dark matter
J. D. Bekenstein

6.1 Missing mass in galaxies and clusters of galaxies 99
6.2 The MOND scheme 102
6.3 Modified gravity theory for MOND 105
6.4 TeVeS and other relativistic MOND theories 109
6.5 Gravitational lenses and cosmology in TeVeS 112

Part II Candidates

7 DM production mechanisms
G. Gelmini
and **P. Gondolo**

7.1 Dark matter particles: relics from the pre-BBN era 121
7.2 Thermal production in the standard cosmology 123
7.3 Non-thermal production in the standard cosmology 130
7.4 Thermal and non-thermal production in non-standard cosmologies 133

8 Supersymmetric dark matter candidates
J. Ellis
and **K. A. Olive**

8.1 Motivations 142
8.2 The MSSM and R-parity 144
8.3 Possible supersymmetric dark matter candidates 147
8.4 Renormalization-group equations and electroweak symmetry breaking 151
8.5 The CMSSM 153
Contents

8.6 mSUGRA 159
8.7 Other possibilities 161
8.8 Summary 162

9 Dark matter at the electroweak scale: non-supersymmetric candidates G. Servant 164
9.1 New symmetries at the TeV scale and dark matter 166
9.2 Dark matter from extra dimensions: Kaluza–Klein DM 167
9.3 Little Higgs dark matter 182
9.4 Dark matter in technicolour and composite Higgs theories 183
9.5 Mirror dark matter 183
9.6 ‘Minimal’ approaches 184
9.7 WIMPonium 188
9.8 Connecting dark matter and the baryon asymmetry 188
9.9 Conclusion 189

10 Non-WIMP candidates J. L. Feng 190
10.1 Motivations 190
10.2 SuperWIMP dark matter 191
10.3 WIMPless dark matter 198

11 Axions P. Sikivie 204
11.1 Introduction 204
11.2 Axion production in the early Universe 208
11.3 Relic density and primordial velocity dispersion 219
11.4 Axion miniclusters 222
11.5 Axion isocurvature perturbations 224

12 Sterile neutrinos M. Shaposhnikov 228
12.1 Particle physics motivation 228
12.2 Cosmological and astrophysical constraints on sterile neutrino dark matter 232
12.3 Sterile neutrino production in the early Universe 239
12.4 Conclusions 247

Part III Collider searches

13 SUSY searches at the LHC T. Plehn and G. Polesello 251
13.1 Discovery channels 252
13.2 LHC measurements 255
13.3 Parameter extraction 264
13.4 Dark matter and the LHC 274
13.5 Outlook 275
Contents

14 Supersymmetric dark matter at colliders M. Battaglia
and M. E. Peskin
 14.1 Introduction 276
 14.2 Questions for the collider experiments 279
 14.3 Dark matter at hadron colliders 285
 14.4 Dark matter at lepton colliders 293
 14.5 Collider measurements and astrophysical questions 303

15 Extra dimensions at the LHC K. Kong, K. Matchev
and G. Servant
 15.1 Flat extra dimensions (UED) 306
 15.2 Warped extra dimensions 311
 15.3 SUSY–UED discrimination at the LHC 317

16 SUSY tools F. Boudjema, J. Edsjö and P. Gondolo
 16.1 Annihilation cross-section and the relic density 326
 16.2 Direct detection 331
 16.3 Indirect detection 334
 16.4 Exploring the parameter space 338
 16.5 Interface with collider and precision measurements codes 340

Part IV Direct detection

17 Direct detection of WIMPs D. G. Cerdeño
and A. M. Green
 17.1 Introduction 347
 17.2 Event rate 347
 17.3 Astrophysics input 353
 17.4 Signals 356
 17.5 Particle physics input 362

18 Annual modulation signature with large mass highly radiopure NaI(Tl) R. Bernabei and P. Belli
 18.1 The annual modulation signature and the target material 370
 18.2 The DAMA/NaI and DAMA/LIBRA experiments 373
 18.3 The model-independent results 374
 18.4 The corollary quests for the candidate particle(s) 379
 18.5 Comparison with other activities 380
 18.6 Future perspectives 381
Contents

19 Particle dark matter and the DAMA/NaI and DAMA/LIBRA annual modulation effect N. Fornengo 383
 19.1 The DAMA annual modulation effect 383
 19.2 Supersymmetric candidates 386
 19.3 Additional candidates 389

20 Cryogenic detectors G. Gerbier and J. Gascon 391
 20.1 Introduction 391
 20.2 Principles of operation of solid state cryogenic detectors 392
 20.3 Single parameter detectors 398
 20.4 Ionization phonon bolometers 401
 20.5 Scintillation phonon bolometers 404
 20.6 MACHe3 409
 20.7 Prospects for 1 ton detectors 410

