Index

Aaheim, A. 180
Acemoglu, D. 84
acid precipitation, and SRM 24
Ackerman, F. 285
Adams, D.M. 120
Adams, R.M. 257
adaptation policy 229
anticipatory 233, 241, 242, 245, 254
BCA 222, 285, 290: damage functions 286–7; detailed localized estimates, need for 290–1; discount rate, role of 286
and catastrophic events 234–5, 254, 258
and Climate Change Convention 222
and coastal protection 385, 388
decision making, level of 278
definitions of 227, 229, 277, 284: object of 228; process of 228; subject of 227
by developed and developing countries 245–6, 255, 258–9: assistance to developing countries 385;
composition and timing of 23–4; expenditure 243, 244
and development conditions 279–81, 282
effectiveness to severe levels of change 279
efficiency inhibitors 285
and estimates of effects of climate change 79
funding allocation 279
and health problems 385
ice core temperature record 388
and infrastructure 385
market-driven 223, 228, 258, 285: benefits to OECD countries 287; modeling of 248; timing of 228
and mitigation policies 222, 226, 248; international support for developing countries 230; level of decision making 230; optimal policy mix 286; scale of benefits 230; spatial characteristics of 230; substitutability 285; temporal characteristics of 229–30, 239, 258, 286
modeling of 80
non-market impacts 284, 287, 289
net benefits of 278–9, 282
policy-driven 223, 228, 285: expenditure on 252; timing of 228
policy settings, effect of 291
priorities 254
quantitative analysis of 285–6, 288; and catastrophic events 287; damage functions 289; equity of distribution of impacts 290; impacts of environmental change 288–9; integrated assessment models (IAMs) 284, 285, 286, 290; non-market impacts 289, 290; relevance for policy decisions 278, 284, 287–8, 290; scale of modeling 290; stochastic modeling, need for 288–9; role of uncertainty 285, 287, 288, 290
and R&D 233, 241, 242, 244, 246, 259
reactive 233, 241, 242, 254, 258
region-specific 254
sector-level knowledge 278
timing and sequencing, importance of 281
unavoidability of 277–8, 282, 285, 383, 387, 392
uncertainty, and need for increased flexibility 281–2
see also AD-WITCH model; coastal protection; DICE model; FEEM–RICE model; flooding; health; ICES model; infrastructure; integrated mitigation and adaptation strategies; PAGE model
Adaptation Fund Board 222
Adger, W.N. 78, 229
Adu-Bonnah, K. 316, 343
advanced energy technology gap (AETG) 302
AD-WITCH model 223, 233, 260
adaptation strategies 263; costs of activities 264;
modeling of activities 263–4, 270–2; path of adaptation 272
backstop technologies 262–3
calibration of adaptation 264: new information on climate change damage 266; regional gains from climate change 266; total climate change costs 266
climate change damage function 233: estimates 233–5
climate module and GHG emissions 261–2
energy sector 261
GDP data 261
policy-driven adaptation, with market adjustments 251–4
population levels 261
prices 261
structure of 260
rate of time preference 234
afforestation 133, 383, 391, 392
benefits from timber 116
costs of conversion from agricultural land 116
estimates of potential for 117
patterns of 135
potential share of carbon 119
afforestation (cont.)
use in CO₂ mitigation 116
value of carbon 116–17
Agrawala, S. 255, 256, 278
agriculture, impact of climate change on 226, 289
adaptation costs 256–7, 279
benefits of early warning systems 257
and CH₄ emissions 174
GHG sources and sinks 176
implementation of strategies 188–9
in less-developed countries 257
management changes and animal breeding 176–7
mitigation options 175, 176–7
R&D in 257
supply-side impacts
see also beef production; CH₄ mitigation
air capture (AC) 2, 9, 14, 56, 59, 391, 392
as backstop technology 382
cost estimates 15, 57: of cumulative emissions 57–8;
comparison with mitigation costs 58; technological
innovation and declining marginal costs 58–9
institutional advantages of 15
justification for 52, 53, 54, 59, 60: for BCA 56
limitations to assessment of 46
need for investment 385
possible technologies 14–15
and rent-seeking 26
and risk 46
and VOI analysis 64
see also DICE model
air-cooling systems 254
airframe production 304
Akbari, H. 14
albedo modification, of earth surface 13–14
Alberini, A. 78
Aldy, J. 307
Allais, O. 215
Allan, R. 209
Allen, M.R. 322, 325, 326
alternative combustion 344
Ambrosi, P. 371
American Clean Energy and Security Act 356
Anderson, H.R. 165
Andreae, M.O. 145, 160
Angel, R. 13, 19, 43–4
Angelsen, A. 136
Antoff, D. 3, 81, 109, 202, 204
Antinori, C. 125, 128
Antle, J.M. 125
App, M.J. 114
Archer, D. 210, 326
Arctic cooling 20
costs of 21, 22
Arctic melting
and black carbon 142, 145
and crop burns 149
Arrow, K.J. 80, 316
Arthur, W.B. 316
Ashley, R.M. 83
Asia, economic growth in 307–8
need for energy intensive products 308: infrastructure
308
Asia Pacific Partnership (APP) 154
Clean Development and Climate 341
Asian stoves, and black carbon emissions 387, 392
Association of British Insurer (ABI), flood management
254
Atkinson, G.D. 81
Atmospheric Brown Clouds (ABCs) 387
regional climate effects of 163
Auffhammer, M. 163
Austin, D. 86
Australia, CH₄ emissions in 178
Autonomous Carbon Efficiency Improvement (ACEI) 96
Autonomous Energy Efficiency Improvement (AEEI) 96
Azar, C. 209, 303, 304, 340
Babiker, M.H. 87–8
Baer, P. 290
Baker, E. 316, 343, 344, 346
Baksi, S. 300–1, 320
Balakrishnan, K. 153, 155
Bali action plan 222
Banse, M. 215
Barker, T. 86, 304
Barnes, D.F. 169
Baron, R.E. 3
Barrett, S. 12, 13, 20, 23, 25, 26, 144, 233, 298, 305, 321,
331, 340
Bataille, C. 313, 314
Bate, R. 143
Batjes, J. 205
Battelle Memorial Institute 295
Battisti, D.S. 20
BCA, objections to 9–10
and risks of different mitigation options 139
beef production
and deforestation 216
GHG emissions from 215, 216
output taxes on 215, 217: abatement levels 216; costs of
215–16
see also livestock production; CH₄ mitigation
Benitez, P. 137
Bern cycle model 218
Berndes, G. 299
Bernstein, J. 350
Berrens, R.P. 352
Berrittella, M. 79–80, 83
Bettina, M. 255
Bhagwati, J.N., personal ranking of solutions to climate
change 393
Bial, J. 25
Bice, K. 161, 162, 163
Bickel, Eric 2, 52–60, 62–73, 395

biodiversity
and adaptation practices 233

benefit of REDD 135, 138

risks to 278, 289

bioenergy, cost-effective potential of 216

biofuel policy 129

biogas generation from digesters 176

biomass
biodiversity and adaptation practices 233

bioenergy, cost-effective potential of 216

biofuel policy 129

biogas generation from digesters 176

biomass-gasifier program 165

and IPCC B2 scenario 296

limits to production 299

solid energy source and second generation biofuels 299

black carbon emissions 3, 142

benefits of reduction in 159: ability to delay warming 142, 144, 151, 155, 162; monetary value of 168; not as stand-alone policy 159, 161, 163

crop burns 148–9

decline in OECD countries 146

effects on climate 145–6, 149: absorption of solar radiation 160; contribution to warming 146, 161–2; residence time in atmosphere 142–3, 144, 145

growth in developing countries 146

mitigation of 387: in developing countries 151–2; effectiveness of 151, 386; and global warming 383; and health 383; in industrial countries 152; options for 163–5, 168

origins of 145

sources of 146–8, 160, 163

see also cook stoves; developing countries; DICE model; black carbon mitigation; particulate matter (PM) emissions

