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Nonlinear resonance analysis is a unique mathematical tool that can be used to
study resonances in relation to, but independently of, any single area of applica-
tion. This is the first book to present the theory of nonlinear resonances as a new
scientific field, with its own theory, computational methods, applications, and open
questions.

The book includes several worked examples, mostly taken from fluid dynamics,
to explain the concepts discussed. Each chapter demonstrates how nonlinear reso-
nance analysis can be applied to real systems, including large-scale phenomena in
the Earth’s atmosphere and novel wave turbulent regimes, and explains a range of
laboratory experiments.

The book also contains a detailed description of the latest computer software in
the field. It is suitable for graduate students and researchers in nonlinear science
and wave turbulence, along with fluid mechanics and number theory. Color versions
of a selection of the figures are available at www.cambridge.org/9780521763608.
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In memory of my father, Lozanovsky Alexander Leonidovich
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Preface

Description of the universe in the scientific paradigm is based on conceptions of
action and reaction. The main question then is: What sort of reaction should be
expected to this or that action? Qualitatively, it looks logical to expect a bigger
reaction to a bigger action, and this is mostly the case. But nature is not to be put
into the Procrustes bed of our logical schemes, and a remarkable exception exists –
the phenomenon of resonance. Resonance was first described by Galileo Galilei in
1638: “one can confer motion upon even a heavy pendulum which is at rest by
simply blowing against it; by repeating these blasts with a frequency which is the
same as that of the pendulum one can impart considerable motion” [73].

Nowadays resonance is generally regarded as a red thread that runs through
almost every branch of physics; without resonance we would not have radio,
television, music, etc. Resonance causes an object to oscillate; sometimes the
oscillation is easy to see (vibration of a guitar string), but sometimes this is impos-
sible without measuring instruments (electrons in an electrical circuit). Soldiers
are commanded to break step while marching over a bridge, otherwise the bridge
may collapse.

Probably the most well-documented example of the resonance of a bridge is
given by Tacoma Narrows Bridge, which was the third longest suspension bridge
in the world in 1940. On the morning of November 7, 1940, the four-month old
Tacoma Narrows Bridge began to oscillate dangerously up and down, tore itself
apart, and collapsed over a period of about one hour. Though designed for winds
of 120 mph, a wind of only 42 mph destroyed it. Experts agreed that somehow the
wind caused the bridge to resonate and, nowadays, wind tunnel testing of bridge
designs is mandatory. The very fortuitous fact for the history of science is that one
professor of engineering decided to have a walk along the beach at the time when
the oscillations began. He ran home, took a camera, and began to take a picture
every five seconds. The pictures survived and have been turned into a video movie
[227] showing the last few minutes before the catastrophe.

ix
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x Preface

Other famous examples are the experiments of Tesla who studied experimentally
in 1898 the vibrations of an iron column and noticed that at certain frequencies
specific pieces of equipment in the room would start to jiggle. Playing with the
frequency, he was able to move the jiggle to another part of the room. Completely
fascinated with these findings, he forgot that the column ran downward into the
foundation of the building, and the vibrations were being transmitted all over
Manhattan. The experiments started a sort of a small earthquake in his neighbor-
hood with smashed windows, swaying buildings, and panicky people in the streets.
For Tesla, the first hint of trouble came when the walls and floor began to heave
[36]. He stopped the experiment when he saw police rushing through the door.

Generically, two types of resonance have to be distinguished: linear and non-
linear. From the physical point of view, they are defined by whether or not
the external force coincides with the eigenfrequency of the system or not (lin-
ear and nonlinear resonance respectively). The condition of nonlinear resonance
reads

ωn = ω1 + ω2 + · · · + ωn−1, (0.1)

with possibly different ωi = ω(ki) being the eigenfrequencies of the linear part of
some nonlinear partial differential equation.

As will be explained in Chapter 1, the mathematical definition of resonance
given above does not coincide with the physical one, which also includes resonance
conditions on the wavevectors

kn = k1 + k2 + · · · + kn−1. (0.2)

Wavevectors have integer coordinates in resonators which are bounded or period-
ical domains, while unbounded domains lead to real-valued wavevectors. Notice
that “bounded or periodical” domain does not mean “small,” but rather indicates
the importance of correlation between the domain size and the wavelengths. For
instance, planetary waves in the Earth’s atmosphere (wavelengths ∼1000 km,
[122]), Stokes edge waves in the coastal zone (wavelengths ∼10 m, [63]), and cap-
illary waves in a cylindrical container with radius 200 mm (wavelengths ∼1 mm,
[205]) all have integer wavevectors. Conditions of nonlinear resonance (0.1),(0.2),
being regarded in integers, usually yield to solving Diophantine equations with
many variables with huge degrees. This is equivalent to Hilbert’s 10th problem
[89], which is proven to be algorithmically unsolvable [165]. Therefore, it is only
in the last decade that nonlinear resonances have been studied independently in
each application area. Analysis of nonlinear resonances presented in this book can
be applied directly to the resonators of an arbitrary physical nature.
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Preface xi