21 Liquid noble gases E. Aprile and L. Baudis 413
 21.1 Noble liquids for dark matter detection 413
 21.2 Two-phase XeTPCs: XENON, ZEPLIN and LUX 420
 21.3 Two-phase ArTPCs: WArP and ArDM 428
 21.4 Single-phase detectors: XMASS, DEAP/CLEAN 432

22 Directional detectors N. Spooner 437
 22.1 Direct dark matter detection technologies and directionality 437
 22.2 The directional signature and statistics 438
 22.3 Directional detector concepts 440
 22.4 Gas detector physics – diffusion and straggling 442
 22.5 TPC gamma background rejection and energy threshold 447
 22.6 TPC neutron background rejection, solar neutrinos and radon 450
 22.7 Electronic noise and other background 452
 22.8 WIMP detection and directional sensitivity in practice 452
 22.9 Head–tail recoil discrimination, theory and experiment 456
 22.10 Experimental status and readout technology 457
 22.11 Scale-up and a future WIMP telescope 463

23 Axion searches S. Asztalos 467
 23.1 Constraints on axion properties 468
 23.2 Conclusions 487
Part V Indirect detection and astrophysical constraints

24 Gamma-rays

L. Bergström and G. Bertone

- [24.1 Annihilation](#) 491
- [24.2 Decaying dark matter](#) 496
- [24.3 Galactic centre](#) 497
- [24.4 Substructures](#) 499
- [24.5 The extragalactic signal](#) 504
- [24.6 Connection between antimatter and gamma-ray signal](#) 505

25 High-energy neutrinos from WIMP annihilations in the Sun

F. Halzen and D. Hooper

- [25.1 Searching for dark matter with neutrinos](#) 507
- [25.2 The capture and annihilation of WIMPs in the Sun](#) 509
- [25.3 The neutrino spectrum](#) 511
- [25.4 Neutrino telescopes](#) 513
- [25.5 The case of neutralino dark matter](#) 516
- [25.6 The case of Kaluza–Klein dark matter](#) 518

26 Indirect dark matter detection with cosmic antimatter

P. Salati, F. Donato and N. Fornengo

- [26.1 Production of antimatter in the Galaxy](#) 521
- [26.2 Propagation of antinuclei in the Galaxy](#) 521
- [26.3 Antiprotons in cosmic rays](#) 524
- [26.4 Antideuterons in cosmic rays](#) 532
- [26.5 Positrons in cosmic rays](#) 537
- [26.6 Conclusions](#) 546

27 Multi-wavelength studies

S. Profumo and P. Ullio

- [27.1 Introduction](#) 547
- [27.2 The multi-wavelength approach and galaxy clusters](#) 556
- [27.3 The multi-wavelength approach and dwarf galaxies](#) 559
- [27.4 The multi-wavelength approach and the Milky Way](#) 561
- [27.5 Radio observations](#) 563
- [27.6 Conclusions and overview](#) 564

28 Particle dark matter and Big Bang nucleosynthesis

K. Jedamzik and M. Pospelov

- [28.1 Introduction](#) 565
- [28.2 Standard BBN theory](#) 567
- [28.3 Observed light element abundances](#) 569
- [28.4 Cascade nucleosynthesis from energy injection](#) 573
- [28.5 Residual DM annihilation during BBN](#) 576
28.6 Catalysed BBN (CBBN) 579
28.7 DM production during BBN: NLSP→LSP example 583

29 Dark matter and stars G. Bertone 586
29.1 DM capture and annihilation in stars 587
29.2 The Earth and other planets 589
29.3 Main-sequence stars 591
29.4 Compact objects 593
29.5 Pop III stars 599

References 602
Index 736
Contributors

Elena Aprile
1016 Pupin Hall/Nevis, MC 5231, Box 31, 538 W 120 St, New York, NY 10027, USA

Stephen Asztalos
Lawrence Livermore National Laboratory, High Energy Physics and Accelerator Technology Group, L-50 Livermore, CA 94551, USA

Marco Battaglia
Lawrence Berkeley National Laboratory, Physics Division, 1, Cyclotron Road, Mail Stop 50A2161, Berkeley, CA 94720-8143, USA

Laura Baudis
University of Zurich, Physik Institut, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Jacob Bekenstein
Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel

Pierluigi Belli
Università degli Studi di Roma ‘Tor Vergata’, Via della ricerca Scientifica 1, 00133 Roma, Italy

