Clinical Trials in Neurology

Design, Conduct, Analysis

Edited by

Bernard Ravina, MD, MS
Medical Director, Translational Neurology, Biogen Idec, Cambridge, MA, USA

Jeffrey Cummings, MD
Director, Cleveland Clinic Lou Ruvo Center for Brain Health in Nevada, Ohio, and Florida, USA

Michael P. McDermott, PhD
Professor of Biostatistics, and Professor of Neurology, University of Rochester School of Medicine, Rochester, NY, USA

R. Michael Poole, MD, FACP
Head, CNS and Pain Innovative Medicine Unit, AstraZeneca PLC, Waltham, MA, USA
To J, Gers, Double Reh, and Bewds
Contents

List of contributors ix
Preface xiii
Acknowledgements xv

Section 1. The role of clinical trials in therapy development
1 The impact of clinical trials in neurology 1
E. Ray Dorsey and S. Claiborne Johnston
2 The sequence of clinical development 8
R. Michael Poole
3 Unique challenges in the development of therapies for neurological disorders 19
Gilmore N. O’Neill

Section 2. Concepts in biostatistics and clinical measurement
4 Fundamentals of biostatistics 28
Judith Bebchuk and Janet Wittes
5 Bias and random error 42
Susan S. Ellenberg and Jacqueline A. French
6 Approaches to data analysis 52
William R. Clarke
7 Selecting outcome measures 69
Robert G. Holloway and Andrew D. Siderowf

Section 3. Special study designs and methods for data monitoring
8 Selection and futility designs 78
Bruce Levin
9 Adaptive design across stages of therapeutic development 91
Christopher S. Coffey
10 Crossover designs 101
Mary E. Putt
11 Two-period designs for evaluation of disease-modifying treatments 113
Michael P. McDermott

Section 4. Ethical issues
12 Enrichment designs 127
Kathryn M. Kellogg and John Markman
13 Non-inferiority trials 135
Rick Chappell
14 Monitoring of clinical trials: Interim monitoring, data monitoring committees, and group sequential methods 147
Rickey E. Carter and Robert F. Woolson
15 Clinical approaches to post-marketing drug safety assessment 160
Gerald J. Dal Pan

Section 5. Regulatory perspectives
16 Ethics in clinical trials involving the central nervous system: Risk, benefit, justice, and integrity 173
Jonathan Kimmelman
17 The informed consent process: Compliance and beyond 187
Scott Y. H. Kim

Section 6. Clinical trials in common neurological disorders
18 Evidentiary standards for neurological drugs and biologics approval 197
Russell Katz
19 Premarket review of neurological devices 206
Eric A. Mann and Peter G. Como

20 Parkinson’s disease 215
Karl Kieburtz and Jordan Elm
21 Alzheimer’s disease 227
Joshua D. Grill and Jeffrey Cummings
Contents

22 Acute ischemic stroke 242
 Devin L. Brown, Karen C. Johnston, and Yuko Y. Palesch

23 Multiple sclerosis 257
 Richard A. Rudick, Elizabeth Fisher, and Gary R. Cutter

24 Amyotrophic lateral sclerosis 273
 Nazem Atassi, David Schoenfeld, and Merit Cudkowicz

25 Epilepsy 284
 John R. Pollard, Susan S. Ellenberg, and Jacqueline A. French

26 Insomnia 295
 Michael E. Yurcheshen, Changyong Feng, and J. Todd Arnedt

Section 7. Clinical trial planning and implementation

27 Clinical trial planning: An academic and industry perspective 309
 Cornelia L. Kamp and Jean-Michel Germain

28 Clinical trial implementation, analysis, and reporting: An academic and industry perspective 338
 Cornelia L. Kamp and Jean-Michel Germain

29 Academic-industry collaborations and compliance issues 352
 D. Troy Morgan

Index 362
List of contributors

Jacqueline A. French, MD
Director, Epilepsy Study Consortium, Department of Neurology, NYU Langone Medical Center, New York, NY, USA

Jean-Michel Germain, PhD
Global Trial Director, Wyeth Pharmaceuticals France, a Division of Pfizer Inc., Collegeville, PA, USA

Joshua D. Grill, PhD
Mary S. Easton Center for Alzheimer's Disease Research; Katherine and Benjamin Kagan Alzheimer's Disease Treatment Development Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA

Robert G. Holloway, MD, MPH
Professor of Neurology and Community and Preventive Medicine, University of Rochester Medical Center, Rochester, NY, USA

Karen C. Johnston, MD, MSc
Harrison Distinguished Professor and Chair, Department of Neurology, University of Virginia, Charlottesville, VA, USA

S. Claiborne Johnston, MD, PhD
Professor of Neurology and Epidemiology, University of California San Francisco, San Francisco, CA, USA

Cornelia L. Kamp, MBA
Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA

Russell Katz, MD
Director, Division of Neurology Products, US Food and Drug Administration, Silver Spring, MD, USA

Kathryn M. Kellogg, MPH, BA
Research Fellow, Department of Emergency Medicine, University of Rochester School of Medicine, Rochester, NY, USA

Karl Kieburtz, MD, MPH
Robert J. Joynt Professor Neurology; Director, Center for Human Experimental Therapeutics; Professor, Community & Preventive Medicine and Environmental Medicine; University of Rochester Medical Center, Rochester, NY, USA

Scott Y. H. Kim, MD, PhD
Associate Professor of Psychiatry and Co-Director, Center for Bioethics and Social Sciences in Medicine, and Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA

Jonathan Kimmelman, PhD
Clinical Trials Research Group, Biomedical Ethics Unit, Department of Social Studies of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada

Bruce Levin, PhD
Professor, Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA

Michael P. McDermott, PhD
Professor, Department of Biostatistics and Computational Biology and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA

Eric A. Mann, MD, PhD
Clinical Deputy Director, Division of Ophthalmic, Neurological, and ENT Devices, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Springs, MD, USA

John Markman, MD
Director, Translational Pain Research, Department of Neurosurgery, University of Rochester School of Medicine, Rochester, NY, USA

D. Troy Morgan Esq.
Director of Corporate Compliance, Biogen Idec, Cambridge, MA, USA

Gilmore N. O’Neill, MB, MMedSc
Vice President, Multiple Sclerosis – Clinical Development, Biogen Idec, Cambridge, MA, USA

Yuko Y. Palesch, PhD
Professor of Biostatistics and Director of the Division of Biostatistics and Epidemiology, Medical University of South Carolina, Charleston, SC, USA

John R. Pollard, MD
Penn Epilepsy Center, University of Pennsylvania, Philadelphia, PA, USA
List of contributors

R. Michael Poole, MD, FACP
Head, CNS and Pain Innovative Medicine Unit, AstraZeneca PLC, Waltham, MA, USA

Mary E. Putt, PhD, ScD
Associate Professor of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA

Bernard Ravina, MD, MS
Medical Director, Translational Neurology, Biogen Idec, Cambridge, MA, USA

Richard A. Rudick, MD
Director, Mellen Center for Multiple Sclerosis Treatment and Research, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA

David Schoenfeld, PhD
Professor of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA

Andrew D. Siderowf, MD, MSCE
Associate Professor of Neurology at the Pennsylvania Hospital, University of Pennsylvania, Philadelphia, PA, USA

Janet Wittes, PhD
President, Statistics Collaborative Inc., Washington, DC, USA

Robert F. Woolson, PhD
Professor Emeritus, College of Medicine, Medical University of South Carolina, Charleston, SC; Center for Health Services Research in Primary Care, Durham VAMC, Durham; Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA

Michael E. Yurcheshen, MD
Assistant Professor, Departments of Neurology and Internal Medicine; Director, Sleep Medicine Fellowship, University of Rochester School of Medicine, Rochester, NY, USA
Preface

The aging population is increasing the global burden of neurological diseases and the need for safe and effective therapeutics for these disorders. While therapeutic targets for neurological disorders are increasingly tractable, neurology also has one of the highest failure rates in late stage clinical trials. There is an increasing need for proficiency in the design, conduct, analysis, and interpretation of clinical trials in neurology. This is especially true in the early and middle stages of therapeutic development, which determine if and how comparative efficacy studies should be conducted.

The goal of this book is to describe how the principles of clinical trials can be applied to the challenges that arise in developing therapies for neurological disorders. The fundamentals of clinical trials are explored in several existing texts and are the same across different fields of medicine. Here we describe the application of those principles to the specific clinical questions that arise with the study of neurological diseases.