Blackstock, J.J. 20

Blanfon, G.J. 303, 310, 343

Blaser, J. 119

Blees, T. 302

Boehringer, C. 87

Bohara, A.K. 352

Bond, T. 145, 146, 147, 149, 150, 151, 152, 155, 160, 163, 164, 165, 166

Borenstein, S. 13

Borenstein, E. 362

Botset, V. 4, 138, 230, 231, 260, 311, 312, 340, 342, 343, 345, 357, 376, 396

Bosquet, B. 137

Bottcher, H. 135

Boucher, O. 146, 150

Bousquet, P. 174

Boutkan T. 302

Bovenberg, A.L. 352

Bower, K. 17

Boyce, J. 28, 75, 119, 203, 224, 226, 227, 233, 234, 261, 266, 267, 270, 287

Brandt, L. 262, 308

Breakthrough Institute 313

Breslow, P.B. 83

Brewer, T. 361

Broder, J.M. 13

Brouwer, R. 76, 107

brown carbon, contribution to atmospheric warming 145

Brown, Gordon, funds for climate policies 393

Brown, S. 118, 128

“brute force” mitigation, see induced technological change

Buonanno, P. 247

Burniaux, J.M. 340

Burton, I. 227

Burton, M. 215

Burtraw, D. 87–8

Bush, J.C. 135

Butt, T.A. 233

Cachó, O. 126

Caldeira, K. 12, 18, 19, 20, 22, 24, 26, 27, 210, 320, 331

Callaway, J.M. 257

Cao, L. 12

cap-and-trade schemes 341

ineffectiveness of 395

see also carbon pricing

Caparrós, A. 233

capital stock, slow turnover in 144

carbon capture and storage (CCS) 14, 298–9, 302, 347, 385, 392, 396

continued use of fossil fuels 343

costs of 4, 86, 343–4

downside of 343

and enabling technologies 318

finance for demonstration projects 344

importance of research 383

leakage liability 301, 344

public acceptance of 344

R&D investment role 344: additional benefits and costs of 346; barriers to 346; BCR using WITCH model 344–6; diversification of risk 346; knowledge spillovers 346

storage problem 301, 344

carbon dioxide (CO2)

benefits from reduction 161

and carbon emissions reduction wedge 161–2

and deforestation 114, 117, 118

and exhaust particulate traps 166–7

effect on global average surface temperature 209–10

emission reduction policies 2–3, 95–6: ambient concentration of CO2 91; BCRs 92–4, 107–8, 112; carbon tax 111; costs 91, 111; economic impacts 91; importance of long-term policy 91, 107, 111–12; justification for 2, 85, 95; possible scenarios 90–1, 95, 107–8, 111; ranking options 74; target comparisons 162; timing of effects 78; uniform carbon tax 74

in IPCC B2 scenario 296

marginal social costs of 211: and sensitivity to discount rate and climate sensitivity 211–12
400 Index

carbon dioxide (CO₂) (cont.)
and shadow prices 211, 212–13
size of reduction needed 136
see also carbon pricing; DICE model; FUND model;
GHG emissions

carbon intensity of output (CIO) 320
and carbon intensity-reducing R&D curve 320
constant average annual rate of decline 319
and emission reduction targets 320–1
historic rate of reduction 319
rate of decline in (RCIO) 305
straight-line rate of decline 319
trend rate of growth 320

carbon leakage 307

carbon mitigation 3
and adaptation 3, 4; economic analysis of 4; cost of stringent targets 384, 387; impact of climate change on developing countries 389

carbon neutral energy, need for 296–8

carbon policy, and R&D policy 343

carbon pricing 306–7, 310
automatic rise in 307, 309
and carbon leakage 307, 312
dedicated carbon tax 317, 333: benefits of 386; on developed countries 384; management of 317–18; and private equity 318; as response to climate change 384, 395
effects of differences/rises in 87
and finance of long-term R&D 293, 307, 309, 333
harmonization of prices 307
ineffectiveness as main tool 294
influence of firms vulnerable to 352
Nordhaus’ optimal policy with low-cost backstop 311
price caps, and investment in innovation 351
private energy response to price signals 352
relationship with technology-led policy 302, 303–4, 310–11, 329
as signal for technological investment 349–53, 354
and technological breakthroughs as price signal 311
unacceptability of high price 311–12; in Canada 313–14; dependence on coal of major emitters 312; energy intensity of industry groups 312; in Europe, Emission Trading System (ETS) 312; US Waxman-Markey Bill (WM) 313

carbon sequestration technologies, EU and China technology transfer 341

carbon-based fuel
global impacts of 159
pollutants from 159

carbon-free energy sources 86

carbon neutral technologies 295
availability of 329
breakthrough technologies 318
deployment of 304–5, 306
and enabling technologies 318
funding of 306