Lars Bergström
Department of Physics, Stockholm University, AlbaNova University Centre, S-106 91 Stockholm, Sweden

Rita Bernabei
Università degli Studi di Roma ‘Tor Vergata’, Via della ricerca Scientifica 1, 00133 Roma, Italy
Gianfranco Bertone
Institut d’Astrophysique de Paris, 98 bis Bd Arago, 75014 Paris, France

Fawzi Boudjema
LAPTH CNRS, Chemin de Bellevue, F-74941 Annecy-le-Vieux, France

James Bullock
Physics and Astronomy Department, 4168 Frederick Reines Hall, University of California, Irvine, CA 92697-4575, USA

David Cerdeño
Departamento de Física Teórica, Universidad Autónoma de Madrid, Módulo C-XI, 608, Cantoblanco, Madrid 28049, Spain

Juerg Diemand
Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA

Fiorenza Donato
University of Turin, via Giuria 1, 10125, Italy

Joakim Edsjö
Department of Physics, AlbaNova, Stockholm University, SE-106 91 Stockholm, Sweden

John Ellis
CERN, Theory Division, CH-1211 Geneva 23, Switzerland

Jonathan Feng
Physics and Astronomy Department, 4168 Frederick Reines Hall, University of California, Irvine, CA 92697-4575, USA

Nicolao Fornengo
University of Turin, via Giuria 1, 10125 Torino, Italy

Jules Gascon
Institut de Physique Nucleaire, 4 rue Enrico Fermi, 69622 Villeurbanne cedex, France

Graciela Gelmini
UCLA Physics and Astronomy, Box 951547, PAB 7-320, Los Angeles, CA 90095-1547, USA
List of contributors

Gilles Gerbier
Centre d’Etudes de Saclay (CEA-Saclay), Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex, France

Paolo Gondolo
The University of Utah, Department of Physics, 115 S 1400 E, Salt Lake City, UT 84112-0830, USA

Anne Green
The School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK

Francis Halzen
University of Wisconsin-Madison, Department of Physics, Phenomenology Institute, 5293 Chamberlin Hall, Madison, Wisconsin, USA

Dan Hooper
Wilson Hall 6 West, Fermilab, PO Box 500, Batavia, IL 60510, USA

Karsten Jedamzik
Laboratoire Physique Théorique & Astroparticules, Université de Montpellier II, Place Eugène Bataillon, FR 34095 Montpellier Cedex 5, France

Manoj Kaplinghat
Physics and Astronomy Department, 4168 Frederick Reines Hall, University of California, Irvine, CA 92697-4575, USA

Kyoungchul Kong
Fermilab, Theory Department, PO Box 500 MS 106, Batavia, IL 60510, USA

Konstantin Matchev
Department of Physics, University of Florida, PO Box 118440, Gainesville, FL 32611-8440, USA

Yannick Mellier
Institut d’Astrophysique de Paris, 98 bis Bd Arago, 75014 Paris, France

David Merritt
Department of Physics, 85 Lomb Memorial Drive, Rochester Institute of Technology, Rochester, NY 14623-5604, USA

Ben Moore
Institute for Theoretical Physics, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
List of contributors

Keith Olive
William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA

Michael Peskin
Theory Group, MS 81, SLAC, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

Tilman Plehn
Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120 Heidelberg, Germany

Giacomo Polesello
INFN Sezione di Pavia, Via Bassi 6, 27100 Pavia, Italy

Maxim Pospelov
Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1, Canada

Stefano Profumo
Department of Physics, ISB 325, University of California, 1156 High Street, Santa Cruz, CA 95064, USA

Pierre Salati
LAPTH, 9 Chemin de Bellevue BP 110, 74941 Annecy le Vieux Cedex, France

Geraldine Servant
CERN, Theory Division, CH-1211 Geneva 23, Switzerland

Mikhail Shaposhnikov
Ecole polytechnique fédérale de Lausanne, Institut de théorie des phénomènes physiques, LPPC, BSP - Dorigny, CH-1015 Lausanne, Switzerland

Pierre Sikivie
Physics Department, University of Florida, Gainesville, FL 32611, USA

Joseph Silk
University of Oxford, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford, UK
List of contributors

Neil Spooner
Room E23, Hicks Building, Dept of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK

Louis Strigari
Kavli Institute (KIPAC), Physics Department, Stanford University, SLAC 2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025, USA

Piero Ullio
SISSA, via Beirut, 2–4, 34014 Trieste TS, Italy
Dark matter (DM) is one of the pillars of the Standard Cosmological Model, but the nature of this elusive component of the matter budget of the Universe remains unknown, despite the compelling evidence at all astrophysical scales. The possible connection with theories beyond the Standard Model of particle physics makes DM one of the most important open problems in modern cosmology and particle physics, as witnessed by the enormous theoretical and experimental effort that is being put towards its identification.