Nonlinear resonances are ubiquitous in physics. Euler equations, with various
boundary conditions and specific values of some parameters, describe an enor-
mous number of nonlinear dispersive wave systems (capillary waves, surface water
waves, atmospheric planetary waves, drift waves in plasma, etc.), all possess-
ing nonlinear resonances [260]. Nonlinear resonances appear in numerous typical
mechanical systems, such as an infinite straight bar, a circular ring, and a flat
plate [136]. The so-called “nonlinear resonance jump,” important for the analysis
of the turbine governor positioning system of hydroelectric power plants, can
cause severe damage to mechanical, hydraulic, and electrical systems [91]. One
tragic example is the collapse of the Sayano–Shushenskaya hydroelectric power
station, Russia, on August 17, 2009, which cost not only enormous material losses
but also 75 human lives. Nonlinear resonance is the dominant mechanism behind
outer ionization and energy absorption in near-infrared laser-driven rare-gas or
metal clusters [143]. Characteristic resonant frequencies observed in accretion
disks allow astronomers to determine whether the object is a black hole, a neu-
tron star, or a quark star [131]. Thermally induced variations of helium dielectric
permittivity in superconductors are due to microwave nonlinear resonances [129].
Temporal processing in the central auditory nervous system analyzes sounds using
networks of nonlinear neural resonators [5]. Nonlinear resonant response of bio-
logical tissue to the action of an electromagnetic field is used to investigate cases
of suspected disease, e.g. cancer [234], etc.

While linear resonances in various physical systems are presently well studied
[198, 199], it is quite a nontrivial problem to compute the characteristics of nonlin-
ear resonances or just to predict their very appearance, even in the one-dimensional
case. Thus, the notorious Fermi-Pasta-Ulam numerical experiments [246] with a
nonlinear one-dimensional string (carried out more than 50 years ago) are still not
fully understood [16]. In these experiments, Fermi, Pasta, and Ulam simulated the
vibrating string with quadratic and cubic nonlinearity by solving the system of
nearest-neighbor coupled oscillators (32 and 64 oscillators in different series of
experiments). Fermi thought, after many iterations, that the system would exhibit
thermalization, i.e. a state of equipartition of energy, and would “forget” about
initially exited oscillators. Instead, the system exhibited a puzzling quasi-periodic
behavior.

Keeping in mind the collapse of the Tahoma bridge, we can immediately see
two main questions about nonlinear resonances we would like to have answers to:
Where? and When? The answer to the first question is defined by the geometry of
the physical system studied and is formulated mathematically in algebraic equa-
tions to be solved in integers. This part of the theory of nonlinear resonances is
called kinematics. The answer to the second question is defined by the solutions to
some systems of nonlinear ordinary differential equations; this part of the theory
is called dynamics.
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xii Preface

This book is the first attempt to present the theory of nonlinear resonances, both
kinematic and dynamic, as a new scientific area, with its own computational meth-
ods, applications, and open questions. It is written for an interdisciplinary audience
and is structured as follows. Each chapter begins as simply as possible with an ele-
mentary section presenting the general ideas of the complete chapter. Thus, to get a
notion about the general ideas and results presented in this book, read only the first
sections of each chapter. Basic knowledge of linear algebra, differential equations,
and a bit of common sense would be enough for understanding. Deeper reading
demands additionally some knowledge of Hamiltonian formalism, number theory,
graph theory, and theory of integrable systems. In Chapter 5, we show how to
plan simple laboratory experiments with pendulums for observing physical man-
ifestations of the mathematical notions and constructions introduced to describe
nonlinear resonances. In Chapter 6, nonlinear resonance analysis is used for iden-
tifying and describing novel regimes in wave turbulent systems; important open
problems are formulated at the end.

The material presented in this book has been used since 2006 in a one-semester
advanced course for undergraduates in pure and applied mathematics, and in
computer science at J. Kepler University in Linz, Austria.

I am deeply grateful to Vladimir Zakharov who encouraged my work on the
discrete effects in wave turbulent systems. This work gave me the inspiration
necessary to realize that nonlinear resonance analysis is a useful mathematical
tool, as basic as linear Fourier analysis, but having as the application area weakly
nonlinear partial differential equations.