immensity of challenge 329, 332–3
and IPCC B2 scenario 296, 300, 301
and R&D commitments 306
rate of energy intensity decline
retrofit technologies 302
scalability of current technologies 301
technology gap 302
technology transfer to developing countries 309
see also biomass; CCS; geothermal; hydroelectricity;
nuclear; ocean wave energy; solar/wind energy
Carl, J. 152, 155
Carlsson-Kanyama, A. 215
Carmichael, C.G. 83, 160, 162, 163, 387
Carraro, C. 3, 230, 284, 285, 286–7, 288, 289–90
Cederberg, C. 216
Ceronsky, M. 82
CGAP 152, 153, 154
Champ, I.A. 84
Chen, R.S. 85
China
carbon burning technologies 365
CO₂ emissions in 371
CH₄ emissions and mitigation potential 177, 178, 183, 184, 189
crop burns 149
and demand for energy-intensive products 308: and needs of infrastructure 308
economic reform in 307–8
growth of black carbon emissions 146, 148: reduction of black carbon from diesel-fueled buses and trucks 164, 165–6; replacement of cook stoves 154–5; replacement of domestic coal by LPG 164–5, 169
importance of innovation 372
Christoffersen, P. 20
Chu, Steven 13
Cicerone, Ralph, and CE 13
Ciscar, J.C. 285
Clarke, L.E. 90, 316
climate change
benefits of black carbon mitigation policies 167
biodiversity effects 84
and crop productivity 228
definition of 223
distribution of impacts 278
extreme scenarios 84, 110, 173, 224: impact on rich nations 226
gains and losses from 252
GHG emissions 10, 11
gradual change 11–12: geographic differences 12
and health 85
and labor productivity 85
long-term effects of 84
negative consequences of 208, 224
ocean acidification 12
policy implications 11
rapid change 12: and SRM technologies 15
scientific understanding 11
signs of 208
and stabilization of CO₂-eq 173
and technology change 316
timescale of technological changes 12–13
uncertainty of 95
violence, intensity of 85
see also climate change, economic impacts of; tipping points
climate change, economic impacts of
application of CBA 209
calculation of benefits of emission reductions 208, 209, 216
costs of 224–5
damage estimates using AD-WITCH model 233–4
economic models 284, 287, 289
effects on growth 84–5
market and non-market impacts 224
measurement of welfare impacts 74, 76, 78, 80; effect of doubling GHG emissions on economy 76–7;
estimates over time 78–9; missing impacts 83–5; net gains and losses of warming 77–8; enumerative method approach 74–5, 76, 80, 106; statistical approach 76, 106; uncertainties 79, 83
need for global policies 111
numbers of assessments of 106
regional effects and marginal costs 81
subjective method 107: disutility of (perceived) risk 107
climate engineering (CE) 2, 13
B/C analysis of 9, 10, 27–8; limitations to 52, 53, 54, 56;
non-optimal policies 10; R&D investment in 10
counterfactual analysis 27–8, 52
DICE model, problems with 55
direct benefits of 27
indirect benefits of 27
long-term management of climate change 62
need for R&D investment 55, 382, 395; pressure against research 63, 66
as technological fix 45–6, 59; assessability of effects 59–60; cause–effect relationship between problem and solution 59; solution to social problem 60
as stand-alone solution 139
and transaction costs on 46: political 54, 60
unintended consequences of 63
use with GHG control measures 21
see also air capture; DICE model; SRM; VOI analysis
climate policy
emission reduction targets 87–8, 330; and accountability 330
existence of on-the-shelf technologies 304
immensity of technological challenge 329
need for prior focus on technology gap 305
see also forest sequestration programs; geoengineering; SRM
climate variability 278
Cline, W.R. 74, 89, 206, 334
cloud condensation nuclei (CCN), generation of 13
see also marine cloud whitening
corals, and acidification 12
corell, R.W. 12
COSEPUP 54
crop burns, contribution to black carbon emissions 148–9
crops, productivity of 267–70
and biomass 299
Crutzen, P.J. 13, 18, 27, 34, 42, 306, 331
Dai, A. 55
Dang, H.H. 232
Darwin, R. 79–80, 248
Dasgupta, P. 209, 316
David, P.A. 356
Davidson, M.D. 82
De Angelo, B.J. 176, 177, 181, 182
de Bruin, K.C. 232, 247–8
de Cian, E. 3, 284, 285, 286–7, 288, 289–90
de Connick, H. 361
de la Chesnaye, F.C. 174, 175, 193
de Zeeuw, A. 340
decarbonization 86
and reduction of global emissions 292–3
de Chezleprétre, A. 341–2, 371, 376
decision making, on technology-led policy 349
centralization of 353
mitigation potential 175, 194: BCRs 187; MACs 183–4, 185–6
mitigation procedures 177–8
rational differences in emissions 178
coastal protection policies 255
adaptation costs 279
Cofala, J. 146, 148, 149, 150
Cohen, L.R. 22, 26, 354
combustion, improvement in 148
Commonwealth, CH₄ emissions from natural gas 178–9
compensation, for worsening climate 80
computable general equilibrium (CGE) models, use in climate change research 248
limitations of 248
Conservation Reserve Program (CRP) 126
cook stoves, replacement of traditional stoves 164
cost-effectiveness of 167
institutional barriers to 169
social benefits of 167–8
Cooke, W.F. 149
cooling power plants, costs of 83
Cooper, R.N. 10
Copenhagen Climate Summit, failure of 1
commitment to ends rather than means 292
Copenhagen Consensus on Climate 1, 4, 9
discounting guidelines 198, 202–3, 204, 211
global prioritization process 1–2
and shadow prices 216
spending schedule 198–9, 203; funding for proposals 396; and net benefits 203; ranking of proposals 381–2
coral reefs, and acidification 12
Corell, R.W. 12
Copenhagen Consensus on Climate 1, 4, 9
discounting guidelines 198, 202–3, 204, 211
global prioritization process 1–2
and shadow prices 216
spending schedule 198–9, 203; funding for proposals 396; and net benefits 203; ranking of proposals 381–2
coral reefs, and acidification 12
Corell, R.W. 12
Copenhagen Consensus on Climate 1, 4, 9
discounting guidelines 198, 202–3, 204, 211
global prioritization process 1–2
and shadow prices 216
spending schedule 198–9, 203; funding for proposals 396; and net benefits 203; ranking of proposals 381–2
Index

deforestation
 and beef production 216
 and palm oil 217
reductions in 133, 383, 386, 392; benefits of 135; costs involved in 117–18, 135; importance of 117, 123; options for 137–8; patterns of 135; role of uncertainty 135, 136, 137, 138
share of carbon potential from avoidance in temperate zones 114
in tropics 114
see also land competition

Deke, O. 248
Delhotal, K.C. 175, 177, 182, 183, 184
Dell, M. 85
Denholm, P. 299
Denman, K.L. 98
developing countries
 adaptation funding for 279, 282
 attraction of technology-led policy 309
 and carbon prices 307, 309
 effect of climate change on 389: costs of 225–6
 GHG mitigation commitments 365; and UNFCCC emission reduction mandates 308–9
 need for technology transfer 309, 389
 vulnerability to climate events 279
see also developing countries, black carbon mitigation in; technology transfer
developing countries, black carbon mitigation in acceptance of carbon limits and institutional change 143, 144, 151, 155, 168
allowance for poverty 152–3
benefits of black carbon removal 144
emissions in 151
energy in 148
experiment with different approaches 154
growth of 142, 146
and health 160, 163: differing sources of emissions 163; popularity of health effectiveness measures 167
improvement of emissions inventory 153
incentives for 152, 154
indoor cooking stoves: and culture 148; and health effects 146, 148, 152, 155; and poverty 146–8; replacement of 154–5
micro-finance services 153
policy recommendations 153–4
targeted policies 151–2
use of technology 153
see also technology transfer
diarrheal disease, effects of climate change on 255–6
DICE (Dynamic Integrated Model of Climate and the Economy) model 27, 39–40
air capture (AC) on all US auto emissions 37–8; benefits of AC 39
and black carbon mitigation 155: BCA of 154–5, 167–8; data limitations 150; estimates of future levels 150; minimization of global cost 150; particle traps on existing vehicles 151; uncertainties in 149
change to carbon cycle equations 29
changes to radiative forcing equations 28–9
and CE impacts: delayed CE and optimal controls 34, 41; limiting temperature change 34–6; with no controls (NC) 30–1; with optimal controls (OC) 31–4
comparison of economic benefits of AC and SRM 37, 38
damage measurement 29
disability adjusted life years (DALYs) 28
mitigation and adaptation in 247
low discount rate (The Stern Review) scenario 36–7: marine cloud whitening 41
use of two-stratum model 29
diet change, and decreased GHG emissions 215
dietary additives, and CH4 emissions 176–7
discounting
derdescriptive approach 203
Ramsey equation 203, 204
under uncertainty 203, 204
Dixit, A.K. 137
Dorland, C. 83
Dosi, G. 303
Dowlatabadi, H. 78
Downing, T. 209
Eardley, D.M. 20
Easterling, W.E. 280
Easterly, W. 25, 84
Ebi, K.L. 255–6
eco-systems services, benefit of REDD 135, 138
Edenhofer, O. 304
Edgerton, D. 12
Edmonds, J.A. 295–6, 298, 309
Ehhalt, D.H. 218
elasticity of marginal utility 81
electricity generation, and enabling technologies 318
Eliasch, J. 119
Eliasch Review 135
Ellis, J. 361
EMF14 Standardized Scenario 205
emission reduction targets
cost estimates 86–7: increases and decreases in 87–8
cost surveys 86
GB 314, 315, 346
global 315
Japanese commitment to 315
obsession with 330
options for 85
and technology transfer 363
UK Climate Change Act 315
in US 315
Emission Trading System (ETS) (EU) 312
energy balance, human effect on 292
energy consumption
and adaptation practices 232–3
and control of GHG emissions 294–5
Index 403

