Advanced Transport Phenomena

An integrated, modern approach to transport phenomena for graduate students, featuring traditional and contemporary examples to demonstrate the diverse practical applications of the theory. Written in an easy-to-follow style, the basic principles of transport phenomena and model building are recapped in Chapters 1 and 2 before progressing logically through more advanced topics including physicochemical principles behind transport models. Treatments of numerical, analytical, and computational solutions are presented side-by-side, often with sample code in MATLAB, to aid students’ understanding and develop their confidence in using computational skills to solve real-world problems.

Learning objectives and mathematical prerequisites at the beginning of chapters orient students to what is required in the chapter, and summaries and over 400 end-of-chapter problems help them retain the key points and check their understanding. Online supplementary material including solutions to problems for instructors, supplementary reading material, sample computer codes, and case studies completes the package (available at www.cambridge.org/ramachandran).

P. A. Ramachandran is a Professor in the Department of Energy, Environment, and Chemical Engineering at Washington University, St. Louis. He has extensive teaching experience, mainly in transport phenomena, mathematical methods, and chemical reaction engineering, and he has also held many visiting appointments at various international institutions. He has written or co-written two previous books, as well as over 200 journal articles in which he has pioneered many new concepts and computational tools for the modeling of chemical reactors. He is a recipient of the Moulton Medal from the Institution of Chemical Engineers, UK, the NASA certificate of recognition, USA, and the NEERI award from the Institution of Chemical Engineers, India.
“Anyone who teaches transport phenomena will treasure this book because it provides an integrated approach to help students better understand the core theories through both traditional and contemporary examples of transport phenomena problems, along with side-by-side presentations of both analytical and numerical methods and sample MATLAB codes – the long-awaited, all-in-one solution.”

Roger Lo

California State University
Advanced Transport Phenomena

ANALYSIS, MODELING, AND COMPUTATIONS

P. A. RAMACHANDRAN
Washington University, St. Louis
CONTENTS

Preface xvii
Topical outline xxi
Notation xxiii

1 Introduction 1
 1.1 What, why, and how? 2
 1.1.1 What? 2
 1.1.2 Why? 3
 1.1.3 How? 6
 1.1.4 Conservation statement 6
 1.1.5 The need for constitutive models 7
 1.1.6 Common constitutive models 8
 1.2 Typical transport property values 10
 1.2.1 Viscosity: pure gases and vapors 10
 1.2.2 Viscosity: liquids 11
 1.2.3 Thermal conductivity 11
 1.2.4 Diffusivity 12
 1.3 The continuum assumption and the field variables 13
 1.3.1 Continuum and pointwise representation 13
 1.3.2 Continuum vs. molecular 16
 1.3.3 Primary field variables 16
 1.3.4 Auxiliary variables 16
 1.4 Coordinate systems and representation of vectors 18
 1.4.1 Cartesian coordinates 18
 1.4.2 Cylindrical coordinates 19
 1.4.3 Spherical coordinates 20
 1.4.4 Gradient of a scalar field 20
 1.5 Modeling at various levels 22
 1.5.1 Levels based on control-volume size 22
 1.5.2 Multiscale models 24
 1.5.3 Multiscale modeling below the continuum level 25
 1.6 Model building: general guidelines 25
 1.7 An example application: pipe flow and tubular reactor 27
 1.7.1 Pipe flow: momentum transport 28
 1.7.2 Laminar or turbulent? 28
 1.7.3 Use of dimensionless numbers 30
 1.7.4 Pipe flow: heat transport 32
 1.7.5 Pipe flow: mass exchanger 35
 1.7.6 Pipe flow: chemical reactor 35
 1.8 The link between transport properties and molecular models 36
 1.8.1 Kinetic theory concepts 37
 1.8.2 Liquids 42
 1.8.3 Transport properties of solids 44
Contents

1.9 Six decades of transport phenomena
1.10 Closure
 Summary
 Additional Reading
 Problems

2 Examples of transport and system models
 2.1 Macroscopic mass balance
 2.1.1 Species balance equation
 2.1.2 Transient balance: tracer studies
 2.1.3 Overall mass balance
 2.2 Compartmental models
 2.2.1 Model equations
 2.2.2 Matrix representation
 2.2.3 A numerical IVP solver in MATLAB
 2.3 Macroscopic momentum balance
 2.3.1 Linear momentum
 2.3.2 Angular momentum
 2.4 Macroscopic energy balances
 2.4.1 Single inlet and outlet
 2.4.2 The Bernoulli equation
 2.4.3 Sonic and subsonic flows
 2.4.4 Cooling of a solid: a lumped model
 2.5 Examples of differential balances: Cartesian
 2.5.1 Heat transfer with nuclear fission in a slab
 2.5.2 Mass transfer with reaction in a porous catalyst
 2.5.3 Momentum transfer: unidirectional flow in a channel
 2.6 Examples of differential models: cylindrical coordinates
 2.6.1 Heat transfer with generation
 2.6.2 Mass transfer with reaction
 2.6.3 Flow in a pipe
 2.7 Spherical coordinates
 2.8 Examples of mesoscopic models
 2.8.1 Tubular reactor with heat transfer
 2.8.2 Heat transfer in a pin fin
 2.8.3 Countercurrent heat exchanger
 2.8.4 Counterflow: matrix method
 Summary
 Problems

3 Flow kinematics
 3.1 Eulerian description of velocity
 3.2 Lagrangian description: the fluid particle
 3.3 Acceleration of a fluid particle
 3.4 The substantial derivative
 3.5 Dilatation of a fluid particle
 3.6 Mass continuity
 3.7 The Reynolds transport theorem
 3.8 Vorticity and rotation
Contents

3.8.1 Curl in other coordinate systems 137
3.8.2 Circulation along a closed curve 139
3.9 Vector potential representation 140
3.10 Streamfunctions 141
 3.10.1 Two-dimensional flows: Cartesian 141
 3.10.2 Two-dimensional flows: polar 143
 3.10.3 Streamfunctions in axisymmetric flows 143
 3.10.4 The relation to vorticity: the E^2 operator 144
3.11 The gradient of velocity 145
3.12 Deformation and rate of strain 146
 3.12.1 The physical meaning of the rate of strain 148
 3.12.2 Rate of strain: cylindrical 151
 3.12.3 Rate of strain: spherical 151
 3.12.4 Invariants of a tensor 152
3.13 Index notation for vectors and tensors 152
 Summary 154
 Problems 155

4 Forces and their representations 159
 4.1 Forces on fluids and their representation 160
 4.1.1 Pressure forces 161
 4.1.2 Viscous forces 163
 4.1.3 The divergence of a tensor 167
 4.2 The equation of hydrostatics 169
 4.2.1 Archimedes’ principle 169
 4.2.2 The force on a submerged surface: no curvature 170
 4.2.3 Force on a curved surface 171
 4.3 Hydrostatics at interfaces 172
 4.3.1 The nature of interfacial forces 172
 4.3.2 Contact angle and capillarity 174
 4.3.3 The Laplace–Young equation 175
 4.4 Drag and lift forces 177
 Summary 180
 Problems 181

