According to the Institute of Medicine and the U.S. Food and Drug Administration, “developing new scientific approaches to detecting, understanding, predicting, and preventing adverse events” was a critical path to the future of drug safety. This book brings together a collection of state-of-the-art chapters, written by experts in the drug safety field. It provides information on the present knowledge of drug side effects and their mitigation strategy during drug discovery, gives guidance for risk assessment, and promotes evidence-based toxicology. Each specific area of toxicology relevant for drug discovery is discussed in detail, including theory, experimental approaches, and data interpretation supported by comprehensive up-to-date references. Many chapters provide fascinating case studies, which are of general interest for those who have basic science training and are interested in how chemicals interact with the human body.

Dr. Jinghai J. Xu is currently Director of Knowledge Discovery and Knowledge Management at Merck & Company, Inc. Dr. Xu has won numerous awards, including the Central Research Achievement Award and Pfizer Global Research & Development Award. His most recently published book is *Drug Efficacy, Safety, and Biologics Discovery: Emerging Technologies and Tools* (2009).

Dr. Laszlo Urban is currently Executive Director and Global Head of Preclinical Safety Profiling at Novartis Institutes for Biomedical Research. Dr. Urban has been actively involved in organizations such as the European Neuropeptide Club, the Society for Biomolecular Sciences, and the International Association for the Study of Pain. His most recently published work is *Hit and Lead Profiling: Identification and Optimization of Drug-Like Molecules* (2009).
Predictive Toxicology in Drug Safety

Edited by

Jinghai J. Xu
Merck & Company, Inc.

Laszlo Urban
Novartis Institutes for Biomedical Research
Contents

Contributors page vii
Prologue – Predictive toxicology: a new chapter in drug safety evaluation xi
Jinghai J. Xu and Laszlo Urban

I: SPECIFIC AREAS OF PREDICTIVE TOXICOLOGY
1 The human predictive value of combined animal toxicity testing: current state and emerging approaches 1
Harry M. Olson and Thomas S. Davies
2 Screening approaches for genetic toxicity 18
Jiri Aubrecht and Jinghai J. Xu
3 Cardiac safety 34
Martin Traebert and Berengere Dumotier
4 Predicting drug-induced liver injury: safer patients or safer drugs? 54
Jinghai J. Xu
5 In vitro evaluation of metabolic drug–drug interactions 76
Albert P. Li
6 Reliability of reactive metabolite and covalent binding assessments in prediction of idiosyncratic drug toxicity 102
Amit S. Kalgutkar
7 Immunotoxicity: technologies for predicting immune stimulation, a focus on nucleic acids and haptens 124
Jörg Vollmer
8 Predictive models for neurotoxicity assessment 135
Lucio G. Costa, Gennaro Giordano, and Marina Guizzetti
9 De-risking developmental toxicity-mediated drug attrition in the pharmaceutical industry 153
Terence R. S. Ozolinš

II: INTEGRATED APPROACHES OF PREDICTIVE TOXICOLOGY
10 Integrated approaches to lead optimization: improving the therapeutic index 183
Laszlo Urban, Jianling Wang, Dejan Bojanic, and Susan Ward
Contents

11 Predictive toxicology approaches for small molecule oncology drugs
Timothy J. Maziasz, Vivek J. Kadambi, and Carl L. Alden
204

12 Mechanism-based toxicity studies for drug development
Monicah A. Otieno and Lois D. Lehman-McKeeman
230

13 Fish embryos as alternative models for drug safety evaluation
Stefan Scholz, Anita Büttner, Nils Klüver, and Joaquin Guinea
244

14 The role of genetically modified mouse models in predictive toxicology
Glenn H. Cantor
269

15 Toxicogenomic and pathway analysis
Bin Lu, Ying Jiang, and Chester Ni
284

16 Drug safety biomarkers
David Gerhold and Frank D. Sistare
302

17 Application of TK/PD modeling in predicting dose-limiting toxicity
Li J. Yu, Lee Silverman, Carl L. Alden, Guohui Liu, Shimoga Prakash, and Frank Lee
314

18 Prediction of therapeutic index of antibody-based therapeutics: mathematical modeling approaches
Kapil Mayawala and Bruce Gomes
330

19 Vaccine toxicology: nonclinical predictive strategies
Sarah Gould and Raymond Oomen
344

Epilogue
371

Index
375

Color plates follow page 370.
Contributors

Carl L. Alden D.V.M.
Millennium Pharmaceuticals
The Takeda Oncology Company
Cambridge, MA

Jiri Aubrecht Pharm.D., Ph.D.
Drug Safety Research and
Development
Pfizer Global Research &
Development
Groton, CT

Dejan Bojanic Ph.D.
Lead Finding Platform
Novartis Institutes for Biomedical
Sciences
Cambridge, MA

Anita Büttner Ph.D.
University of Leipzig
Institute of Organic Chemistry
Leipzig, Germany

Glenn H. Cantor D.V.M., Ph.D.
Discovery Toxicology
Bristol-Myers Squibb
Princeton, NJ

Lucio G. Costa Ph.D.
Department of Environmental and
Occupational Health Sciences
University of Washington
Seattle, WA