Cambridge University Press
978-0-521-76342-4 - Smart Solutions to Climate Change: Comparing Costs and Benefits
Edited by Bjorn Lomborg
Index

More information

and households 267
impact of climate change on 226
and increased efficiency 85–6
Energy Information Administration (EIA) 371
energy intensity decline, and efficiency 300–1
Energy Modeling Forum 86, 362
see also FUND model
energy technologies
approach to climate policy 4
demand- and supply-side influences on 303–4
see also technology-led approach to climate policy
ergy technology rate 317, 333
and technology transfer 317
environmental services, valuation of 80
environmentalists, objections to SRM 25–6
equity, and differential climate impacts 284, 288, 290
EU Trading System (ETS) 341
European Commission 222, 226, 279
R&D spending 342
European Environment Agency (EEA) 222, 227, 256
European Patent Office (EPO), applications for patents 371
Ezzati, M. 160, 164
Faluvegi, G. 160
Fankhauser, S. 4, 74, 75, 76, 80, 81, 85, 89, 206, 226, 228, 255, 256, 278, 281
Fargione, J. 299
Farrell, A.E. 262, 299
FDI, and technology transfer 361
capital inflows 270
feeding practices, of livestock 176–7
FEEM–RICE model, comparison of adaptation and
mitigation policies in 247–8
Feingold, G. 388
Fiore, A.M. 213–14, 215
Fisher, B.S. 180, 295
Fisher, C. 86, 340
Fisher–Tippett distribution 81
Flettner, Anton, rotor system 16–17
flooding 83
and anticipatory adaptation strategies 254–5
see also coastal protection
Foley, J.A. 135
forest carbon sequestration 114, 130
adaptation to long-term effects of climate change 137
additionality problem 127–8, 130, 134
assessment using land-use model and DICE model
119–20, 130: implications for policy design 122;
interest-rate sensitivity in B/C estimates 123–4;
onoptimal policy scenario 120–1, 126–7; overall
temperature increase limited to 2°C 120–2; two
scenarios using model 133–4
and biofuel policy 134, 135
and carbon storage 383
costs of 118–19, 129: comparison between tropical and
temperate zones 119; implementation and
management costs 115; MMV costs 115, 125, 130,
134, 136; opportunity costs 115, 116, 118; other
transaction costs 115–16, 118, 125–6, 130, 134;
system-wide adjustment costs 116
demand for food 134
design of policy 125: implementation difficulties 130–1
large-scale land use change in frontier regions 126:
incentives for 126
leakage problem 128–9, 131, 134, 136
need for caution 138
other benefits of 131
as part of strategy to mitigate climate change 125, 133,
134, 138–9
role of markets 125
as stand-alone policy 129, 134, 139
value of carbon 116–17
see also afforestation; biofuel policy; deforestation;
forest management
forest management 133, 383
increase in rotations 118
new planting and change in type 118
share of carbon potential from 119
Forster, P. 88, 98, 160, 210, 211
fossil fuels, global energy requirements 294
Fuchs, C. 85
Fuglestvedt, J.S. 211
FUND model, on impacts of climate change and climate
policy 3, 88–9; 199, 204–5
advantages and disadvantages of 112
availability and simulation of policy instruments 110
calculation of emissions 110
climate impact module categories 89, 206
CO2 storage/emission in terrestrial biosphere 98:
radiative forcing 98
CH4 emissions 97, 98
costs of emissions reduction 96–7
description of CO2 emissions 96, 98: permanence
of 96
endogenous perturbations 205–6
land-use change/deforestation 97
limitations to its usefulness 112–13
monetization of impacts 89: and climatic optimum 89
N2O emissions 97, 98
regional/global knowledge stocks 97
SCC estimates 89–90
scenario definitions 205
SF6 emissions 97, 98
SO2 emissions 97
structure of 109: link between costs and GDP 110; link
between impacts and national income 110;
reliability of key features 110
and technological progress 110
time periods used 205
vulnerability to change 89
welfare impacts 205
Fuss, S. 3
Füssel, H.M. 229
Gaertner, M. 74, 82, 85
GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) model 135
Galiana, I. 4, 341, 395, 396
Gallaher, M. 177, 178, 179, 183, 184
Gallup, J.L. 84
Galon, O. 85
Garnaut, R. 285
Gaskill, A. 14
Gelencsér, A. 145, 160
geoengineering (GE) 9
premature adoption of 306
risks involved 139
geothermal power 300
Gerbens-Leenes, W. 299
Germany, and EU ETS 303–4, 308, 312
GHG emissions and agriculture 189
assessment of reduction benefits 143–4
development of new technologies 371: and developing countries 371, 377; effectiveness of technology transfer 377
differing bases for projections 81
direct control of emissions, problems with 294–5
and discount rates 81
economic growth in transition countries 307
energy technology changes 293
and forestry 120–3, 130: implications for policy design 122; long-term consideration of options 130
increase in 172
indirect costs of controls 23
international cooperation on reductions 143, 360
IPC B2 scenario 296
magnitude of problem 292–3, 295, 302
marginal cost estimates 80, 81
reduction targets 314–15, 330: and current technologies 315; failure of 395; and rate of de-carbonization 320–1
sample and distribution characteristics 82–3
slow removal from atmosphere 144
time preferences 82
total impact of climate change 80–1
and uncertainty 81, 82, 83
underestimation of necessary technological change 295–6
use of “frozen technology” baseline 296, 301
see also Kyoto CDM, Protocol; technology-led approach to climate policy; technology transfer
Gillingham, K. 90
Gitay, H. 84
Glachant, M. 371, 376
Global Biomass Optimization Model (GLOBIOM) 135, 138
Global Carbon Project 11
global carbon regulation, and CH4 mitigation options 195
Global Forest Model (GFM) 135, 138
Global Nuclear Energy Partnership (GNEP) 302