5 Equations of motion and the Navier–Stokes equation 184
 5.1 Equation of motion: the stress form 185
 5.1.1 The Lagrangian point particle 185
 5.1.2 The Lagrangian control volume 186
 5.1.3 The Eulerian control volume 187
 5.2 Types of fluid behavior 189
 5.2.1 Types and classification of fluid behavior 189
 5.2.2 Stress relations for a Newtonian fluid 191
 5.3 The Navier–Stokes equation 191
 5.3.1 The Laplacian of velocity 192
 5.3.2 Common boundary conditions for flow problems 193
 5.4 The dimensionless form of the flow equation 195
 5.4.1 Key dimensionless groups 195
 5.4.2 The Stokes equation: slow flow or viscous flow 196
 5.4.3 The Euler equation 197
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5 Use of similarity for scaleup</td>
<td>197</td>
</tr>
<tr>
<td>5.6 Alternative representations for the Navier–Stokes equations</td>
<td>201</td>
</tr>
<tr>
<td>5.6.1 Plane flow: the vorticity–streamfunction form</td>
<td>201</td>
</tr>
<tr>
<td>5.6.2 Plane flow: the streamfunction representation</td>
<td>201</td>
</tr>
<tr>
<td>5.6.3 Inviscid and potential flow</td>
<td>202</td>
</tr>
<tr>
<td>5.6.4 The velocity–vorticity formulation</td>
<td>202</td>
</tr>
<tr>
<td>5.6.5 Slow flow in terms of vorticity</td>
<td>202</td>
</tr>
<tr>
<td>5.6.6 The pressure Poisson equation</td>
<td>203</td>
</tr>
<tr>
<td>5.7 Constitutive models for non-Newtonian fluids</td>
<td>203</td>
</tr>
<tr>
<td>Summary</td>
<td>205</td>
</tr>
<tr>
<td>Problems</td>
<td>206</td>
</tr>
</tbody>
</table>

6 Illustrative flow problems

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>210</td>
</tr>
<tr>
<td>6.1.1 Summary of equations</td>
<td>210</td>
</tr>
<tr>
<td>6.1.2 Simplifications</td>
<td>211</td>
</tr>
<tr>
<td>6.1.3 Solution methods</td>
<td>211</td>
</tr>
<tr>
<td>6.2 Channel flow</td>
<td>212</td>
</tr>
<tr>
<td>6.2.1 Entry-region flow in channels or pipes</td>
<td>212</td>
</tr>
<tr>
<td>6.2.2 General solution</td>
<td>214</td>
</tr>
<tr>
<td>6.2.3 Pressure-driven flow</td>
<td>215</td>
</tr>
<tr>
<td>6.2.4 Shear-driven flow</td>
<td>215</td>
</tr>
<tr>
<td>6.2.5 Gravity-driven flow</td>
<td>216</td>
</tr>
<tr>
<td>6.3 Axial flow in cylindrical geometry</td>
<td>218</td>
</tr>
<tr>
<td>6.3.1 Circular pipe</td>
<td>219</td>
</tr>
<tr>
<td>6.3.2 Annular pipe: pressure-driven</td>
<td>219</td>
</tr>
<tr>
<td>6.3.3 Annular pipe: shear-driven</td>
<td>220</td>
</tr>
<tr>
<td>6.4 Torsional flow</td>
<td>220</td>
</tr>
<tr>
<td>6.5 Radial flow</td>
<td>222</td>
</tr>
<tr>
<td>6.6 Flow in a spherical gap</td>
<td>223</td>
</tr>
<tr>
<td>6.7 Non-circular channels</td>
<td>224</td>
</tr>
<tr>
<td>6.8 The lubrication approximation</td>
<td>227</td>
</tr>
<tr>
<td>6.8.1 Flow between two inclined plates</td>
<td>227</td>
</tr>
<tr>
<td>6.8.2 Flow in a tapered pipe</td>
<td>228</td>
</tr>
<tr>
<td>6.9 External flow</td>
<td>230</td>
</tr>
<tr>
<td>6.10 Non-Newtonian viscoelastic fluids</td>
<td>233</td>
</tr>
<tr>
<td>6.10.1 A power-law model</td>
<td>233</td>
</tr>
<tr>
<td>6.10.2 Flow of a Bingham fluid in a pipe</td>
<td>234</td>
</tr>
<tr>
<td>6.10.3 The Rabinowitsch equation</td>
<td>236</td>
</tr>
<tr>
<td>6.11 The effect of fluid elasticity</td>
<td>237</td>
</tr>
<tr>
<td>6.12 A simple magnetohydrodynamic problem</td>
<td>240</td>
</tr>
<tr>
<td>Summary</td>
<td>244</td>
</tr>
<tr>
<td>Additional Reading</td>
<td>246</td>
</tr>
<tr>
<td>Problems</td>
<td>246</td>
</tr>
</tbody>
</table>

7 The energy balance equation

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Application of the first law of thermodynamics to a moving control</td>
<td>252</td>
</tr>
<tr>
<td>volume</td>
<td></td>
</tr>
<tr>
<td>7.2 The working rate of the forces</td>
<td>253</td>
</tr>
</tbody>
</table>
Contents

7.3 Kinetic energy and internal energy equations 256
7.4 The enthalpy form 257
7.5 The temperature equation 257
7.6 Common boundary conditions 259
7.7 The dimensionless form of the heat equation 261
7.8 From differential to macroscopic 262
7.9 Entropy balance and the second law of thermodynamics 263
 7.9.1 Some definitions from thermodynamics 263
Summary 267
Problems 268

8 Illustrative heat transport problems 269
 8.1 Steady heat conduction and no generation 270
 8.1.1 Constant conductivity 270
 8.1.2 Variable thermal conductivity 273
 8.1.3 Two-dimensional heat conduction problems 274
 8.2 Heat conduction with generation: the Poisson equation 276
 8.2.1 The constant-generation case 276
 8.3 Conduction with temperature-dependent generation 277
 8.3.1 Linear variation with temperature 277
 8.3.2 Non-linear variation with temperature 279
 8.3.3 Two-dimensional Poisson problems 281
 8.4 Convection effects 282
 8.4.1 Transpiration cooling 282
 8.4.2 Convection in boundary layers 285
 8.5 Mesoscopic models 286
 8.5.1 Heat transfer from a fin 286
 8.5.2 A single-stream heat exchanger 288
 8.6 Volume averaging or lumping 290
 8.6.1 Cooling of a sphere in a liquid 290
 8.6.2 An improved lumped model 291
Summary 292
Problems 293

9 Equations of mass transfer 296
 9.1 Preliminaries 298
 9.2 Concentration jumps at interfaces 300
 9.3 The frame of reference and Fick’s law 302
 9.4 Equations of mass transfer 307
 9.4.1 Mass basis 308
 9.4.2 Mole basis 310
 9.4.3 Boundary conditions 311
 9.5 From differential to macroscopic 312
 9.6 Complexities in diffusion 313
Summary 316
Problems 317

10 Illustrative mass transfer problems 321
 10.1 Steady-state diffusion: no reaction 322
 10.1.1 Summary of equations 322
Contents

10.2 The film concept in mass-transfer analysis 328
10.2.1 Fluid–solid interfaces 328
10.2.2 Gas–liquid interfaces: the two-film model 331
10.3 Mass transfer with surface reaction 333
10.3.1 Heterogeneous reactions: the film model 333
10.4 Mass transfer with homogeneous reactions 334
10.4.1 Diffusion in porous media 334
10.4.2 Diffusion and reaction in a porous catalyst 335
10.4.3 First-order reaction 335
10.4.4 Zeroth-order reaction 339
10.4.5 Transport in tissues: the Krogh model 340
10.4.6 mth-order reaction 342
10.5 Models for gas–liquid reaction 343
10.5.1 Analysis for the pseudo-first-order case 346
10.5.2 Analysis for instantaneous asymptote 347
10.5.3 The second-order case: an approximate solution 347
10.5.4 The instantaneous case: the effect of gas film resistance 348
10.6 Transport across membranes 350
10.6.1 Gas transport: permeability 350
10.6.2 Complexities in membrane transport 352
10.6.3 Liquid-separation membranes 353
10.7 Transport in semi-permeable membranes 354
10.7.1 Reverse osmosis 355
10.7.2 Concentration-polarization effects 356
10.7.3 The Kedem–Katchalsky model 358
10.7.4 Transport in biological membranes 360
10.8 Reactive membranes and facilitated transport 360
10.8.1 Reactive membrane: facilitated transport 360
10.8.2 Co- and counter-transport 363
10.9 A boundary-value solver in MATLAB 364
10.9.1 Code-usage procedure 364
10.9.2 BVP4C example: the selectivity of a catalyst 364
Summary 367
Additional Reading 370
Problems 370