Many different strategies have been devised to achieve this goal. First, the Large Hadron Collider, which is just starting operations, is expected to provide insights of paramount importance into possible extensions of the Standard Model of particle physics. Whether or not a specific candidate is “observed” at the LHC, any evidence for new physics (or lack thereof) will inevitably change our understanding of physics, and in particular our understanding of DM. If DM candidates are actually found, the question will arise of whether they actually are the DM in the Universe.

A convincing identification can probably be obtained only by combining the results of accelerator searches with astrophysical searches, based on the direct or indirect detection of DM particles in the local Universe. Direct DM searches are based on the measurement of the recoil energy of nuclei struck by DM particles in large detectors. This field has evolved dramatically in the past decade, and the different experimental strategies (cryogenic, liquid noble gases, superheated) developed over the years have led to a spectacular improvement of the constraints on DM–nucleon interactions. Alternatively, DM could be detected indirectly, through the detection of its annihilation or decay products. With this aim, many important instruments are currently taking data, in particular in the energy range between 1 GeV and 1 TeV, like the antimatter satellite PAMELA and the gamma-ray satellite Fermi, launched in June 2008.
Preface

The material is arranged in five parts: Dark matter in cosmology; Candidates; Accelerator searches; Direct detection; Indirect detection and astrophysical constraints. The interested reader will find an introduction to the DM problem and a detailed overview of the contents of the book in Chapter 1.

In brief, Part I is devoted to the astrophysical and cosmological aspects of the DM problem. The current understanding of the distribution of DM in the Universe, based on numerical simulations and astrophysical observations, is reviewed here, along with the most recent lensing observations that provide a ‘direct’ proof of the existence of DM, and a discussion of alternative theories that seek to dispense with DM. The chapters on DM distribution are particularly important for the reader interested in the indirect DM searches discussed in Part V.

The particle physics aspects of the DM problem are discussed in Part II. This part contains a discussion of the production mechanisms of DM in the early Universe, including among others thermal production, relevant for the broad class of candidates generically referred to as weakly interacting massive particles (WIMPs). The most widely discussed extension of the Standard Model of particle physics, supersymmetry (SUSY), and the most widely discussed DM candidate, the neutralino, are also introduced here. The discussion is, however, enlarged to include a systematic review of alternative extensions of the Standard Model, and alternative DM candidates, including non-SUSY WIMPs, and non-WIMP candidates.

Parts III, IV and V are dedicated to DM searches. Accelerator searches for new physics are discussed in Part III. Of particular importance for the reader interested in the DM problem are the chapters on strategies to discover and identify extensions of the Standard Model of particle physics at the LHC, and on the techniques that may allow, in case of detection, the identification of possible DM candidates. Part III also contains a chapter on DM ‘tools’, software that has been developed over the years by many different groups in an effort to allow systematic scans of the parameter space of new theories, along with the determination of physical quantities relevant for cosmology and accelerator, direct and indirect searches in each of the models explored in random scans.

Direct detection – the detection of DM through the measurement of the recoil energy of nuclei struck by DM in low-background detectors – is presented in Part IV. The main avenues in this field of research, cryogenic detectors and detectors using liquid noble gases, are presented here, along with a phenomenological overview and a discussion of ‘directional’ detectors currently under study.
Finally, Part V contains a discussion of the prospect for detecting DM ‘indirectly’, that is, through the observation of the products of its annihilation or decay. This is a field that is witnessing an explosion of interest, owing to the new data of the Fermi and PAMELA satellites, and it is anticipated that the excitement will remain high in the upcoming years, when a new generation of experiments will become available. A critical assessment of the possible DM interpretation of existing data is presented in this last part of the book, along with a discussion of the strategies that may provide the long-awaited smoking-gun signature for DM.

This book aims at presenting in a coherent way the state-of-the-art of the relevant aspects of the disciplines involved in the DM problem (astrophysics, cosmology and particle physics), along with the detection strategies, in order to build a common language among the different communities and, we hope, to prepare for the age of discoveries. It is more than a collection of review papers, in the sense that particular care has been taken to ensure a coherent and complete presentation of the DM problem, and to bear in mind as its eventual readers graduate students and researchers who want to obtain a better understanding of the many different aspects of the DM puzzle. The 46 authors who joined the project met the challenge of summarizing in chapters of 15 to 20 pages an entire field of research, in an effort to be at the same time accessible and complete. I thus believe that it can become a tool to increase exchanges among the different communities involved in DM searches, and to pave the road to a truly multidisciplinary approach to DM.