global warming
benefits of 25, 78, 83; decline in 78
catastrophic outcomes 270: and technological development 384–5
consequences of 1, 384
contribution of atmospheric brown clouds 387
effects on agriculture 80
impacts in low-income countries 78: policy implications of 78
regional radiative forcing 387
response to 1: economic research on 1, 2; political 1, 2
target temperature threshold 226
see also climate change
Global Warming Potential (GWP) 149, 212, 213
and Global Temperature Potential (GTP) 149–50
and social cost of carbon estimates 210
use for conversion rates in economics 198, 202
Goes, M. 26, 34, 45, 54, 55
Goldewijk, C.G.M. 205
Gollier, C. 203
Golub, A. 137, 180
González, A.D. 356
Goto, A. 350
Gouldner, L.H. 97, 215, 352
Govindasamy, B. 19
Grahame-Rowe, D. 57
Great Barrier Reef, loss of 289
Green, C. 4, 293, 300–1, 302, 308, 317, 320, 341, 395, 396
Greene, D. 296
Grieg-Gran, M. 119
Grieshop, A.F. 3, 161, 163
Griliches, Z. 350
Guo, J. 203
Gusti, M. 135, 138
Ha-Duong, M. 14
Haigler, E. 164–5, 166, 168
Haines, A. 85
Hall, B.H. 356, 374
Hallegatte, S. 281
Hambrey, M.J. 20
Hammit, J.K. 98
Hamwey, R.M. 14
Hanemann, W.M. 224, 341
Hansen, J. 136, 149, 292
Harvey, L.D.D. 84
Hascic, I. 371
Hasselman, K. 98
Hausker, K. 167
Haywood, J.M. 160
Heal, G. 328
health, impact of climate change on 28, 224, 225, 289
and adaptation strategies 255–6: cost-effectiveness of 256, 279; R&D in 257
black carbon reduction 142, 144, 146, 148, 152, 155, 160
and domestic stoves 164–5
and heavy-duty diesel vehicles 165–6: and repair of super-emitters 167
mitigation effects 349: air-quality improvement and climate damage 357, 358; certainty of 357–8
Hedenus, F. 3
Held, H. 304
Hendriks, C. 345
Hepburn, C.J. 108, 203
Herzog, H. 301
Hill, J.N. 86, 96
Hitz, S. 78
Hoehn, H.F. 118
Hoel, M. 340
Hoffert, M.I.K. 297, 300, 301, 302, 329
Hoffman, V.H. 303
Hohmeyer, O. 74, 82, 85
Holdren, John, and CE 13
Holloway, T. 357
Hope, C.W. 75, 77–8, 83, 174, 190, 203, 247
Horowith, J.K. 80
Houghton, R.A. 114
Hourcade, J.-C. 86, 96
Houser, T. 308
Hu, Z.-Z. 23
Huq, S. 232
hydroelectricity 298
ICES model, and market-driven adaptation 223, 249, 251, 267
and autonomous adaptation 250–1 and catastrophic events 224: impact on rich nations 226 damage functions 251, 260 geographical disaggregation of 249 regional gains/losses 270 supply- and demand-side 267–70 IMAGE 100-year database 205 IMAGE Team 98
India
black carbon emissions 146, 148: advantages of reduction policies 152; cook stove initiative (Project Surya) 153, 154–5, 164–5, 169; diesel-fueled buses and trucks 164, 165–6
CO2 emissions in 371
CH4 emissions in 178
monsoon dependency: effects of SRM 23–4: effects without SRM 24
induced technological change (ITC) 303, 349 and abatement costs 358 and centralized decision making 353, 358 insufficiency of price signals for 349–53, 354 and investment 356, 358: MAC 356 and learning-by-doing (LBD) 304: backstop technologies 304 and technological breakthroughs 304 time inconsistency in long-term investment funding 304 uncertainty 351, 355, 358 willingness-to-pay (WTP) 352 industry and power generation, and black carbon emissions 446 industry consortia, and R&D 353 infectious disease, and climate change 85 infrastructure, and adaptation policy 254–5, 286 Ingham, A. 229, 230, 232 innovation, and environmental policy 341 see also R&D; technology-led policy insulation 254
integral fast reactor project 302
integrated adaptation and mitigation strategy 230, 232, 278, 282
BCRs 254
in cooperative setting 237–9
integrated assessment modeling (IAM) of climate change, technology transfer issues 362 international environmental agreement (IEA) 175, 179, 182, 183, 184 report on CCS 344 technology transfer 362
International Institute for Applied Systems Analysis (IIASA) 135, 211
International Partnership for a Hydrogen Economy 341 IPCC 11, 53, 176, 177, 189, 193 adaptation 227, 228, 234; timing of 228 AC 57–9 anthropogenic GHG emissions 360, 366 Assessment Report 172–3, 174 availability of technologies 304 B1 emission scenario 172, 173 B2 scenario 296, 301, 320 barriers to stabilizing climate 293 carbon neutral technologies 295, 301, 305 CCS costs 58 climate sensitivity 211 emission abatement 86 forest carbon sequestration 114, 118 global average surface temperature 208 length of CO2 stay in atmosphere 144 projections of climate change 223 radiative forcing 55 rate of energy intensity decline 300 and technology 311 and technology transfer 360, 361, 362
Iwamura, T. 157
countries 308; emission reduction targets 330; failure of 11; and innovation 341–2
Kypreos, S. 263
labor productivity, and climate change 267
Lackner, K.S. 14, 37, 57, 302
Lal, M. 23
land competition and biofuel policies 135
costs of REDD and REDD+ 135, 138
in long run 134, 138
landfills, and CH4 emission 174
mitigation potential 175: capture strategies 177; change in waste management practices 177; and MAC 182–3, 185–6, 194; national differences 177
Lane, L. 2, 11, 13, 15, 18, 19, 26, 27, 52–60, 62–73, 395
Larsen, B. 146
Latham, I. 13, 16, 40, 42
Latin America
CH4 emissions from natural gas 178–9
development priorities 2
Layard, R. 364
Lazo, J.K. 255
Leary, N.A. 228
Lecocq, F. 230, 371
Leggett, J. 88, 97, 205
Lelieveld, J. 178–9
Lenton, T.M. 13–14, 15, 18, 40, 41
Less, C. 361
Levine, R. 84
Lewis, N.S. 299, 320
Li, H. 352
Liberty ships 304
Lightfoot, H.D. 301, 302, 308
Lim, B. 227
Lindmark, M. 86
Link, PM. 84, 205
Lipper, L. 126
liquefied natural gas (LNG), and CH4 emissions 179
livestock production, and CH4 emissions 174, 185–6
mitigation potential 175, 176, 193–4: and BCRs 187; and MACs 181, 185–6; obstacles to 383
mitigation strategies 176
and N2O 177
see also CO2 mitigation
Long, S.P. 78
Love, M. 299
Lovely, M. 372
LPG stove program 165
Lubowski, R. 120
Lucas, P.L. 173, 175, 176
Lucas, R.E. 304
Lunt, D.J. 55
MacCarty, N. 165
MacCracken, M.C. 13
impact on global tropospheric O3 level 213: benefits of abatement 213–14; and biospheric carbon stock 213
IPPC B1 emission scenario 172, 193
marginal social costs 211, 214; sensitivity to discount rate and climate sensitivity 211–12
relative value of 217
shadow prices 211, 212–13
sources of 174, 217: decrease in 175; increase in 174–5
see also beef production; livestock production; methane mitigation
methane clathrate mining 195
methane mitigation 3, 383, 386
in agricultural sector 217
CBA 199, 203: assessments 186–7, 190, 194; BCRs 202, 217–18; benefit estimation 180–1, 189; in coal mining 217; comparison with CO2 mitigation solution 200–1, 204; Copenhagen Consensus spending schedule 200, 201–2; cost estimation 180, 189; effect on long-run temperature projection 199–200, 204; models 179–80; net benefits without time restriction 200; overall mitigation potential 185–6, 187–8; uncertainties in climate projections 202
emission of other GHGs 177
implementation barriers 189; costs of 189; geographic concentration of emissions 189
important supplement to CO2 mitigation 193
marginal abatement costs 179, 185, 187, 188, 190, 194; negative 189; and social cost of carbon 186, 192
and natural gas (NG) 217
oxidization to CO2 175, 177
potential for 172, 175, 193, 194
recommendations for 190–2, 194–5; and current/future emission scenarios 193; including all sectors 192, 194; without agriculture 192–3, 194
regulation, monitoring, and enforcement 193
removal from atmosphere 176
and solid waste management 217
use in energy generation 177, 178, 183, 193
see also agriculture; coal mining; landfills; livestock production; wastewater; wetland rice cultivation
methanotrophic biotrickling filters 176
Metz, B. 262, 293, 307, 316
micro-finance institutions (MFIs), role in development countries 153
MimiC (Multigas Mitigation Climate) model 211, 218
abatement costs 218
baseline scenarios 218
damage function 218
energy balance model 218
radiative forcing 218
MIT 298, 301
mitigation 277
expenditure on 252
free-riding problem 230, 235
high-level decision making 230, 278
international coordination 230
optimal amount of 285, 287
policy 112–13
role of 284
targets 257
see also adaptation; integrated mitigation and adaptation strategy

