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Exposition

“But there’s need for some proof. . .” Berlioz began. “There’s no need
for any proofs,” replied the professor and he began to speak softly, while
his accent for some reason disappeared: “It’s all very simple. . .

M. Bulgakov
Master and Margarita

1.1 An easy start

As with every new theory, nonlinear resonance analysis has not come ex caelo.
On the contrary, as Newton said: “If I have seen further it is only by standing
on the shoulders of giants.” The giants to be grateful to now are Galileo Galilei
(1564–1642), Jean Baptiste Joseph Fourier (1768–1830), and Jules Henri Poincaré
(1854–1912). The father of modern physics, an Italian, Galileo Galilei, fascinated
by the movement of a simple pendulum, identified one of the most important
natural phenomena – resonance. French politician and mathematician Fourier,
trying to understand what happens when a hot piece of metal rod is put into
water, developed the mathematical apparatus – Fourier analysis – for describing
solutions to linear partial differential equations (PDEs), without which no area
of contemporary science is conceivable. Another French mathematician, Henri
Poincaré, used Fourier analysis in order to give a strict mathematical definition
of resonance and developed a method – Poincaré transformation – allowing, under
some assumptions, to reduce the search for solutions to a nonlinear PDE to the
search for resonances. This way the foundations of nonlinear resonance analysis
were laid.

Below we begin with the mathematical problem and will return to the pendulum
in Chapter 5, for this is a very handy object to illustrate even the quite complicated
mathematical results presented in this book.
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2 Exposition

Fourier analysis

Thus, in the beginning was Fourier analysis. More precisely, in the beginning
was a discussion. From 1750–1760, d’Alembert, Euler, Bernoulli, Clairaut, and
Lagrange were involved in a prolonged and heated controversy about solutions to
the equation of a vibrating string:

ψtt − α2ψxx = 0 (1.1)

with some constant α. D’Lambert and Euler derived a functional form of the
solution

ψ = ϕ1(x + αt) + ϕ2(x − αt) (1.2)

(on an infinite line), while Bernoulli was the first to present the solution in the form
of a trigonometric series of sines and cosines of multiple variables:

ψ = A1 sin x cos αt + A2 sin 2x cos 2αt + · · · (1.3)

Bernoulli stated that his solution (1.3) included solution (1.2) as a particular case.
Euler disagreed testily, his arguments being that if this were true, an arbitrary func-
tion of one variable could be presented as a series of sines, which obviously is not
possible because an arbitrary function is not necessarily odd and periodic. With
the discussion at this stage, the young and still unknown mathematician Lagrange
appeared on the scene and tried to prove that the solution in the functional form
(1.2) is more general than Bernoulli’s trigonometric series (1.3). By an irony of
fate, Lagrange did not notice that at some intermediate step in his computations he
actually derived the explicit form of the coefficients for Bernoulli’s presentation, a
slightly different version from the form usual nowadays.

Crucial progress in this discussion was achieved half a century later, due to the
French mathematician, Joseph Fourier. This same Joseph Fourier, who had already
taken part in the promotion of the French revolution, was the governor of Lower
Egypt and secretary of the Cairo Institute, had a Chair in Mathematics in L’Ecole
Polytechnique, etc. In 1811, Fourier submitted his paper on the theory of heat
conduction (Mémoire sur la propagation de la chaleur) to the Paris Academy, as a
candidate for the Great Prize in Mathematics (Grand Prix de Mathématiques) for
the year 1812. Fourier derived the heat equation

ψt − αψxx = 0, (1.4)

developed the method of separation of variables to solve it, and laid the foundations
for what is now known as Fourier analysis. The new-born baby had its problems:
although Fourier got the prize, it was accompanied by a lot of criticisms from the
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1.1 An easy start 3

referees. The list of referees included Lagrange, Laplace, and Legendre. The list of
criticisms included accusations of the absence of rigor in his analysis, stating that
“the manner in which the author arrives at these equations is not exempt from dif-
ficulties and that his analysis to integrate them still leaves something to be desired
on the score of generality and even rigor.” A very bitter pill, accompanying the
award, was the fact that Fourier’s paper was not published in the Proceedings of
the Academy (Mémoires de l’Académie des Sciences) till 1822, when Fourier was
already the Secretary of the Academy. In all fairness, we should notice that the
publication was arranged by Delambre, not by Fourier himself. But the publica-
tion did not improve the situation much, and for the last eight years of his life he
still had to tackle the assaults of Biot and Poisson; the only difference from the past
was that the direction of the attacks changed. In 1810, the main target of Fourier’s
opponents was the incorrectness of his results, while 20 years later it suddenly
became the matter of priority.