There is no one trial design that meets all objectives for a particular phase of development. Rather there are parameters that need to be optimized for each intervention, question, and study. A clinical trial can be defined as an experiment in humans that is designed to test a medical, surgical, behavioral, or other type of intervention. This definition does not presuppose a particular design, type of control group, or analysis plan. When designing a trial and consulting this text for guidance, the reader should carefully consider the clinical question they are facing and how that question fits in the overall program of research for the intervention. The next step is to select a design that can practically and efficiently answer the question and guide decision-making about the intervention and the steps to further develop it.

The underlying motivation for this text is the notion that better clinical trial design and conduct will improve the efficiency of the development process by eliminating interventions with a low likelihood of success and focusing resources on those with more promise. This does not mean that all trials will be positive. By carefully selecting the appropriate dose, design, population, measure, and analytical approach we can best test the intervention’s mechanism and its relevance for treating patients with neurological disorders. Rather than a high volume of clinical trials, we seek high quality trials that have the potential to lead to improvements in patient care and quality of life.

Audience

This text is intended for those who conduct clinical trials in academia, the pharmaceutical and biotechnology industries, and government and is written by experts from each of these areas. The intended audience is meant to include the broad spectrum of medical researchers, statisticians, data managers, trial managers, regulators, and program officials. Clinical trials are by nature multidisciplinary, social undertakings that are accomplished by teams. Those teams work most effectively when the members have a common understanding of goals and principles that unite their different areas of expertise.

Organization and terminology

The text is written to emphasize key concepts, with examples from neurology and other fields and references that can provide additional detail. It should be regarded as a starting point for learning about clinical trials and a companion to formal coursework and practical experience.

The text begins with a description of the growing need for progress in the treatment of neurological disorders, the sequence of clinical development, and a discussion of the unique challenges of neurology research, such as measuring drug disposition in the central nervous system. While this is not a book specifically about drug development, any clinical trial must be nested within an overall development plan to determine how to optimize the intervention (learning) and then to actually test it (confirming) for its hypothesized benefit. Subsequent sections focus on core principles of clinical
trials: control of bias and random error, basic aspects of statistical inference, notable clinical trial designs in the neurology literature, clinical measurement and assessment of outcomes, interim monitoring, ethics, and the regulatory framework for drugs and devices using the US as an example. We then consider how these principles manifest in clinical trials for several common neurological disorders.

We have devoted two chapters to clinical operations, which is unusual in a clinical trials text. It is not sufficient to merely design an elegant experiment. The experiment must be conducted in a manner that ensures the integrity of the intervention and the study data. The steps involved in planning and implementing studies are often neglected in texts and courses and many trials fail on aspects of execution, timeline, and budget. This is especially true for many neurological disorders, where clinical trials are relatively new and researchers are often working in uncharted or unfamiliar territory. Our objective is to provide direction from what has been learned through experience to help researchers avoid costly mistakes. The final chapter of the text focuses on issues of financial relationships and compliance in industry-academic collaborations. This issue is of growing importance and transparency is necessary to facilitate these essential collaborations and ensure trust in the clinical research enterprise.

Disclaimer
Any views or opinions presented in this book are solely those of the authors, and not necessarily those of the US Food and Drug Administration or the authors' employers or institutions.
This is a multi-author text and this diverse group in many ways reflects the multidisciplinary teams needed to conduct clinical trials and develop new therapies. Many of the authors and my co-editors have been mentors and colleagues through my positions at the National Institute of Health (NIH), academic medicine, and now the biotechnology industry. I am grateful to them not only for contributing to this text but for facilitating my own interest in and understanding of clinical trials. The NIH/NINDS Neurology Clinical Trials Methods Course brought many of us together. The focused discussions and debates with faculty and trainees alike have helped to shape my approach to clinical trials. I would like to thank Janine Fitzpatrick and Briana Bouchard for their administrative and technical support and Nancy Richert for the MRI cover image. The otherwise un-named contributor to this text is my wife Joanna. Her unwavering support and critical thinking skills have been essential for this text and for the many studies, large and small, that fill a career in clinical research.

Bernard M. Ravina
Cambridge, MA