Molina, L. 160
Molina, M. 160
Monni, S. 177, 182, 183
Montgomery, D. 3, 11, 13, 15, 26, 143, 304, 316, 319
Moran, Dominic 84
Morgenstern, R.D. 86
Munich Re Insurance Co. 224
Murray, B. 116, 118, 120, 128, 136, 138

N2O emissions, and CH4 mitigation practices 177, 189
Nadiri, M.I. 350
Naidoo, R. 137
Nakicenovic, N. 88
Narain, O. 373
Narita, D. 89
National Commission on Energy Policy 342
National Academy of Sciences (NAS) 13, 18, 42, 344
National Adaptation Programme of Action (NAPA) 257
National Research Council (NRC) 29
National Roundtable on the Environment and the Economy (NRTEE) Canada, cap-and-trade approach to carbon pricing 313
implications for competitiveness 313–14
likelihood of take-up by other countries 314
natural gas (NG) and CH4 emission 174, 178: mitigation potential 175, 178–9, 184–6, 187, 194; mitigation strategies 178
supply in developing countries 166
Naughton, B. 308
Nelson, R. 14, 15, 22, 45, 59, 350
Nemet, G.F. 4, 263, 303, 321, 342, 351, 352, 357
Newberry, D. 203
Newell, R.G. 142, 316, 340, 341
Nichele, V. 215
Nicholls, R.J. 83, 84, 255
Nisbet, R.E.R. 174
Nol, R.G. 22, 26, 354
non-fossil energy, costs of 86
and DICE model 322
Norim Group, R&D and CE 20

North Atlantic Thermohaline Circulation (THC), possibility of shutdown 162
North, D.C. 10, 26
Noy, I. 279
NRC radiative forcing 55–6
nuclear power and non-carbon emissions 294, 296
reprocessing of waste 302
resource and storage limits 298, 301–2

O’Brien, K.L. 78
Obama, Barack, climate policy funding 393
ecean acidification 12, 83
policy response to 12
ocean circulation patterns 84
disruption of 12, 20
cean wave energy 300
ilk and gas, demand for 267
Okubo, S. 350
Olson, M. 26
Olsthoorn, A.A. 84
Oppenheimer, M. 25
organic carbon 145
and open biomass burning 146, 160: contribution to Atmospheric Brown Clouds (ABCs) 163; cooling effect of 163
and use of heavy-duty diesel vehicles (HDDVs) 166
output taxes, effects of 215
O3 depletion, and SRM 24

Paavola, J. 78
Pacala, S. 15, 161, 299
PAGE model, adaptation policies in 247
Pagiola, S. 137
Pakes, A. 374
Parr, M.L. 80, 208, 222, 224, 230, 232, 234, 261, 285
particulate matter (PM) emissions, and HEDDS 165–6, 169
cversion to CNG 166, 168
exhaust particulate traps 166–7
repair of super-emitters 167, 168
patents and R&D decision making 353
and technology transfer 341
Pathak, H. 177
Patrinos, A.A.N. 20
Patzek, T. 299
Pearce, David, W. 84
Pearson, J. 13
Pepper, W.J. 205
perfect information 67, 68–9, 70, 72
Petts, A. 146, 149
Philibert, C. 340, 361
Pielke, R.A., Jr. 2, 14, 16, 37, 45–6, 56, 57, 232, 293, 295–6, 302, 315, 331
Philosofou, O. 228
Pimentel, D. 299
Pindyck, R.S. 137
Index 409

Pizer, W.A. 74, 142, 307
Plumberk, E.L. 75
Plantinga, A.J. 120
plutonium, “spiking” of 318
Popp, D. 4, 316, 321, 371, 372, 373
post-combustion removal 344
Povatello, A. 174, 175, 176, 181
Prather, M. 218
Pratt, J.W. 74
pre-combustion carbon capture 344
Prins, G. 330
prizes, for R&D 353
Project Surya 153
public policy decision making, using VOI analysis 71, 72
public policy, volatility of 351, 354
Quiggin, J. 286