11 Analysis and solution of transient transport processes 377
11.1 Transient conduction problems in one dimension 378
11.2 Separation of variables: the slab with Dirichlet conditions 380
11.2.1 Slab: temperature profiles 383
11.2.2 Slab: heat flux 384
11.2.3 Average temperature 384
11.3 Solutions for Robin conditions: slab geometry 385
11.4 Robin case: solutions for cylinder and sphere 387
11.5 Two-dimensional problems: method of product solution 388
11.6 Transient non-homogeneous problems 389
11.6.1 Subtracting the steady-state solution 390
11.6.2 Use of asymptotic solution 391
Contents

11.7 Semi-infinite-slab analysis 391
11.7.1 Constant surface temperature 392
11.7.2 Constant flux and other boundary conditions 393

11.8 The integral method of solution 394

11.9 Transient mass diffusion 396
11.9.1 Constant diffusivity model 396
11.9.2 The penetration theory of mass transfer 399
11.9.3 The effect of chemical reaction 399
11.9.4 Variable diffusivity 403

11.10 Periodic processes 404
11.10.1 Analysis for a semi-infinite slab 405
11.10.2 Analysis for a finite slab 407

11.11 Transient flow problems 408
11.11.1 Start-up of channel flow 409
11.11.2 Transient flow in a semi-infinite mass of fluid 409
11.11.3 Flow caused by an oscillating plate 409
11.11.4 Start-up of Poiseuille flow 411
11.11.5 Pulsatile flow in a pipe 412

11.12 A PDE solver in MATLAB 413
11.12.1 Code usage 413
11.12.2 Example general code for 1D transient conduction 415
Summary 417
Additional Reading 418
Problems 419

12 Convective heat and mass transfer 425
12.1 Heat transfer in laminar flow 427
12.1.1 Preliminaries and the model equations 427
12.1.2 The constant-wall-temperature case: the Graetz problem 430
12.1.3 The constant-flux case 434
12.2 Entry-region analysis 435
12.2.1 The constant-wall-temperature case 435
12.2.2 The constant-flux case 437
12.3 Mass transfer in film flow 437
12.3.1 Solid dissolution at a wall in film flow 438
12.3.2 Gas absorption from interfaces in film flow 439
12.4 Laminar-flow reactors 440
12.4.1 A 2D model and key dimensionless groups 440
12.4.2 The pure convection model 443
12.5 Laminar-flow reactor: a mesoscopic model 444
12.5.1 Averaging and the concept of dispersion 444
12.5.2 Non-linear reactions 446
12.6 Numerical study examples with PDEPE 446
12.6.1 The Graetz problem 446
Summary 449
Problems 450

13 Coupled transport problems 453
13.1 Modes of coupling 454
13.1.1 One-way coupling 454
Contents

13.1.2 Two-way coupling 455
13.2 Natural convection problems 455
 13.2.1 Natural convection between two vertical plates 455
 13.2.2 Natural convection over a vertical plate 459
 13.2.3 Natural convection: concentration effects 460
13.3 Heat transfer due to viscous dissipation 460
 13.3.1 Viscous dissipation in plane Couette flow 460
 13.3.2 Laminar heat transfer with dissipation: the Brinkman problem 461
13.4 Laminar heat transfer: the effect of viscosity variations 463
13.5 Simultaneous heat and mass transfer: evaporation 465
 13.5.1 Dry- and wet-bulb temperatures 465
 13.5.2 Evaporative or sweat cooling 468
13.6 Simultaneous heat and mass transfer: condensation 468
 13.6.1 Condensation of a vapor in the presence of a non-condensible gas 468
 13.6.2 Fog formation 472
 13.6.3 Condensation of a binary gas mixture 472
13.7 Temperature effects in a porous catalyst 476

14 Scaling and perturbation analysis

14.1 Dimensionless analysis revisited 485
 14.1.1 The method of matrix transformation 486
 14.1.2 Momentum problems 486
 14.1.3 Energy transfer problems 489
 14.1.4 Mass transfer problems 491
 14.1.5 Example: scaleup of agitated vessels 492
 14.1.6 Example: pump performance correlation 493
14.2 Scaling analysis 495
 14.2.1 Transient diffusion in a semi-infinite region 495
 14.2.2 Example: gas absorption with reaction 496
 14.2.3 Kolmogorov scales for turbulence: an example of scaling 496
 14.2.4 Scaling analysis of flow in a boundary layer 497
 14.2.5 Flow over a rotating disk 501
14.3 Perturbation methods 503
 14.3.1 Regular perturbation 503
 14.3.2 The singular perturbation method 506
 14.3.3 Example: catalyst with spatially varying activity 507
 14.3.4 Example: gas absorption with reversible reaction 508
 14.3.5 Stokes flow past a sphere: the Whitehead paradox 511
14.4 Domain perturbation methods 513

15 More flow analysis

15.1 Low-Reynolds-number (Stokes) flows 525
 15.1.1 Properties of Stokes flow 525
15.2 The mathematics of Stokes flow 527
Contents

15.2.1 General solutions: spherical coordinates 527
15.2.2 Flow past a sphere: use of the general solution 528
15.2.3 Bubbles and drops 531
15.2.4 Oseen’s improvement 533
15.2.5 Viscosity of suspensions 534
15.2.6 Nanoparticles: molecular effects 535

15.3 Inviscid and irrotational flow 536
15.3.1 Properties of irrotational flow 536
15.3.2 The Bernoulli equation revisited 537

15.4 Numerics of irrotational flow 539
15.4.1 Boundary conditions 539
15.4.2 Solutions using harmonic functions 540
15.4.3 Solution using singularities 542

15.5 Flow in boundary layers 546
15.5.1 Relation to the vorticity transport equation 547
15.5.2 Flat plate: integral balance 548
15.5.3 The integral method: the von Kármán method 549
15.5.4 The average value of drag 550
15.5.5 Non-flat systems: the effect of a pressure gradient 550

15.6 Use of similarity variables 551
15.6.1 A simple computational scheme 553
15.6.2 Wedge flow: the Falkner–Skan equation 554
15.6.3 Blasius flow 554
15.6.4 Stagnation-point (Hiemenz) flow 555

15.7 Flow over a rotating disk 556
Summary: Stokes flow 557
Summary: potential flow 558
Summary: boundary-layer theory 558
Additional Reading 559
Problems 559

16 Bifurcation and stability analysis 566
16.1 Introduction to dynamical systems 567
16.1.1 Arc-length continuation: a single-equation example 571
16.1.2 The arc-length method: multiple equations 572

16.2 Bifurcation and multiplicity of DPSs 576
16.2.1 A bifurcation example: the Frank-Kamenetskii equation 576
16.2.2 Bifurcation: porous catalyst 577