Another half a century and the efforts of Cauchy, Dirichlet, Riemann, and many
other great mathematicians were needed to figure out the conditions of conver-
gency for Fourier integrals under different assumptions, necessary and sufficient
conditions for various classes of (piecewise) continuous functions to have Fourier
presentation, etc. Armed with our present knowledge, we can say that for the
simplest possible example – a periodic function ψ(x) of one variable, with period
2π and with

∫ 2π

0 ψ2(x)dx <∞ – two equivalent Fourier presentations can be
given in trigonometrical and complex form:

ψ(x) ∼ a0

2
+

∞∑
n=1

(an cos nx + bn sin nx), (1.5)

or

ψ(x) ∼
∞∑

−∞
cn exp (inx), (1.6)

with coefficients an, bn, cn given below:

a0 = 1

π

∫ π

−π

ψ(x)dx, (1.7)

an = 1

π

∫ π

−π

ψ(x) cos nxdx, (1.8)

bn = 1

π

∫ π

−π

ψ(x) sin nxdx, (1.9)

and

c0 = a0

2
, cn = an − ibn

2
, c−n = an + ibn

2
, (1.10)
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4 Exposition

with n = 1, 2, 3, . . . , which follows from the Euler presentation

exp (ix) = cos x + i sin x, exp (−ix) = cos x − i sin x. (1.11)

Each of the series (1.5), (1.6) converges to ψ(x) in the mean; if ψ(x) is a continu-
ously differentiable function, its Fourier series converges uniformly. For a function
of multiple variables, similar formulas can be obtained.

One of the most important developments of Fourier analysis, from the computa-
tional point of view, was the question of whether or not it is possible to approximate
an arbitrary function by a finite trigonometrical Fourier sum. The answer given
by Weierstrass in 1885 was positive: for any periodic continuous function ψ(x)

defined on a compact and any arbitrary small number ε such that 0 < ε � 1, there
exists a finite Fourier sum SN , though not unique,

SN(x) = a0

2
+

N<∞∑
n=1

(an cos nx + bn sin nx) (1.12)

such that
|ψ(x) − SN | < ε (1.13)

for any x from the definition domain of the function ψ(x). This means that Fourier
analysis can be used for the presentation of an arbitrary periodic function as a
finite set of simple terms that can be plugged in, solved individually, and then
recombined to obtain the solution to the original problem or an approximation to
it to whatever accuracy is desired or practical. With this theorem, Weierstrass in
fact laid the sound foundations for the theory of numerical methods for solving
PDEs – some 60 years before the first electronic computer was built.

Superposition principle

Notice that equations (1.1), (1.4), and many other physically relevant equations,
e.g. the Laplace equation

ψxx + ψyy = 0, (1.14)

are linear equations and can be written in the general form

L[ψ] = F, (1.15)

where L is a linear partial differential operator (LPDO) being

∂

∂tt

− α2 ∂

∂xx

,
∂

∂t

− α
∂

∂xx

and
∂

∂xx

+ ∂

∂yy

(1.16)

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-76360-8 - Nonlinear Resonance Analysis: Theory, Computation, Applications
Elena Kartashova
Excerpt
More information

http://www.cambridge.org/9780521763608
http://www.cambridge.org/9780521763608
http://www.cambridge.org


1.1 An easy start 5

for equations (1.1), (1.4), and (1.14), respectively. A linear operator preserves the
form of linear combinations of functions with constant coefficients, i.e.

L
⎡
⎣ k∑

j=1

ajψj

⎤
⎦ =

k∑
j=1

ajL[ψj ]. (1.17)

Also the initial and boundary conditions are usually given as linear equations on
the function ψ and its derivatives (see Section 1.2 for more details). As we will see
below, the principle of superposition described by (1.17) is of most importance in
Fourier analysis.

Example 1: Heat transport along a bar of finite length

To show the inner mechanics of the method, let us follow Fourier and regard heat
transport along a bar with length l. The temperature ψ(x, t) of the bar satisfies
equation (1.4) with boundary conditions taken in the form

ψ(0, t) = ψ(l, t) = 0, t > 0, (1.18)

and the initial conditions for the temperature along the bar

ψ(x, 0) = ϕ(x), t = 0, 0 < x < l. (1.19)

Assume that the solution to (1.4) has the form

ψ(x, t) = X(x)T (t) (1.20)

and substitute (1.20) into (1.4)

XTt = αXxxT ⇒ Tt

αT
= Xxx

X
≡ λ (1.21)

and obviously λ ≡ const. This way the PDE is reduced to two ordinary differential
equations (ODEs)

Tx = αλT, and Xxx = λX. (1.22)

Let λ be real, and regard cases:

Case 1: λ > 0. Solutions have the form

T (t) = A exp (αλt) (1.23)

and
X(x) = B exp

(
x
√

λ
) − C exp

( − x
√

λ
)
. (1.24)
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6 Exposition

The boundary conditions (1.18) are satisfied if and only if X(0) = X(l) = 0, i.e.