R&D

carbon intensity-reducing return to R&D investment 319
collective action problems 349, 358
competitive development 356
crowding-out problem 321
development of energy technologies 385, 386
diversification 347
funding for 317: dedicated carbon tax 317, 391–2, 396;
long-term finance from carbon pricing 293, 307,
309; management of 317–18; need for expansion
303, 342, 350; WTP 351–2
by governments 316, 329, 353: and competition 316–17;
and expertise 353–4; and low carbon price 354;
performance management 354; time-consistency
problem 354
incentive compatibility 319
and industrial organization 316
international distribution of, and social returns 343
need for private and public sector funding 315, 396:
private sector investment in 319, 325
private sector response to carbon price signals 352
private and social rates of return to 374
and reduction in replacement technology costs 143, 144
role of patents 316
scientific talent, in East and South Asia 321
as stand-alone policy 340–1, 343
subsidies as climate policy tool 373
uncertainty 303, 343, 349, 388; and induced
technological change (ITC) 303; of returns to
investment 355
see also CCS; carbon pricing; technology-led approach
to climate policy
radiative forcing; see marine cloud whitening; stratospheric
aerosol injection
rainfall patterns
and black carbon 145
effect of SRM strategies on 23
marine cloud whitening 24
Ramanathan, V. 143, 144, 145, 151, 153, 155, 160, 162,
163, 167
Ramankutty, N. 137
Ramaswamy, V. 160, 218
Ramsey, F. 81
Rapoport, J. 350
Rasch, P.J. 23, 24, 42
Rau, G.H. 12
Rawski, T. 308
Rayner, S. 330
Reddy, M.S. 146, 150
Rehdanz, K. 75, 76, 80
Reilly, J.M. 87, 212
Repetto, R. 86
residential biofuel, and black carbon emissions 146–8
residential coal use, and black carbon emissions 146
Reynolds, C.C.O. 3, 165, 166
Riahi, K. 311
Richards, K. 117, 119, 212
Richardson, C. 288
Richardson, K. 209
Richels, R.G. 13, 87, 198, 212
Ridgwell, A. 14
road transportation, and black carbon emissions 146, 148
Robbins, C.A. 350
Robledo, C. 119
Robock, A. 13, 18, 19, 20, 21, 22, 23, 25, 42, 55
Rodgers, A. 165
Rose, A. 373
Rosen, D. 308
Rosenthal, E. 148, 155
Roson, Roberto, on FUND model 3
Royal Society, The 12, 213
ruminants, enteric fermentation and methane 174
Russia, CH₄ emissions in 178–9
mitigation potential 184, 189
Rypdal, K. 149, 150, 151
Saen, H. 81
Saggi, K. 361, 375
Sailor, D.J. 83
Salter, S. 16–17, 22, 24, 41
saltwater intrusion in groundwater 83
Sandén, B.A. 303, 304, 340
Sarewitz, D. 14, 15, 45, 59
Sathaye, J. 125, 128
scalability, of technology, and enabling technologies 301
see also storage
Schaefer, A. 83
Schelling, T.C. 12, 13, 78, 91, 279
personal ranking of solutions to climate change 389
Schellnhuber, J. 287
Scherer, F.M. 304, 350
Schill, W.-P. 3
Schimmel, D. 98
Schlesinger, M.E. 78, 206
Index

Schmidt, G. 326
Schmutzler, A. 215
Schneider, S.H. 85, 97
Schrag, D.P. 20
Schumpeuter, J.A. 316
Scruggs, J. 300
sea ice, loss of 83
sea levels, rise in 20, 84, 85, 254, 267–70, 289
adaptation to 255, 258
and design of Confederation Bridge 281
Searchinger, T. 129, 299
Searle, A.D. 304
Sedjo, R.A. 117, 118, 119
semiconductors 304
Shahpar, C. 164, 165
Shalizi, Z. 230
Shindell, D.T. 160, 214
Shine, K.J. 149–50
Shogren, J. 230–1
Siniscalco, D. 230
Sinton, J.E. 169
Sleipner field project 298
Smalley, R. 332
Smit, B. 78, 227, 228, 229
Smith, A.E. 2, 44, 45, 139, 304, 316, 319
Smith, J.B. 74, 78, 208, 232, 255, 278, 281
Smith, K.R. 164–5, 166, 168, 169
Smith, P. 174, 175, 176, 177, 181, 182, 189
Smith, S.J. 295–6
Smith, V.L., personal ranking of solutions to climate change 389
Smith, W.B. 114
Smithers, J. 227
social cost of carbon (SCC) 287
estimation of 180–1, 186–7, 190, 194
see also GHG emissions
Socolow, R.H. 15, 20, 161, 299
Soehngen, B. 3, 114, 117, 118, 119–20, 121, 126,
128
solar radiation management (SRM) 2, 9, 13, 59, 384–5
Arctic cooling 20
assessment limitations 46
BCA: accuracy of direct/indirect cost estimates 53–4;
contradictions of CBAs 54; and DICE model 55;
estimates of net benefits 63; objections to 52;
possibility of unintended consequences 64; and
R&D spending 62–3; results using VOI analysis
69–71; uncertainties in 62; use of decision tree
diagram 64–5, 67
comparison with AC 15–16
costs of 15, 21: defensive research 22; development
21–3; direct 21–3, 39–40; indirect 23–5; political
transaction costs 25–6; transaction costs 10, 46
and economic freedom 14
and ocean acidification 12
options for 13–14
potential value of 26–7, 46
R&D process 20, 22: monitoring costs 22; need for R&D
focus 47
risk management choices 20–1, 24–5
unknown effects of 60
see also DICE model; marine cloud whitening; space
sunshade; stratospheric aerosols
solar/wind energy
problems with 299
storage for 296, 299, 301, 318
Solberg, B. 118
Solomon, S. 208, 210, 262, 292
space sunshade 19
BCR 46
disadvantages of 19
fixed costs of 19, 21, 43–4
impacts on earth 19
R&D costs 22
Spanger-Siegfred, E. 227
Spaninks, F.A. 76
Spash, C. 285
Spouge, J.R. 84
Stanford University Energy Modeling Forum (EMF21)
179–80
Stavins, R. 120
Stegeman, R. 145
Stehfest, E. 215
Stern, D.I. 42
Stern Review, The 28, 39, 53, 58
carbon neutral technologies 295
see also DICE model
Stern, N. 58, 59, 75, 106, 160, 161, 168, 173, 202, 211, 222,
224, 234, 282, 285, 289, 293, 305, 306, 328, 335, 342
Stener, T. 215
Stevens, B. 388
Stiglitz, J. 316
Stikker, A. 232
Stitch, S. 213
Stocker, T.F. 10, 20
Stokes, C. 117, 119
Stokey, N.L., personal ranking of solutions to climate
change 386–7
storage problem
in CCS 301
in electricity generation 296, 299, 301, 318
storms, and building standards 83
stratospheric aerosol injection 52, 385, 388, 391, 392
BCR 46
and evidence of volcanoes 17–18
fixed costs of 21, 42–3, 44
indirect benefits from 27
length of life of 18
need for research 47
particle size 18
R&D costs 22
and rainfall 23
Index 411