16.3 Flow-stability analysis 578
16.3.1 Evolution equations and linearized form 578
16.3.2 Normal-mode analysis 580

16.4 Stability of shear flows 581
16.4.1 The Orr–Sommerfeld equation 581
16.4.2 Stability of shear layers: the role of viscosity 583
16.4.3 The Rayleigh equation 583
16.4.4 Computational methods 584

16.5 More examples of flow instability 585
16.5.1 Kelvin–Helmholtz instability 585
16.5.2 Rayleigh–Taylor instability 586
16.5.3 Thermal instability: the Bénard problem 587
19 Radiation heat transfer 656
 19.1 Properties of radiation 657
 19.2 Absorption, emission, and the black body 657
 19.3 Interaction between black surfaces 661
 19.4 Gray surfaces: radiosity 664
 19.5 Calculations of heat loss from gray surfaces 666
 19.6 Radiation in absorbing media 670
 Summary 674
 Additional Reading 675
 Problems 675

20 More convective mass transfer 678
 20.1 Mass transfer in laminar boundary layers 679
 20.1.1 The low-flux assumption 679
 20.1.2 Dimensional analysis 680
 20.1.3 Scaling analysis 681
 20.1.4 The low-flux case: integral analysis 682
 20.1.5 The low-flux case: exact analysis 685
 20.2 Mass transfer: the high-flux case 686
 20.2.1 The film model revisited 686
 20.2.2 The high-flux case: the integral-balance model 688
 20.2.3 The high-flux case: the similarity-solution method 689
 20.3 Mass transfer in turbulent boundary layers 689
 20.4 Mass transfer at gas–liquid interfaces 691
 20.4.1 Turbulent films 691
 20.4.2 Single bubbles 692
 20.4.3 Bubble swarms 693
 20.5 Taylor dispersion 693
 Summary 696
 Additional Reading 696
 Problems 697

21 Mass transfer: multicomponent systems 700
 21.1 A constitutive model for multicomponent transport 701
 21.1.1 Stefan–Maxwell models 701
 21.1.2 Generalization 702
 21.2 Non-reacting systems and heterogeneous reactions 703
 21.2.1 Evaporation in a ternary mixture 703
 21.2.2 Evaporation of a binary liquid mixture 704
 21.2.3 Ternary systems with heterogeneous reactions 707
 21.3 Application to homogeneous reactions 709
 21.3.1 Multicomponent diffusion in a porous catalyst 709
 21.3.2 MATLAB implementation 710
 21.4 Diffusion-matrix-based methods 713
 21.5 An example of pressure diffusion 717
 21.6 An example of thermal diffusion 719
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>720</td>
</tr>
<tr>
<td>Additional Reading</td>
<td>721</td>
</tr>
<tr>
<td>Problems</td>
<td>721</td>
</tr>
</tbody>
</table>

22 Mass transport in charged systems 725

22.1 Transport of charged species: preliminaries 726

22.1.1 Mobility and diffusivity 726

22.1.2 The Nernst–Planck equation 727

22.1.3 Potential field and charge neutrality 728

22.2 Electrolyte transport across uncharged membranes 732

22.3 Electrolyte transport in charged membranes 734

22.4 Transport effects in electrodialysis 735

22.5 Departure from electroneutrality 738

22.6 Electro-osmosis 741

22.7 The streaming potential 744

22.8 The sedimentation potential 746

22.9 Electrophoresis 747

22.10 Transport in ionized gases 748

<table>
<thead>
<tr>
<th>Summary</th>
<th>750</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Reading</td>
<td>751</td>
</tr>
<tr>
<td>Problems</td>
<td>751</td>
</tr>
</tbody>
</table>

Closure	757
References	758
Index	766
The analysis, modeling, and computation of processes involving the transport of heat, mass, and momentum (transport phenomena) play a central role in engineering education and practice. The study of this subject originated in the field of chemical engineering but is now an integral part of most engineering curricula, for example, in biological, biomedical, chemical, environmental, mechanical, and metallurgical engineering both at undergraduate and at graduate level. There are many textbooks in this area, with varying levels of treatment from introductory to advanced, all of which are useful to students at various levels. However, my teaching experience over thirty years has convinced me that there is a need for a book that develops the subject of transport phenomena in an integrated manner with an easy-to-follow style of presentation. A book of this nature should ideally combine theory and problem formulation with mathematical and computational tools. It should illustrate the usefulness of the field with regard to practical problems and model development. This is the primary motivation for writing this book. This comprehensive textbook is intended mainly as a graduate-level text in a modern engineering curriculum, but parts of it are also useful for an advanced senior undergraduate class. Students studying this book will understand the methodology of modeling transport processes, along with the fundamentals and governing differential equations. They will develop an ability to think through a given physical problem and cast an appropriate model for the system. They will also become aware of the common analytical and numerical methods to solve these models, and develop a feel for the diverse technological areas where these concepts can be used.

Goals and outcome

The book is written with the objective that students finishing a first-year-level graduate course in this field should acquire the following skills and knowledge.

- **Fundamentals and basic understanding** of the phenomena and the governing differential equations. They should develop an ability to analyze a given physical problem and cast an appropriate model for the system. They should be exposed to the philosophy of the modeling process and appreciate the various levels at which models can be developed, and the interconnection and parameter requirements of various models.

- **Analytical and numerical skills** to solve these problems. They should develop the capability to solve some of the transport problems in a purely analytical setting and also expand their capability using numerical methods with some common software or programming tools. Often solving the same problem by both methods reinforces the physics and speeds up the learning process.

- **An understanding of technological areas** where transport models are useful. Students should develop an understanding of the diverse range of applications of this subject and...
Preface

understand how the basic theory, models, and computations can be used in practical applications.

To achieve these goals the book focuses on analysis and model development of transport process in detail, starting from the very basics. It illustrates the solution methods by using the classical analytical tools as well as some common computational tools. The application of the theory is demonstrated with numerous illustrative problems; some sample numerical codes are provided for some problems to facilitate learning and the development of problem-solving abilities. References to many areas of application are provided, and some case-study problems are included.

Intended audience

The level and the sequence of presentation are such that the book is suitable for a first-level graduate course or a comprehensive advanced undergraduate course. In a modern graduate engineering curriculum, the entering students often have diverse backgrounds, and some graduate students might not have taken introductory undergraduate courses in transport phenomena. The introductory part of the book presented in the first two chapters is expected to bring these students up to speed.

Style and scope

The style of presentation is informal, and has more of a “classroom” conversational tone rather than being heavy scholarly writing. Each chapter starts off with clearly defined learning objectives and ends with a summary of “must-know” things that should have been mastered from that chapter. Computer simulations are also illustrated, together with analytical solutions. Often solutions to the same problem obtained by both analytical and numerical methods are shown. This helps the students to validate and benchmark their solutions, and to develop confidence in their computational skills. Also sample packages are included to accelerate the application of computer-aided problem solving in the classroom. These sample codes are presented in separate subsections or are boxed off for easier reading of the main text. Key equations are shown in boxes for easy reference. Case studies are given in several chapters, although the space limitation prohibits an extensive discussion of these applications. Additional material and computer codes will be posted on the accompanying website, which is being developed as supplementary material. This web-based material can be viewed as a living and evolving component of the book.

For instructors

Instructors will find the presentations novel and interesting and will be able to motivate the students to appreciate the beauty in the integrated structure of the field. They will also find
Preface

The worked examples and exercise problems useful to amplify the class lectures and illustrate the theory. Also the mathematical prerequisites listed at the beginning of each chapter will help the instructor to adjust the lecture content according to the students’ mathematical preparedness. Additional web-based material that will aid the teaching of these necessary mathematical tools in a concise manner is being planned.