Thomas S. Davies Ph.D.
STA Preclinical Services LLC
Essex and Lyme, CT

Berengere Dumotier Ph.D.
Preclinical Safety
Novartis Pharma AG
Basel, Switzerland

David Gerhold Ph.D.
Department of Laboratory Sciences
and Investigative Toxicology
Merck Research Laboratory
West Point, PA

Gennaro Giordano Ph.D.
Department of Environmental and
Occupational Health Sciences
University of Washington
Seattle, WA

Bruce Gomes Ph.D.
Biotherapeutics Research and
Development
Pfizer Inc.
Cambridge, MA

Sarah Gould Ph.D.
Non-Clinical Safety
Sanofi Pasteur
Marcy l’Etoile, France

Joaquin Guinea Ph.D.
ZF Biolabs
Madrid, Spain

Marina Guizzetti Ph.D.
Department of Environmental and
Occupational Health Sciences
University of Washington
Seattle, WA
Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ying Jiang Ph.D.</td>
<td>Department of Laboratory Sciences and Investigative Toxicology</td>
</tr>
<tr>
<td></td>
<td>Merck Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>West Point, PA</td>
</tr>
<tr>
<td>Vivek J. Kadambi Ph.D.</td>
<td>Millennium Pharmaceuticals</td>
</tr>
<tr>
<td></td>
<td>The Takeda Oncology Company</td>
</tr>
<tr>
<td></td>
<td>Cambridge, MA</td>
</tr>
<tr>
<td>Amit S. Kalgutkar Ph.D.</td>
<td>Pharmacokinetics Dynamics and Metabolism Department</td>
</tr>
<tr>
<td></td>
<td>Pfizer Global Research & Development</td>
</tr>
<tr>
<td></td>
<td>Groton, CT</td>
</tr>
<tr>
<td>Nils Klüver Ph.D.</td>
<td>Helmholtz Centre for Environmental Research</td>
</tr>
<tr>
<td></td>
<td>Department of Bioanalytical Ecotoxicology</td>
</tr>
<tr>
<td></td>
<td>Leipzig, Germany</td>
</tr>
<tr>
<td>Frank Lee Ph.D.</td>
<td>Millennium Pharmaceuticals</td>
</tr>
<tr>
<td></td>
<td>The Takeda Oncology Company</td>
</tr>
<tr>
<td></td>
<td>Cambridge, MA</td>
</tr>
<tr>
<td>Lois D. Lehman-Mckeeman Ph.D.</td>
<td>Discovery Toxicology</td>
</tr>
<tr>
<td></td>
<td>Bristol-Myers Squibb Company</td>
</tr>
<tr>
<td></td>
<td>Princeton, NJ</td>
</tr>
<tr>
<td>Albert P. Li Ph.D.</td>
<td>In Vitro ADMET Laboratories Inc.</td>
</tr>
<tr>
<td></td>
<td>Columbia, MD</td>
</tr>
<tr>
<td>Guohui Liu Ph.D.</td>
<td>Millennium Pharmaceuticals</td>
</tr>
<tr>
<td></td>
<td>The Takeda Oncology Company</td>
</tr>
<tr>
<td></td>
<td>Cambridge, MA</td>
</tr>
<tr>
<td>Bin Lu Ph.D.</td>
<td>Drug Safety Research and Development</td>
</tr>
<tr>
<td></td>
<td>Pfizer Global Research & Development</td>
</tr>
<tr>
<td></td>
<td>Groton, CT</td>
</tr>
<tr>
<td>Kapil Mayawala Ph.D.</td>
<td>Biotherapeutics Research and Development</td>
</tr>
<tr>
<td></td>
<td>Pfizer Inc.</td>
</tr>
<tr>
<td></td>
<td>Cambridge, MA</td>
</tr>
<tr>
<td>Timothy J. Maziasz Ph.D.</td>
<td>Millennium Pharmaceuticals</td>
</tr>
<tr>
<td></td>
<td>The Takeda Oncology Company</td>
</tr>
<tr>
<td></td>
<td>Cambridge, MA</td>
</tr>
<tr>
<td>Chester Ni Ph.D.</td>
<td>Computational Biology</td>
</tr>
<tr>
<td></td>
<td>University of Washington</td>
</tr>
<tr>
<td></td>
<td>Seattle, WA</td>
</tr>
<tr>
<td>Harry M. Olson D.V.M., Ph.D.</td>
<td>STA Preclinical Services LLC</td>
</tr>
<tr>
<td></td>
<td>Essex and Lyme, CT</td>
</tr>
<tr>
<td>Raymond Oomen Ph.D.</td>
<td>Discovery Bioinformatics</td>
</tr>
<tr>
<td></td>
<td>Sanofi Pasteur</td>
</tr>
<tr>
<td></td>
<td>Cambridge, MA</td>
</tr>
<tr>
<td>Monicah A. Otieno Ph.D.</td>
<td>Discovery Toxicology</td>
</tr>
<tr>
<td></td>
<td>Bristol-Myers Squibb Company</td>
</tr>
<tr>
<td></td>
<td>Princeton, NJ</td>
</tr>
<tr>
<td>Terence R. S. Ozolinš Ph.D.</td>
<td>Department of Pharmacology and Toxicology</td>
</tr>
<tr>
<td></td>
<td>Queen's University</td>
</tr>
<tr>
<td></td>
<td>Kingston, Canada</td>
</tr>
<tr>
<td>Shimoga Prakash Ph.D.</td>
<td>Millennium Pharmaceuticals</td>
</tr>
<tr>
<td></td>
<td>The Takeda Oncology Company</td>
</tr>
<tr>
<td></td>
<td>Cambridge, MA</td>
</tr>
<tr>
<td>Stefan Scholz Ph.D.</td>
<td>Helmholtz Centre for Environmental Research</td>
</tr>
<tr>
<td></td>
<td>Department of Bioanalytical Ecotoxicology</td>
</tr>
<tr>
<td></td>
<td>Leipzig, Germany</td>
</tr>
</tbody>
</table>
Contributors