range of materials for 18
risks of 21, 25, 54: radiative forcing 55–6
uncertainty of assumptions 54
Strzepek, K.M. 79–80, 232
Subramanian, R. 166
subsidies, to energy production 295
Summers, Lawrence, and CE 13
Sun, B. 128
Sun, H.L. 146, 151, 160, 164, 166
Suzuki, K. 350
Sveikanskas, L. 350
Svensson, C. 83
Swart, R.J. 88
Szolnoky, C. 83
Tanaka, K. 214
Tavoni, M. 114, 119, 138, 343
technological development
and energy efficiency 86
importance of 382–3: for long run 385
magnitude of challenge 395
see also technology-led approach to climate policy
technology cost function 318–19
technology-led approach to climate policy 293–4, 295, 309–10, 340, 346, 349, 358
comparisons with orthodox policies 311, 356–7, 358
complementarity with other policies 331–2: adaptation 331, 332; alternative mitigation 331, 332; geoengineering 331, 332
costs of mitigation 305
failure of, and “brute force” strategy 355
freedom from emission reduction targets 314, 331, 333
government decision making on technology development 349, 353; choices 353; expertise 353–4; feedback from R&D programs 354; inadequate investment 357; performance management 354; and private sector 353; time-consistency problem 354
importance of cost function 319
international cooperation 356, 358
likely adoption of 330–1
link with mitigation via carbon pricing 310, 315, 331, 341
and R&D 293, 340, 341, 347; benefit of breakthrough technologies 342–3; investment returns from 355; long-term commitments of technologically capable countries 306, 309
reduction in global energy intensity 293
resistance to 330
timing of mitigation, adaptation, and R&D 306
two strategies for 318
uncertainties 330, 343
see also carbon neutral technologies; carbon pricing; R&D; technology-led approach
technology-led approach, CBA
BCR estimates 328–9; formula 328
comparison of technological solutions 321
cumulative emissions analysis 322, 325–6, 329; and “brute force” policy 327; comparison with “brute force” policy 326, 327
default policy and role of climate damages 321
evaluation against “brute force” mitigation 322, 327, 329, 333, 349; assumptions 328; avoidable climate damages not avoided 334–5; BCRs 333; benefits of technology-led policy 333; costs of technology-led policy 333; crowding-out effects 349, 356, 358; proposed targets 327; response of RCI0 327–8; supply of talent 356
standard approach using DICE model 322, 329: BCRs 324–5; estimating technological return to R&D 322–3; simulation of baselines and technology-led policies 323–4
timing problems 321
technology standards, and deployment of new technologies 306
technology transfer 4, 259, 361, 371
benefits of 371
current projects 362
effectiveness of 377
and environment policy in recipient countries 371–2, 377
implementation of 361, 390–1
importance to developing countries 389, 390
incentives for 372
inclusion in climate policy design 342
institutional setting 361
international cooperation 360, 369, 383, 393
as means of mitigating GHG emissions 360–1, 369
modeling challenge: data on direct/indirect transfer 374; environmental policies in recipient countries 372–3; spillovers 373, 374, 375–6
primary and dual flows 361
use in international negotiations 340
see also Kyoto Protocol, technology transfer CBA
technology transfer CBA 362, 365–6, 368–9
efficiency 363
financial flows 363, 364
intangible transfers 363
interpretation of 363
measurements of 364; and mitigation 364
policy dependence 363–4
and RICE model 364: dynamic effects of technology transfer 375; including obligations by developing countries 365, 368, 375; Kyoto Protocol scenario 364, 365, 366–7, 375; spillover effects 375
scope and costs of 362–3
and WITCH model 375–6
Teece, D.J. 350
Teller, E. 13, 18, 27, 43
Terleckyj, N. 350
terms of trade improvement, and climate change 270
Tetlock, P.E. 25
Thermohaline Circulation, effect of shutdown 84
Tilmes, S. 24

tipping points, of climate change 11, 332
and avoidance of catastrophe 144: geengineering approach 162; importance of energy 332 and black carbon reductions 162–3 probability of 278, 330, 332 and rapid reduction of emissions 144
Tipuk, D.A. 232

tollefson, j. 302

tourism flows, and climate change 79–80, 83, 267, 289
transaction costs, BCA 9
transport sector, need for breakthrough technologies 342, 347
Travis, W. 60

trenberth, k.e. 10, 30, 40, 41

tuladhar, S.D. 3, 143

uncertainties assessment of 62: R&D budgets 62–3 in economic analysis 63, 284, 287, 288 and social cost of carbon estimates 81 unintended consequences of SRM 64 and VOI analysis 63

tICarbon tax 83

United Nations Food and Agriculture Organization (UNFAO) 114, 137, 216

United Nations Framework Convention on Climate Change (UNFCCC) 11, 224, 227, 234, 241, 244, 255, 257, 279

Expert Group on Technology Transfer 342

GWp of CH4 174

inclusion of black carbon as greenhouse agent 159

international cooperation on climate change 360

mitigation objective 288

use as base for CBA 209

urban water management systems 83

urbanization, and growth of energy-intensive industries 308

infrastructure for 308

US, CH4 emissions in 178–9, 183, 184

US Department of Energy 22

US Energy Information Agency, global CO2 emissions 11

US Environment Protection Agency (EPA) 97, 174, 175–6, 177, 178, 191, 183–5, 188, 190, 193, 194, 210, 218

on geengineering 9

imposition of costs on emitters 293

US Interstate Highway Trust Fund 317

value of information (VOI) analysis 63
differing views of users 71 decision tree showing costs of SRM 64–5: and abrupt cessation of SRM 65–6; consequential altered values/decisions 66; decision contingent on R&D findings 67; estimates including precautionary society decision 71; value of including AC in analysis 73; without R&D on unintended consequences 65

estimates of Bickel/Lane calculations 63

prior probabilities 64, 67, 70–1

unintended consequences of SRM 64

van Kooten, G.C. 84, 119

van Velthuizen, H. 137

van Vuuren, D. 180, 212

van’t Veld, K. 373

Vaughan, D.G. 84

Vaughan, N.E. 13–14, 15, 18, 40, 41

vehicular technology, costs of 383

Victor, D.G. 25

volcanoes, and stratospheric aerosols 17–18

Vollebergh, H.R.J. 341

von Witzke, H. 176, 177

Wagner, S. 85

Wald, M.L. 13

Wandel, J. 78

Warren, R. 208, 209

Washington, W.M. 23

Wassmann, R. 177

waste management practices, see landfills wastewater, and CH4 emissions 174

mitigation potential 175–6

water conservation, cost of 256

water, and biomass production 299

Watkins, P. 209

Watson, R.T. 230, 232

Waxman–Markey (WM) Bill 341

emission reduction target 314, 315

failure of 313

weather modification, research on 60

Weil, D.N. 85

Weiske, A 176, 181

Weitzman, M.L. 12, 81, 144, 161, 168, 173, 203, 204, 209, 288, 328, 332

West, J.J. 213–14, 215

wetland rice cultivation, and CH4 emission 174
decrease in 175

mitigation potential 175, 177, 180, 193–4: and BCRs 187; and MACs 181–2, 185–6

Weyant, J.P. 83, 86, 96, 106, 193

Wheaton, E.E. 227

Wilbanks, T.J. 229

Wilcoxen, P.J. 230–1

Williams, A.G. 216
Willingness-to-pay (WTP)
 for climate change mitigation 349, 350, 351–2, 353
 for improved environmental services 80
 for nature conservation 84
 tax on air travel 107
Wilson, K.J. 83
wind and wave energy costs 83
wind turbine technology, supply and demand impacts on 303
Wingenter, O.W. 13
Winter, S.G. 22, 45
Wirsenius, S. 215, 216
Wise, M. 135, 299
Wood, L. 18, 19, 20, 22, 24, 27
World Bank 254, 375

World Health Organization (WHO)
 diseases sensitive to climate change 255
 exposure to black carbon 160
Wright, B.D. 304, 316
Yang, M. 174, 178, 189
Yang, Z. 4, 75, 364, 365
Yates, D.N. 79–80
Yohe, G.W. 78, 81, 230, 232, 302, 384
Yoon, S. 176
Young, T. 215
Zeckhauser, R. 203
Zhang, D.D 85
Zhang, J.F. 165
Zhen, H. 84
Zickfeld, K. 23, 162