The book has more material than can be covered in one semester, and it can be used in the following manner in teaching.

• For an integrated course for students entering a modern graduate program with diverse undergraduate background, Chapters 1–13 can be covered at a reasonable pace in a one-semester course with some reading materials assigned from the other chapters.
• For a course focused mainly on flow problems Chapters 3–6 followed by Chapters 14–17 will provide a nice one-semester textbook.
• For a course focused mainly on heat and mass transfer the course can start with Chapters 7–13 and end with Chapters 18–22.

Distinguishing features

The book provides an integrated approach to the field. Theory is illustrated with many worked examples and case-study problems are indicated. The book also discusses many important and practically relevant topics that are not adequately covered in many earlier books. Some novel topics and features of the current book are indicated below.

• Discussion on multiscale modeling, model reduction by averaging and “information” flow.
• Solution of illustrative problems by both numerical and analytical methods.
• Sample codes in MATLAB for help in the development of numerical problem-solving skills.
• Detailed analysis of coupled transport problems.
• Introduction to non-Newtonian flow, microfluid analysis, and magnetohydrodynamics.
• Introduction to perturbation, bifurcation, and stability analysis.
• Detailed discussion on analysis of transport with chemical reaction.
• Detailed analysis of multicomponent diffusion with many worked examples.
• A full chapter on electrochemical systems and ionic transport.
• Application examples drawn from a wide range of areas and some suggested case-study problems.

Acknowledgement

Washington University, St. Louis, provided me with an academic home, and I wish to express my gratitude. Many summers of being visiting professor at Kasetsart University,
Preface

Bangkok, helped me to teach and fine-tune many topics. I would like to mention my appreciation of my alma mater, ICT, Mumbai, formerly known as UDCT. In a significant manner, I have been beneficiary of the rigorous and often disciplinary system of education in India, starting from my elementary school and continuing all the way to UDCT. I would like to acknowledge my many mentors and colleagues, too numerous to thank individually, from whom I have benefited throughout my career. Most of all I would like to thank all my students. My real education started with them, and still continues.

I would like to express my appreciation of my immediate family in the USA, Nima, Josh, Gabe, and Maya, and my brothers, sisters, and sisters-in-law in India for all their support and encouragement. I would like to express my appreciation of my friends in University City, Missouri, and to thank Dawn, who stressed the importance of diet and nutrition when training for a marathon.

On the editorial side, many thanks are due to Cambridge editors and especially to Claire Eudall, who provided valuable advice on the style and structure of various chapters. Also I appreciate the help of Ramesh Prajapati for the preparation of many figures in the text.
The topical organization of this book is as follows.

Chapter 1 is the basic introductory material which illustrates the richness of the subject, spanning applications to a wide range of problems in science and engineering. This chapter also provides the introduction to the basics of model building and shows the relationships among models of various levels of hierarchy. The basic vocabulary is introduced, and the physical properties needed in transport problems are discussed. The link between continuum and molecular models is indicated. The chapter concludes with a brief note on the historical development of the subject.

Chapter 2 illustrates the formulation of model equations for many common transport problems using a basic control-volume-balance type of approach. All three modes of transport are illustrated so that the student can grasp the similarities. Some “standard” problems are illustrated. This chapter is written assuming no significant earlier background knowledge in this field, and is therefore useful to bring such students up to speed.

The next few chapters, Chapters 3–6, provide the detailed framework for the analysis of momentum transport problems. The kinematics of flow are reviewed in Chapter 3, while the kinetics of flow are discussed in Chapter 4, leading to the derivation of the differential equations for the stress field and the velocity field in Chapter 5. Solutions to illustrative flow problems are then reviewed in Chapter 6, and here some “standard” flow problems shown in Chapters 1 and 2 are revisited in a more general setting, and solutions to some additional complex problems are reviewed. Flows involving non-Newtonian fluids and magnetohydrodynamics are also treated briefly, since they find extensive applications in practice and it is necessary to expose the student to these topics.

Chapters 7 and 8 deal with the differential equations for energy transport and the temperature field, with many illustrative heat-transfer problems in Chapter 8. Similarly, Chapters 9 and 10 deal with differential equations for mass transport and illustrative applications. These chapters bring out the close analogy and common problem-solving strategies for these two transport processes. In the heat-transfer context entropy balance is introduced in a simple manner and the relation to the second law is pointed out in a succinct manner. In the mass-transfer context several important topics such as gas–liquid reactions, membrane transport, and dispersion are presented in detail. Numerical methods involving MATLAB for both ODE and PDE are presented. Sample codes are provided as examples, and side-by-side comparisons with analytical solutions are provided for many problems, so that the students can benchmark their results. The transient problems for both heat and mass are then analysed in Chapter 11 in a unified setting, while some convective transport problems are studied in Chapter 12.

Chapter 13 provides an analysis of a number of coupled problems, for example natural convection, simultaneous heat and mass transfer, condensation, fog formation, and temperature effects in porous catalysts.
Chapter 14 develops some tools to analyze transport problems in further detail. The dimensionless analysis is revisited using novel matrix-algebra-based methods. The concept of scaling and perturbation methods is introduced together with many applications. The scaling tools also provide the necessary background to the boundary-layer flows discussed in Chapter 15. Chapter 15 also discusses additional topics in fluid mechanics such as low-Reynolds-number flow and irrotational flows. Chapter 16 deals with bifurcation and stability analysis. Chapter 17 provides an introductory treatment of turbulent flows.

Chapters 18 and 19 deal with additional topics in heat transfer, including convection in turbulent flow, boiling, condensation, and radiation heat transfer (Chapter 19). The final three chapters (Chapters 20–22) discuss some topics in mass transfer, including more discussion on convective transport and axial dispersion (Chapter 20), multicomponent systems (Chapter 21), and transport of charged species (Chapter 22).
NOTATION