Very useful remarks, improvements and comments were received from Adrian
Constantin, Jim Cooper, Vladimir Gerdjikov, Roger Grimshaw, Diane Henderson,
Alexey Kartashov, German Kolmakov, Peter Lynch, Victor L’vov, Guenther
Mayrhofer, Yuri Manin, Sergey Nazarenko, Mikhail Sokolovskiy, Efim
Pelinovsky, Itamar Procaccia, Clemens Raab, Oleksii Rudenko, Veronika
Retchitskaja, Jan Sanders, Michael Shats, Alexey Slunyaev, Lennart Stenflo,
Vasilij Sotke, Igor Shugan, Rudolf Treumann, Mark Vilensky, and Erik Wahlén.
I cordially thank them all.

I am particularly indebted to Wolfgang Schreiner for developing a Web service
[216] for nonlinear resonance computations and writing the Appendix “Software”
where corresponding computer programs are presented and also the web-based
service interface is described providing on-line access to these programs.

The extracts included at the opening of Chapters 1–7 are reproduced, with per-
mission, from M. Bulgakov, The Master and Margarita, translated by Richard
Pevear and Larissa Volokhonsky (London: Penguin Classics, 2007), pp. 19, 28,
159, 179, 198, and 545.

I owe very much to my son Peter who suffered a lot from the lack of my attention
during the accomplishing of this text – suffered but never complained.
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Preface xiii

Finally, it was a pleasure and a privilege to work in close collaboration with
Simon Capelin, Laura Clark, Megan Waddington, and Sehar Tahir at Cambridge
University Press.

All shortcomings of this book are my responsibility, of course.
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Glossary

wavevector k = (m, n), with m,n being integers
as indexes of Fourier harmonics

dispersion function ω = ω(k), ωj = ω(kj )

three-wave resonance ω1 + ω2 = ω3, k1 + k2 = k3, (*)
conditions

four-wave resonance ω1 + ω2 = ω3 + ω4, k1 + k2 = k3 + k4, (**)
conditions

exact resonance solution of (*) or (**)

resonance solution set all solutions of (*) or (**)

a triad an exact solution of (*)

a quartet an exact solution of (**)

resonance cluster, primary a triad in three-wave system,
a quartet in four-wave system

resonance cluster, generic a set of primary clusters
connected via common wavevector(s)

size of a cluster number of connected primary clusters
within generic cluster

geometrical structure (GS) each k is shown as
a node of integer lattice (m, n);
nodes corresponding to one solution
are connected by lines

topological structure all topologically equivalent elements
of GS are shown as one subgraph
(resonance cluster) with number of

xiv
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Glossary xv

appearances for each subgraph
shown on the side

NR-diagram Graphical representation of a cluster
in k-space; allows us to reconstruct
uniquely its dynamical system

“slow” modes’ amplitudes
physical variables Aj, j = 1, 2, 3,

canonical variables Bj , j = 1, 2, 3,

amplitude-phase Cj exp(iθj ), j = 1, 2, 3,

dynamical system, primary
three-wave case i Ḃ1 = ZB∗

2 B3, i Ḃ2 = ZB∗
1 B3,

i Ḃ3 = −ZB1B2.

four-wave case i Ḃ1 = ZB∗
2 B3B4, i Ḃ2 = ZB∗

1 B3B4,

i Ḃ3 = −ZB∗
4 B1B2, i Ḃ4 = −ZB∗

3 B1B2.

coupling coefficient Z

dynamical phase
of a triad ϕ12|3 = θ1 + θ2 − θ3

of a quartet ϕ12|34 = θ1 + θ2 − θ3 − θ4

dynamical system, generic few connected primary systems,
corresponds to generic resonance cluster

resonance types scale-resonances (three- and four-wave systems),
angle-resonances (four-wave systems)

modes within a triad A-mode, has maximal frequency ω3,
P-modes, have frequencies ω1 and ω2

mode pairs within a quartet one-pairs: modes from one side of (**),
(ω1,ω2) and (ω3,ω4)

two-pairs: modes from different sides of (**);
(ω1,ω3), (ω2,ω4), (ω1,ω4), (ω2,ω3),

connection types
cluster of triads AA-, AP- and PP-connections

cluster of quartets V-connection (via one mode),
E-connection (via one-pair),
D-connection (via two-pair)

cluster’s reduction diminishing of the size of generic cluster
due to the criterion of decay instability

three-wave cluster PP-reduction
four-wave cluster V-reduction
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