0 = X(0) = B + C, 0 = X(l) = B exp
(
l
√

λ
) + C exp

( − l
√

λ
)
,

⇒ exp
(
l
√

λ
) + exp

( − l
√

λ
) = 0 ⇒ sinh

(
l
√

λ
) = 0, (1.25)

which is not possible.

Case 2: λ = 0. This yields

Tt = 0, Xxx = 0 ⇒ T (t) = A, X(x) = B + Cx, (1.26)

and imposing the boundary conditions gives

0 = X(0) = B, 0 = X(l) = Cl ⇒ B = C = 0, (1.27)

i.e. also in this case there are no nontrivial solutions.

Case 3: λ < 0. Let λ = −µ2 with a real µ, then again the boundary conditions
(1.18) yield

exp (iµl) + exp (−iµl) = 0, i.e. sin (µl) = 0. (1.28)

The solutions of (1.28) have the form

µl = nπ, n = ±1,±2, . . . (1.29)

and correspondingly

Tn(t) = exp

(
−αn2π2t

l2

)
, (1.30)

Xn(x) = exp

(
inπx

l

)
− exp

(
− inπx

l

)
= 2i sin

(nπx

l

)
, (1.31)

with n = 1, 2, . . . . By superposition, the final form of the solution satisfying the
boundary conditions reads

ψ(x, t) =
∞∑

n=1

bn exp

(
−αn2π2t

l2

)
sin

nπx

l
, (1.32)

while the initial conditions (1.19) must have a form

ψ(x, 0) = ϕ(x) =
∞∑

n=1

bn sin
nπx

l
, for 0 < x < l. (1.33)
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1.1 An easy start 7

By imposing different boundary conditions, namely

ψx(0, t) = ψx(l, t) = 0, t > 0, (1.34)

instead of (1.18), another solution can be deduced

ψ(x, t) =
∞∑

n=1

an exp

(
−αn2π2t

l2

)
cos

nπx

l
, (1.35)

with initial conditions given by

ψ(x, 0) = ϕ(x) =
∞∑

n=1

an cos
nπx

l
, for 0 < x < l. (1.36)

Resonance conditions

As we have seen above, the linearity of a differential operator is important when
applying Fourier analysis. On the other hand, a great majority of physically rele-
vant differential equations are nonlinear. In order to show that nonlinear PDEs in
physics are not exotic, we follow [247] describing a class of problems that leads
immediately to some nonlinear PDE. In many physical problems, we need to find
some relation between two quantities, say unit density ρ of some physical entity
and its unit flow ψ , so that the velocity of a flow could be defined as ψ/ρ. Both
ρ and ψ are functions of space and time variables, ρ = ρ(x, t) and ψ = ψ(x, t).
Most physical systems have some conservation law that could be written as

d

dt

∫ x2

x1

ρdx + ψ(x2, t) − ψ(x1, t) = 0 (1.37)

for any fixed interval x1, x2, as shown in Fig. 1.1. And if ρ and ψ are smooth, then
in the limit x1 → x2 and the conservation law takes a form

ρt + ψx = 0. (1.38)

Very often there exist some intuitive or empirical considerations allowing us to
regard flow as a function of density, i.e. ψ = F(ρ), which yields immediately a
nonlinear PDE

ρt + c(ψ)ψx = 0 (1.39)

with c(ψ)=Fx(ρ). This PDE describes many various physical and technical prob-
lems, such as flood waves in rivers (wave height h plays the role of density and
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8 Exposition

Fig. 1.1 Conservation law

c(h) is the flow velocity), transport flow (ρ now is the number of cars at the unit
length of a highway, ψ is the number of cars passing a line x in unit time, and
the highway has no outlets), erosion of mountains, chemical exchange processes,
absorption, etc.

The natural question to ask is when is it possible to linearize a given nonlinear
differential equation by an appropriate invertible change of variables. It is easier to
answer this question beginning with a nonlinear ODE example.

Example 2: Elimination of the quadratic term

Consider
ψ̇ = λψ + ψ2 (1.40)

and try to transform it into the linear form

ϕ̇ = λϕ (1.41)

by the change of variables ψ = ϕ + aϕ2. Here a is an unknown parameter and
should be chosen in such a way that the term ψ2 in (1.40) disappears. It is easy to
see that

ψ̇ = ϕ̇ + 2aϕϕ̇ = (1 + 2aϕ)ϕ̇, ⇒
(1 + 2aϕ)ϕ̇ = λ(ϕ + aϕ2) + (ϕ + aϕ2)2 =

λ(1 + 2aϕ)ϕ + (1 − λa)ϕ2 + p(ϕ) ⇒
ϕ̇ = λϕ + 1 − λa

1 + 2aϕ
ϕ2 + 1

1 + 2aϕ
p(ϕ). (1.42)

The use of a series presentation of (1 + 2aϕ)−1 over the powers of ϕ allows us to
conclude that (1+2aϕ)−1p(ϕ) contains only the terms with ϕ3, ϕ4, . . . . If λ �= 0,

then the choice a = 1/λ gives
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1.1 An easy start 9

ϕ̇ = λϕ + 1

1 + 2aϕ
p(ϕ). (1.43)

Similarly, the change of variables ϕ = ζ + ζ 3 will annihilate the term with ϕ3 and
so on.