\(a_w \) activity of water or solute indicated in the subscript in Section 10.7
\(A \) area of cross-section for flow
\(A \) Arrhenius pre-exponential factor in Section 8.3.2
\(A \) amplitude of surface temperature oscillation in Section 11.10, K
\(A_1, A_2 \) usually integration constants
\(A_p \) projected area of solid in the direction of flow
\(A_r \) Archimedes number
\(B \) dimensionless parameter defined as \((L/R)Pe\) in Section 12.4
\(B_{iG} \) Biot number in gas–liquid mass transfer, \(k_G H_A / k_L \)
\(B_{ih} \) Biot number for heat transfer, \(h L_{ref} / k_{solid} \)
\(B_{im} \) Biot number for mass transfer, \(k_m L_{ref} / D \)
\(Bo \) Bond number
\(Br \) Brinkman number for viscous production of heat, Eq. (13.23)
\(C \) total molar concentration of a multicomponent mixture, mol/m³
\(Ca \) capillary number, \(\mu v_{ref} / \sigma \)
\(CA \) local concentration of species indicated in the subscript (A here), mol/m³
\(C_A^{*} \) concentration of A in liquid if in equilibrium with the bulk gas (Section 10.5)
\(\langle C_A \rangle \) cross-sectionally averaged concentration
\(C_{Ab} \) concentration of species A indicated in the bulk phase, mol/m³
\(C_{Ab}^* \) mixed average concentration of species A, Section 12.4
\(C_{Ai} \) concentration of species A at the interface, mol/m³
\(C_{A,i} \) inlet concentration of species A for flow reactor, Chapter 2, mol/m³
\(C_{Ae} \) concentration of species A at a solid surface, mol/m³
\(C_{AG} \) Concentration of species indicated in the subscript in the bulk gas, mol/m³
\(C_{AL} \) Concentration of species indicated in the subscript in the bulk liquid, mol/m³
\(C_{AL}^{*} \) hypothetical concentration of A if in equilibrium with the bulk gas, mol/m³
\(C_{A,e} \) concentration of species indicated in the subscript exit
\(C_b \) cup mixed (flow) average concentration of species A, Section 20.5
\(C_{BL} \) concentration of liquid-phase reactant in bulk liquid in Section 10.5
\(c \) molecular speed in Chapter 1 (kinetic theory)
\(\bar{c} \) average molecular speed in Chapter 1 (kinetic theory)
\(\bar{c}^2 \) average of the squares of the molecular speed in Chapter 1 (kinetic theory)
\(c \) speed of sound in Chapter 2
\(c \) speed of light in radiation heat transfer in Chapter 19
\(c_A \) dimensionless concentration of species indicated in the subscript (A here), \(C_A / C_{ref} \)
\(\tilde{c} \) average speed of molecules in Section 1.8.1
\(C_D \) drag coefficient
\(C_L \) lift coefficient
\(c_p \) specific heat of a species, mass basis, under constant-pressure conditions, J/kg · K
Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_p</td>
<td>specific heat of a species, mole basis, J/mol · K</td>
</tr>
<tr>
<td>c_v</td>
<td>specific heat of a species, mass basis, under constant-volume conditions, J/kg · K</td>
</tr>
<tr>
<td>d</td>
<td>diameter of the molecules treated as rigid spheres in Section 1.8.1</td>
</tr>
<tr>
<td>d, d_t</td>
<td>diameter of a tube or pipe</td>
</tr>
<tr>
<td>d_1</td>
<td>impeller or pump diameter, Sections 14.1.5 and 14.1.6</td>
</tr>
<tr>
<td>d_p</td>
<td>particle or solid diameter</td>
</tr>
<tr>
<td>D_e</td>
<td>effective diffusivity of a species in a heterogeneous medium</td>
</tr>
<tr>
<td>D_i</td>
<td>molecular diffusivity of species i</td>
</tr>
<tr>
<td>D_k</td>
<td>Knudsen diffusion coefficient for small pores</td>
</tr>
<tr>
<td>D_t</td>
<td>turbulent mass diffusivity, m²/s</td>
</tr>
<tr>
<td>Da</td>
<td>Damköhler number V_k/Q</td>
</tr>
<tr>
<td>e</td>
<td>charge on an electron in Chapter 22</td>
</tr>
<tr>
<td>e</td>
<td>pipe roughness parameter in Sections 5.5 and 17.6.1</td>
</tr>
<tr>
<td>e</td>
<td>total energy content per unit mass</td>
</tr>
<tr>
<td>e_x</td>
<td>unit vector in the x-direction</td>
</tr>
<tr>
<td>E</td>
<td>electric field</td>
</tr>
<tr>
<td>E^2</td>
<td>operator defined by Eq. (3.53) or Eq. (3.55)</td>
</tr>
<tr>
<td>E^4</td>
<td>Stokes operator defined as E^2E^2</td>
</tr>
<tr>
<td>E</td>
<td>emissive power of a gray body</td>
</tr>
<tr>
<td>E_b</td>
<td>emissive power of a black body, W/m²</td>
</tr>
<tr>
<td>E_{bk}</td>
<td>emissive power of a black body from surface k, W/m²</td>
</tr>
<tr>
<td>E_{bk}^*</td>
<td>spectral emissive power, W/m² nm</td>
</tr>
<tr>
<td>\dot{E}</td>
<td>rate-of-strain tensor</td>
</tr>
<tr>
<td>f</td>
<td>dimensionless streamfunction in boundary-layer flow</td>
</tr>
<tr>
<td>F</td>
<td>Fanning friction factor</td>
</tr>
<tr>
<td>F_{ik}</td>
<td>radiation view factor, surface i to k</td>
</tr>
<tr>
<td>F</td>
<td>Faraday constant $= 96 485$ C/mol</td>
</tr>
<tr>
<td>F</td>
<td>force acting on a control volume</td>
</tr>
<tr>
<td>F_m, F_m'</td>
<td>correction factor for unidirectional mass transfer, Sections 10.1 and 20.2.1</td>
</tr>
<tr>
<td>F_h</td>
<td>augmentation factor for heat transfer due to blowing</td>
</tr>
<tr>
<td>g</td>
<td>acceleration due to gravity</td>
</tr>
<tr>
<td>g_s</td>
<td>rate of production of entropy per unit volume, W/K · m³</td>
</tr>
<tr>
<td>G</td>
<td>pressure-drop parameter defined as $-dP/dx$</td>
</tr>
<tr>
<td>G</td>
<td>superficial gas velocity, kg/m² · s</td>
</tr>
<tr>
<td>Gr</td>
<td>Grashof number</td>
</tr>
<tr>
<td>h</td>
<td>enthalpy per unit mass</td>
</tr>
<tr>
<td>h</td>
<td>heat transfer coefficient (usually from solid to fluid), W/m² · K</td>
</tr>
<tr>
<td>h</td>
<td>elevation or height from a datum plane for flow problems</td>
</tr>
<tr>
<td>h</td>
<td>Planck’s constant in radiation chapter, 6.6208×10^{-34} J · s</td>
</tr>
<tr>
<td>h_f</td>
<td>head loss due to friction</td>
</tr>
<tr>
<td>h_G</td>
<td>heat transfer coefficient in the gas film</td>
</tr>
<tr>
<td>h_L</td>
<td>heat transfer coefficient in the liquid film</td>
</tr>
<tr>
<td>\dot{h}_{gl}</td>
<td>heat released on condensation of a species, J/kg</td>
</tr>
<tr>
<td>\dot{h}_{lg}</td>
<td>heat of vaporization, J/kg</td>
</tr>
<tr>
<td>\dot{h}_{sl}</td>
<td>heat needed for melting a solid, J/kg</td>
</tr>
<tr>
<td>H_A</td>
<td>Henry’s-law constant for solubility of A defined by $P_A = H_A C_A$, Pa m³/mol</td>
</tr>
</tbody>
</table>
Notation