As is the case for all major endeavours, it is by no means certain that the search for DM will succeed. But this is how scientific research proceeds. If all our attempts fail, we will have to perform a radical revision of our understanding of Nature. But if one or more of the strategies so far devised turns out to be successful, the discovery of DM may well be remembered as one of the most exciting adventures in the history of science.
Acknowledgements

This book is the result of the collaborative effort of 46 authors. I am grateful to all of them for the great quality of their contributions, and for keeping up with the tight schedule I have imposed. I am indebted to Lars Bergström, Enzo Branchini, Marco Cirelli, Stephane Colombi, Gilles Esposito Farese, Nicolao Fornengo, Fabio Iocco, Yannick Mellier, Lidia Pieri, Pasquale Serpico, Volker Springel, Marco Taoso and Matteo Viel for reading parts of the book and providing very useful comments. It is a pleasure to thank Simon Capelin of Cambridge University Press, who solicited a book on dark matter on the occasion of the PASCOS’08 conference at the Perimeter Institute, and his assistant Laura Clark, who assisted me during the completion of this book. I also thank the Galileo Galilei Institute of Theoretical Physics in Florence, where the final touches were put to this project. Finally, thanks to Nadia. She knows why.
Symbols and abbreviations

Symbols
Throughout the book, quantities describing the properties of DM particles are denoted with the subscript χ, unless otherwise specified. Here are some of the most frequently used symbols:

m_χ, mass of the DM particle
σ_{SI}^p, spin-independent scattering cross-section off protons
σ_{SI}^n, spin-independent scattering cross-section off neutrons
σ_{SD}^p, spin-dependent scattering cross-section off protons
σ_{SD}^n, spin-dependent scattering cross-section off neutrons
$\langle \sigma v \rangle$, thermal average of the annihilation cross-section
(σv), annihilation cross-section in the non-relativistic limit
M_{GUT}, Grand-unification scale
M_{Pl}, Planck scale
M_{SUSY}, Supersymmetry scale
R_0, Galactocentric radius of the Sun
ρ_{crit}, critical density of the Universe
ρ_χ, DM density
$\rho_\chi(R_0) \equiv \rho_0$, DM density in the solar neighbourhood
Ω_χ, relic abundance of DM (in units of ρ_{crit})
Ω_M, relic abundance of matter (same units)
Ω_b, relic abundance of baryons (same units)
a_0, MOND parameter
r_{vir}, virial radius
M_{vir}, virial mass
c_{vir}, virial concentration
δ_{vir}, virial overdensity
Acronyms and abbreviations

AQUAL, Aquadratic Lagrangian (theory)
BAO, Baryon Acoustic Oscillation
BBN, Big Bang Nucleosynthesis
BSM, (theories) Beyond the Standard Model
cMSSM, constrained MSSM
CDM, Cold Dark Matter
CMB, Cosmic Microwave Background
Crest, Collisionally Regenerated Structure
DM, Dark Matter
DSph, Dwarf Spheroidal Galaxy
EM, Electroweak
FP, Fokker–Planck (equation)
GEM, Gas Electron Multiplier
GC, Galactic centre
GR, General Relativity
IDM, Inert Doublet Model
IMBH, Intermediate Mass Black Hole
KK, Kaluza–Klein
LHC, Large Hadron Collider
LMC, Large Magellanic Cloud
LSP, Lightest supersymmetric particle
LKP, Lightest Kaluza–Klein particle
LTP, Lightest T-odd Particle
LZP, Lightest Z₃ Particle
LTR, Low-Temperature Reheating (models)
MOND, Modified Newtonian Dynamics
MSSM, Minimal Supersymmetric Standard Model
MW, Milky Way
NFW, Navarro, Frenk and White (profile)
NS, Neutron Star
mSUGRA, Minimal Supergravity
NTD, Neutron Transmutation Doped (germanium sensors)
SD, Spin-Dependent (coupling)
SDSS, Sloan Digital Sky Survey
SI, Spin-Independent (coupling)
SM, Standard Model
SMC, Small Magellanic Cloud
SMBH, Supermassive Black Hole
List of symbols and abbreviations

SNR, Signal-to-Noise Ratio
SQUID, Superconducting QUantum Interference Device
SUSY, Supersymmetry
TES, Transition Edge Sensors
TeVeS, Tensor Vector Scalar theory
TPC, Time Projection Chamber
UED, Universal Extra Dimensions
WD, White Dwarf
WDM, Warm Dark Matter
WIMP, Weakly Interacting Massive Particle