Moreover, a similar procedure can be applied for systems of nonlinear ODEs.
Indeed, let us consider a system of nonlinear ODEs of the simple form

ψ̇j = λjψj +
∑

aj (m)ψm, j = 1, 2, . . . , N (1.44)

with multiple indexes, i.e. m ≡ (m1, . . . ,mN), aj ≡ aj (m1, . . . ,mN), ψm ≡
ψm1 · . . . ψmN , and the minimal term in this sum is of the order ≥ 2, i.e. m1 +
· · · + mN = |m| ≥ 2. Again, a simple change of variables

ψj = ϕj +
∑

|m|≥2

bj (m)ϕm
j (1.45)

with some (not yet known) coefficients bj , yields a new system

ϕ̇j = λjϕj +
∑

|m|≥2

cj (m)ϕm
j . (1.46)

Let us try to choose the coefficients bj in such a way that cj (m) = 0 ∀j, m. If this
is possible, the change of variables (1.46) will linearize the system of nonlinear
ODEs (1.44). Direct substitution of (1.46) into (1.44) allows us to determine bi

only if the corresponding coefficient −λi + ∑N
j=1(mjλj ) �= 0. Otherwise, (1.46)

remains nonlinear.

Definition 1. If there exist N positive integers m1,m2, . . . ,mN, such that

N∑
j=1

mj ≥ 2 and
N∑

j=1

mjλj − λi = 0, (1.47)

then (1.47) are called in mathematics the resonance conditions for the system
(1.44). The number N is called the order of resonance.

Definition 2. The change of variables (1.45) is called the Poincaré transformation.

Theorem 1 (The Poincaré theorem on linearization of the vector field). If the res-
onance conditions (1.47) are not fulfilled, then (1.44) can be linearized by an
appropriate Poincaré transformation.

Definition 3. If the resonance conditions (1.47) are fulfilled for some set of integers
m1, . . . ,mN, then (1.46) is called the normal form of (1.44).
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10 Exposition

The normal form (1.46) is equivalent to (1.44) with all nonresonant terms being
eliminated by the Poincaré transformation. Usually, the general form of bj is not
known and is computed order by order. The combination of the Poincaré theo-
rem with the Poincaré transformation yields a fact of utmost importance, which is
indeed sound ground for the entire nonlinear resonance analysis:

A system of nonlinear ODEs, if not linearizable, can be transformed into normal
form, with the resonance term having the smallest order.

To see the significance of this issue, let us suppose that ϕ in (1.42) is small, 0 <ϕ ∼
ε � 1, and the term with ϕ2 ∼ ε2 is resonant. Then all other terms, being of order
ε3, ε4, . . . , can be neglected and a solution to

ϕ̇ = λϕ + 1 − λa

1 + 2aϕ
ϕ2 (1.48)

will give an approximate solution to (1.46), with the terms of the next order of
smallness omitted. Notice that the form of equations (1.40) and (1.48) differs only
by the coefficient in front of the second-order term:

ψ̇ = λψ + ψ2 and ϕ̇ = λϕ + 1 − λa

1 + 2aϕ
ϕ2, (1.49)

with ψ = ϕ + O(ε3). Of course, most physically relevant equations are PDEs,
not ODEs. However, the notion of resonance turned out to be so important that
physical classifications of PDEs [248] have been developed based on the fact of
whether or not a PDE might possess some resonance.

This classification, different from standard mathematical classification, will be
presented in the Section 1.2. The next step – to proceed from a nonlinear PDE
to a system of nonlinear ODEs – can be performed by a number of variation and
perturbation methods, an example is given in Section 1.2. Hamiltonian formalism
is briefly sketched in Section 1.3 for it allows us to simplify and standardize all
these methods and obtain the universal form of dynamical equations, independent
of the details of the physical system. These equations are written using canoni-
cal variables, which can be transformed back to physical variables using Fourier
transformation.

This way Poincaré’s approach works perfectly also for the case of PDEs, modulo
zero denominators in (1.48). The problem known nowadays as the small divisor
problem was regarded by Poincaré as “the fundamental problem of dynamics”
[155].

This book is devoted to the study of what is happening when divisors are zero
or small enough to cause the problem while applying asymptotical methods.
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