Ha Hartmann number
Ha Hatta number for gas–liquid reactions
i current density in Chapter 22, A/m^2
i square root of -1 in Section 11.11
I intensity of radiation, W/m^2
j_A mass diffusion flux of A (mass reference), $kg/m^2 \cdot s$
J_A molar diffusion flux of A (mole reference), $mol/m^2 \cdot s$
J_k radiosity of a surface in radiation, W/m^2
k_G mass transfer coefficient from gas to interface
(partial pressure driving force), $mol/Pa \cdot m^2 \cdot s$
k_{L} mass transfer coefficient from an interface to bulk liquid
(concentration driving force), m/s
k thermal conductivity of a species, subscript l for liquid, g for gas, s for solid, $W/m \cdot K$
k turbulent kinetic energy per unit mass, m^2/s^2
k rate constant for reaction, general
k_B Boltzmann constant, $1.38 \times 10^{-23} J/K$
k_0 rate constant for a zeroth-order reaction, $mol/m^3 \cdot s$
k_1 rate constant for a first-order reaction, $1/s$
k_2 rate constant for a second-order reaction, $m^3/mol \cdot s$
k_m mass transfer coefficient from a solid to fluid (concentration driving force), m/s
k_o_m mass transfer coefficient under low-mass-flux conditions, m/s
\tilde{K} diffusivity matrix in Section 21.4
K matrix of multicomponent diffusion coefficient in Section 21.4
K_G overall mass transfer coefficient from a bulk gas to a bulk liquid
(gas phase partial pressure driving force), $mol/m^2 \cdot s \cdot Pa$
K_L overall mass transfer coefficient from a bulk gas to a bulk liquid
(liquid concentration driving force), m/s
L length of the plate or tube or catalyst slab, m
M local Mach number, v/c
m mass of a molecule in Section 1.8.1
\dot{m} mass flow rate, kg/s
m_A,tot total mass of A in an unit or control volume, kg
m_{Ai} mass flow rate of A entering a unit, kg/s
m_{Ae} mass flow rate of A exiting a unit, kg/s
$m_{AW,tot}$ total mass of A transferred to walls from an unit or process, kg/s
\bar{M} average molecular weight of a mixture, $kg/g.mol$
\dot{M} momentum flow rate vector, N
M_A molecular weight of species indicated in the subscript, $kg/g.mol$
M_w molecular weight in general
M total moles present in a control volume, g-mol
\dot{M} moles per second entering/leaving the unit, $i = \text{inlet}, e = \text{exit}$
M_A moles of A in the system or control volume
Nu Nusselt number, usually defined as $h d_i/k$ or $h x/k$
N_A Avogadro number $= 6.23 \times 10^{23}$ molecules/g-mol
n number density of molecules in Section 1.8.1
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>normal vector outward from a control surface</td>
</tr>
<tr>
<td>n_A</td>
<td>mass flux vector of species A, stationary frame, kg-A/m²·s</td>
</tr>
<tr>
<td>n_{Ax}</td>
<td>component of mass flux vector of A in the x-direction, kg-A/m²·s</td>
</tr>
<tr>
<td>N_{tu}</td>
<td>number of transfer of unit parameter</td>
</tr>
<tr>
<td>p</td>
<td>fluid pressure; equal to the average normal stress, Pa</td>
</tr>
<tr>
<td>p_{vap}</td>
<td>vapor pressure of a species, Pa</td>
</tr>
<tr>
<td>P</td>
<td>thermodynamic pressure used in equation of state, Pa</td>
</tr>
<tr>
<td>p^*</td>
<td>dimensionless pressure, $p/\rho v^2_{ref}$</td>
</tr>
<tr>
<td>p^{**}</td>
<td>dimensionless pressure, p^*Re</td>
</tr>
<tr>
<td>P</td>
<td>power input for agitated vessels, W</td>
</tr>
<tr>
<td>P_c</td>
<td>critical pressure of a species, Pa</td>
</tr>
<tr>
<td>P^*</td>
<td>modified pressure defined as $p + \rho gh$</td>
</tr>
<tr>
<td>P</td>
<td>temperature gradient in Example 8.3 and concentration gradient in Section 10.4.6</td>
</tr>
<tr>
<td>Pe</td>
<td>Péclet number, $d_i\langle v \rangle/\alpha$</td>
</tr>
<tr>
<td>Pe_R</td>
<td>Péclet number based on pipe radius, $d_i\langle v \rangle/D$</td>
</tr>
<tr>
<td>Pe^*</td>
<td>dispersion Péclet number in Section 12.5, $\langle v \rangle L/D_E$</td>
</tr>
<tr>
<td>Po</td>
<td>power number as $p/(\rho N_i^2 d_i^5)$ in Section 14.15</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number, $c_p\mu/k$</td>
</tr>
<tr>
<td>q</td>
<td>dimensionless stoichiometric ratio defined by Eq. (10.44) in Section 10.5</td>
</tr>
<tr>
<td>Q</td>
<td>volumetric flow rate in a pipe, m³/s</td>
</tr>
<tr>
<td>$q^{(m)}$</td>
<td>heat flux vector (molecular), same as q, W/m²</td>
</tr>
<tr>
<td>q_s</td>
<td>heat flux from a surface or wall to a flowing fluid</td>
</tr>
<tr>
<td>$q^{(t)}$</td>
<td>heat flux vector due to turbulence, W/m²</td>
</tr>
<tr>
<td>q_x</td>
<td>component of the heat flux vector in the x-direction</td>
</tr>
<tr>
<td>q_y</td>
<td>component of the heat flux vector in the y-direction</td>
</tr>
<tr>
<td>q_w</td>
<td>heat flux to the wall of a pipe from a fluid</td>
</tr>
<tr>
<td>\dot{Q}</td>
<td>rate at which heat is added to the control volume; unit volume basis, W/m³</td>
</tr>
<tr>
<td>\dot{Q}_V</td>
<td>rate at which heat is generated within control volume per unit volume, W/m³</td>
</tr>
<tr>
<td>q_z</td>
<td>component of the heat flux vector in the z-direction</td>
</tr>
<tr>
<td>r</td>
<td>radial coordinate in cylindrical and spherical system</td>
</tr>
<tr>
<td>R</td>
<td>radius of cylinder or catalyst particle</td>
</tr>
<tr>
<td>r_A</td>
<td>local rate of mass production of A by reaction per unit volume, mass units, kg/m³·s</td>
</tr>
<tr>
<td>R_A</td>
<td>local rate of mole production of A by reaction per unit volume, mole units, mol/m³·s</td>
</tr>
<tr>
<td>R^*</td>
<td>gas constant defined as R_G/M_w</td>
</tr>
<tr>
<td>R_A</td>
<td>rate of production of a species A by reaction</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number, $L_{ref}v_{ref}\mu$</td>
</tr>
<tr>
<td>R_G</td>
<td>gas constant, 8.314 Pa m³/mol · K</td>
</tr>
<tr>
<td>\hat{s}</td>
<td>entropy energy per unit mass of fluid, J/K · kg</td>
</tr>
<tr>
<td>s</td>
<td>entropy flux vector, W/K · m²</td>
</tr>
<tr>
<td>s</td>
<td>shape parameter for conduction or diffusion, 1 for slab, 2 for long cylinder, 3 for sphere</td>
</tr>
</tbody>
</table>
Notation

Sc Schmidt number, $\mu/\rho D$

Sh Sherwood number, $k_m x/D$

St Stanton number, $Nu/(RePr)$ or $Sh/(ReSc)$

t time variable

t_E exposure time for a gas–liquid interface

T local temperature in the medium

T_a temperature of the surroundings

$\langle T \rangle$ cross-sectionally averaged temperature

T_b cup mixing (flow-averaged) temperature

T_c critical temperature of a species

T_i temperature of a gas–liquid interface

T_w temperature of a wall or tube

T_∞ temperature of the approaching fluid

\dot{u} internal energy unit mass of fluid, J/kg

\dot{U} internal energy per unit mole of fluid, J/mol

U overall heat transfer coefficient from hot fluid to cold fluid, W/m²·K

v velocity vector; also mass-fraction-averaged velocity in a multicomponent mixture, m/s

v' fluctuating velocity vector in turbulent flow

\bar{v} time-averaged velocity vector in turbulent flow

v_\ast mole-fraction-averaged velocity in a multicomponent mixture, m/s

v_x x-component of the velocity; v_y and v_z defined similarly

v velocity component in the tangential (θ) direction

v_A velocity of species A in a multicomponent mixture, stationary frame, m/s

v_e velocity component in the fluid outside the boundary layer, m/s

V total control volume

\hat{V} molar volume, m³/mol

V speed of a moving solid in shear flow in flow direction, m/s

v_b molecular volume at boiling point of solvent

V_f friction velocity defined as $\sqrt{\tau_f/\rho}$ used in turbulent flow, m/s