Lee Silverman D.V.M., Ph.D.
Millennium Pharmaceuticals
The Takeda Oncology Company
Cambridge, MA

Frank D. Sistare Ph.D.
Department of Laboratory Sciences and Investigative Toxicology
Merck Research Laboratory
West Point, PA

Martin Traebert Ph.D.
Preclinical Safety
Novartis Pharma AG
Basel, Switzerland

Laszlo Urban M.D., Ph.D.
Lead Finding Platform
Novartis Institutes for Biomedical Research
Cambridge, MA

Jörg Vollmer Ph.D.
Pfizer Oligonucleotides Therapeutics Unit
Coley Pharmaceutical GmbH
Düsseldorf, Germany

Jianling Wang Ph.D.
Metabolism and Pharmacokinetics
Novartis Institutes for Biomedical Research
Cambridge, MA

Susan Ward Ph.D.
Life Sciences Industries
Cambridge, MA

Jinghai J. Xu Ph.D.
Knowledge Discovery and Knowledge Management
Merck & Co., Inc.
Rahway, NJ

Li J. Yu Ph.D.
Drug Metabolism and Pharmacokinetics
Hoffmann–La Roche, Inc.
Nutley, NJ

Susan Ward Ph.D.
Life Sciences Industries
Cambridge, MA

Jinghai J. Xu Ph.D.
Knowledge Discovery and Knowledge Management
Merck & Co., Inc.
Rahway, NJ

Li J. Yu Ph.D.
Drug Metabolism and Pharmacokinetics
Hoffmann–La Roche, Inc.
Nutley, NJ
In 2007, the U.S. Food and Drug Administration (FDA) issued a report titled “The Future of Drug Safety – Promoting and Protecting the Health of the Public.” In it, strengthening the science that supports drug safety evaluation was recognized as a critical path to improve drug safety assessment. In particular, “developing and qualifying techniques for predictive toxicology” was identified as one of the major unmet needs in advancing scientific approaches to detect, understand, predict, and prevent adverse events (http://www.fda.gov/).

With the cost of developing an FDA-approved medicine approaching $1 billion and time to develop a drug taking 10 to 15 years, late-stage failures or attritions pose a significant burden on the sustainability of the current pharmaceutical research and development (R&D) model. Because 90% of drug candidates that enter clinical development fail to reach the market, the root cause of rising R&D costs is a continuous investment in failure. By last account, clinical safety represents 20% and preclinical toxicology embodies 13% of failed development efforts. Together, drug safety reasons account for one-third of overall failure. Most of the current tools and models used for toxicology and human safety testing are decades old, including many that are recommended by the FDA. Better models, methodologies, and testing paradigms with demonstrated improvement in drug safety prediction than existing practices are clearly needed. Predictive toxicology, aimed at addressing this challenge using a combined knowledge and insight from all fields of science, is the central topic of this book.

This book is organized into two sections. The first section starts with a “current state” chapter on the predictivity of animal toxicology evaluation for human drug safety. This is followed by individual topics of toxicology, including genetic, cardiac, hepatic, drug–drug interactions, reactive metabolite, immune, neurologic, and developmental toxicology. The second section of the book emphasizes integrated approaches (integrated lead optimization, oncology drugs, mechanism-based toxicity), novel in vivo experimental models (zebrafish, genetically engineered models), emerging technologies (toxicogenomic pathway mining, safety biomarkers), and mathematical modeling approaches (PKPD modeling, biologics modeling). The book ends with a chapter on the safety evaluation of vaccines. Each chapter is authored by subject matter experts in that area. We are
extremely grateful to all the contributing authors for sharing their knowledge and insight. It is our honor to experience their enthusiasm, professionalism, and collaboration from the beginning of this book project.

Even though there is a heavy emphasis on drug discovery and development, the predictive toxicology strategies and approaches described in this book should also be highly relevant and applicable to the fields of chemical, environmental, and other areas of toxicology where rational prediction of human safety risk becomes a fundamental duty for toxicologists. We hope that toxicologists in both practice and training will find this book thought-provoking and highly pertinent to the direction of toxicology in the twenty-first century.

Jinghai J. Xu, Ph.D.
Laszlo Urban, M.D., Ph.D.