\dot{W} rate at which work is done on the control volume, W/m³

\dot{W}_s rate at which work is done by a moving part on the control volume, W/m³

\dot{W}_f rate at which heat energy is produced by friction, W/m³

x distance variable in the x-direction, y and x defined similarly.

xi mole fraction of species indicated by the subscript (usually in the liquid phase)

y distance variable in the y-direction

yi mole fraction of species indicated by the subscript (usually in the gas phase)

y^{+} dimensionless length used in turbulence analysis near a wall

$y_{(l,m)}$ log-mean mole fraction of the non-diffusing component

z axial distance variable in cylindrical coordinates

z^* dimensionless axial distance variable in cylindrical coordinates, z/R

z_i number of charges on an ionic species

Z frequency of molecular collisions in Section 1.8.1
Notation

Greek letters and other symbols

\(\alpha \)
thermal diffusivity of a solid, \(m^2/s \)

\(\alpha_\text{t} \)
turbulent heat diffusivity, \(m^2/s \)

\(\alpha_\text{H} \)
turbulent heat diffusivity, \(m^2/s \)

\(\beta \)
bulk modulus of elasticity, \(N/m^2 \)

\(\beta \)
angular velocity vector

\(\gamma \)
dimensionless activation energy in Section 13.7 and Example 16.1

\(\gamma \)
ratio of specific-heat values, \(c_p/c_v \)

\(\nabla \)
gradiant operator

\(\nabla^* \)
gradiant operator in dimensionless coordinates

\(\nabla^2 \)
Laplacian operator defined by Eqs. (1.56)-(1.58) for scalars

\(\nabla^2 \)
Laplacian operator defined in Sections 5.3.1 and 5.3.2 for vectors

\(\nabla^4 \)
biharmonic operator defined by Eq. (5.31)

\(\Delta \)
difference operator, out – in

\(\Delta \)
ratio of boundary-layer thickness, heat/mass to momentum

\(\Delta H \)
heat of reaction, \(J/mol \)

\(\Delta H_v \)
heat of vaporization, mole basis, \(J/mol \)

\(\Delta \pi \)
oscillating pressure difference in Section 10.7, \(Pa \)

\(\delta \)
parameter in Frank-Kamenetskii model

\(\delta \)
thickness of momentum boundary layer in general

\(\delta_\text{f} \)
film thickness for mass transfer, abbreviated as \(\delta \) in Chapter 10

\(\delta_\text{m} \)
thickness of mass-transfer boundary layer

\(\delta_\text{t} \)
thickness of thermal boundary layer

\(\epsilon \)
dielectric permittivity of a medium in Chapter 22

\(\epsilon \)
emissivity of the medium

\(\epsilon \)
energy dissipation rate in turbulent flow analysis

\(\epsilon \)
a parameter in Lennard-Jones model in Chapter 1

\(\eta \)
effectiveness factor of a porous catalyst in Chapter 10

\(\zeta \)
dimensionless axial distance, \(z^*/Pe \)

\(\eta \)
similarity variable defined by Eq. (11.30) in Chapter 11 for heat conduction

\(\eta \)
similarity variable defined in Chapter 12.2 for convective heat transfer

\(\kappa \)
circulation (line integration of tangential velocity) in Section 15.4.3

\(\kappa \)
conductivity of an ionized liquid in Section 22.1.3

\(\kappa \)
ratio of radius values, \(R_c/R_o \), in Chapter 6

\(\kappa \)
Boltzmann constant, also denoted as \(k_B \)

\(\lambda \)
Debye length in Sections 22.5 and 22.6

\(\lambda \)
mean free path in Section 1.8.1

\(\Delta \)
consistency index parameter for power law fluids

\(\theta \)
angular direction in polar coordinates
Notation

\(\theta \)
latitude direction in spherical coordinates

\(\theta \)
dimensionless temperature in heat transfer examples

\(\mu \)
coefficient of viscosity, Pa \(\cdot \) s

\(\mu_i \)
mobility of charged species \(i \) in Chapter 22

\(\mu_w \)
chemical potential of water in Section 10.7

\(\nu \)
coefficient of kinematic viscosity, \(\mu/\rho \), m\(^2\)/s

\(\nu_t \)
turbulent kinematic viscosity, \(\mu_t/\rho \), m\(^2\)/s

\(\nu_T \)
dimensionless total (molecular + turbulent) kinematic viscosity

\(\rho \)
density of the medium or the fluid, kg/m\(^3\)

\(\rho_A \)
density of A in a multicomponent mixture, kg/m\(^3\)

\(\sigma \)
surface tension, N/m

\(\sigma_{xx} \)
total stress (viscous and pressure) in the \(x \)-direction

\(\sigma \)
Staverman constant in Section 10.7.1

\(\sigma_{xy} \)
same as \(\tau_{xy} \) since shear stress has no pressure contribution

\(\sigma \)
Stefan–Boltzmann constant

\(\tau \)
dimensionless time in Chapter 11, \(t/t_{\text{ref}} \)

|\(\tau_w \)|
stress exerted by the wall opposite to the flow direction in response to \(-\tau_w\)

\(\tau_w \)
stress exerted by the solid on the fluid in pipe flow, \(\mu \frac{dv_z}{dr} \) at \(r = R \), usually negative in the flow direction

\(\tau_f \)
stress exerted by the fluid on the solid, \(\mu \frac{dv_x}{dy} \) at \(y = 0 \)

\(\tau_0 \)
yield stress for Bingham flow

\(\tau_{xx} \)
viscous stress in the \(x \)-direction on a plane whose unit normal is in the \(x \)-direction

\(\tau_{yx} \)
viscous stress in the \(x \)-direction on a plane whose unit normal is in the \(y \)-direction; other components are defined similarly

\(\phi \)
blowing parameter in Section 13.6.1

\(\phi \)
electric potential in Chapter 22

\(\phi \)
longitude in the spherical coordinate system

\(\phi \)
velocity potential defined by Eq. (3.49) in Section 3.10

\(\phi \)
Thiele parameter for a first-order reaction

\(\phi_0 \)
Thiele parameter for a zeroth-order reaction defined by Eq. (10.34)

\(\Phi \)
rate of heat production by viscosity per unit volume, Eq. (7.12), W/m\(^3\)

\(\psi \)
streamfunction defined by Eq. (3.39) or Eq. (3.40)

\(\omega \)
frequency of oscillation in periodic flow, s\(^{-1}\)

\(\omega^* \)
dimensionless frequency of oscillation in periodic flow, \(\omega/\omega_{\text{ref}} \)

\(\omega \)
vorticity for a plane flow defined as \(\omega_z \)

\(\omega \)
vorticity vector for a general 3D flow, \(\nabla \times \mathbf{V} \)

\(\omega \)
specific energy-dissipation rate in turbulent flow

\(\omega_\Lambda \)
mass fraction of species indicated by the subscript, kg-A/kg-total

\(\xi \)
dimensionless radial position, \(r/R \) or \(x/L \)

\(\Omega \)
angular velocity, rotational speed

\(\Omega_\zeta \)
speed of rotation or agitation in Section 14.1.5 and 14.1.6, r.p.s.
Notation

Common subscripts

b bulk conditions
G gas-phase properties
e exit values (Chapter 2)
i inlet values (Chapter 2)
i interface conditions (Chapters 9 and 10)
l liquid-phase properties
s conditions at a surface of a solid or catalyst