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1
A primer on information theory and

MMSE estimation

Theory is the first term in the Taylor series expansion of practice.

Thomas Cover

1.1 Introduction

Information theory deals broadly with the science of information, including compressibil-

ity and storage of data, as well as reliable communication. It is an exceptional discipline in

that it has a precise founder, Claude E. Shannon, and a precise birthdate, 1948. The pub-

lication of Shannon’s seminal treatise, “A mathematical theory of communication” [58],

represents one of the scientific highlights of the twentieth century and, in many respects,

marks the onset of the information age. Shannon was an engineer, yet information the-

ory is perhaps best described as an outpost of probability theory that has extensive ap-

plicability in electrical engineering as well as substantial overlap with computer science,

physics, economics, and even biology. Since its inception, information theory has been

distilling practical problems into mathematical formulations whose solutions cast light on

those problems. A staple of information theory is its appreciation of elegance and harmony,

and indeed many of its results possess a high degree of aesthetic beauty. And, despite their

highly abstract nature, they often do reveal much about the practical problems that moti-

vated them in the first place.

Although Shannon’s teachings are by now well assimilated, they represented a radical

departure from time-honored axioms [52]. In particular, it was believed before Shannon

that error-free communication was only possible in the absence of noise or at vanishingly

small transmission rates. Shannon’s channel coding theorem was nothing short of revolu-

tionary, as it proved that every channel had a characterizing quantity (the capacity) such

that, for transmission rates not exceeding it, the error probability could be made arbitrarily

small. Ridding the communication of errors did not require overwhelming the noise with

signal power or slowing down the transmission rate, but could be achieved in the face of

noise and at positive rates—as long as the capacity was not exceeded—by embracing the

concept of coding: information units should not be transmitted in isolation but rather in

coded blocks, with each unit thinly spread over as many symbols as possible; redundancy

and interdependency as an antidote to the confusion engendered by noise. The notion of

channel capacity is thus all-important in information theory, being something akin to the

speed of light in terms of reliable communication. This analogy with the speed of light,

which is common and enticing, must however be viewed with perspective. While, in the
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4 A primer on information theory and MMSE estimation

early years of information theory, the capacity might have been perceived as remote (wire-

line modems were transmitting on the order of 300 bits/s in telephone channels whose

Shannon capacity was computed as being 2–3 orders of magnitude higher), nowadays it

can be closely approached in important channels. Arguably, then, to the daily lives of peo-

ple the capacity is a far more relevant limitation than the speed of light.

The emergence of information theory also had an important unifying effect, proving

an umbrella under which all channels and forms of communication—each with its own

toolbox of methodologies theretofore—could be studied on a common footing. Before

Shannon, something as obvious today as the transmission of video over a telephone line

would have been inconceivable.

As anecdotal testimony of the timeless value and transcendence of Shannon’s work, we

note that, in 2016, almost seven decades after its publication, “A mathematical theory of

communication” ranked as a top-three download in IEEE Xplore, the digital repository that

archives over four million electrical engineering documents—countlessly many of which

elaborate on aspects of the theory spawned by that one paper.

This chapter begins by describing certain types of signals that are encountered through-

out the text. Then, the chapter goes on to review those concepts in information theory that

are needed throughout, with readers interested in more comprehensive treatments of the

matter referred to dedicated textbooks [14, 59, 60]. In addition to the relatively young dis-

cipline of information theory, the chapter also touches on the much older subject of MMSE

estimation. The packaging of both topics in a single chapter is not coincidental, but rather

a choice that is motivated by the relationship between the two—a relationship made of

bonds that have long been known, and of others that have more recently been unveiled

[61]. Again, we cover only those MMSE estimation concepts that are needed in the book,

with readers interested in broader treatments referred to estimation theory texts [62].

1.2 Signal distributions

The signals described next are in general complex-valued. The interpretation of complex

signals, as well as complex channels and complex noise, as baseband representations of

real-valued passband counterparts is provided in Chapter 2, and readers needing back-

ground on this interpretation are invited to peruse Section 2.2 before proceeding. We ad-

vance that the real and imaginary parts of a signal are respectively termed the in-phase and

the quadrature components.

Consider a complex scalar s, zero-mean and normalized to be of unit variance, which is

to serve as a signal. From a theoretical vantage, a distribution that is all-important because

of its optimality in many respects is the complex Gaussian, s ∼ NC(0, 1), details of which

are offered in Appendix C.1.9. In practice though, a scalar signal s is drawn from a discrete

distribution defined by M points, say s0, . . . , sM−1, taken with probabilities p0, . . . , pM−1.

These points are arranged into constellations such as the following.
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5 1.2 Signal distributions

Table 1.1 Constellation minimum distances

Constellation dmin

M -PSK 2 sin
(

π

M

)

Square M -QAM
√

6

M−1

M -ary phase shift keying (M -PSK), where

sm = ej2π
m

M
+φ0 m = 0, . . . ,M − 1 (1.1)

with φ0 an arbitrary phase. Because of symmetry, the points are always equiprobable,

pm = 1/M for m = 0, . . . ,M − 1. Special mention must be made of binary phase-shift

keying (BPSK), corresponding to M = 2, and quadrature phase-shift keying (QPSK),

which corresponds to M = 4.

Square M -ary quadrature amplitude modulation (M -QAM), where the in-phase and

quadrature components of s independently take values in the set

{
√

3
2 (M−1)

(

2m− 1−
√
M

)}

m = 0, . . . ,
√
M − 1 (1.2)

with
√
M integer. (Nonsquare M -QAM constellations also exist, and they are employed

regularly in wireline systems, but seldom in wireless.) Although making the points in a

M -QAM constellation equiprobable is not in general optimum, it is commonplace. Note

that, except for perhaps an innocuous rotation, 4-QAM coincides with QPSK.

For both M -PSK and square M -QAM, the minimum distance between constellation

points is provided in Table 1.1.

Example 1.1

Depict the 8-PSK and 16-QAM constellations and indicate the distance between nearest

neighbors within each.

Solution

See Fig. 1.1.

It is sometimes analytically convenient to approximate discrete constellations by means

of continuous distributions over a suitable region on the complex plane. These continuous

distributions can be interpreted as limits of dense M -ary constellations for M → ∞. For

equiprobable M -PSK and M -QAM, the appropriate unit-variance continuous distributions

are:

∞-PSK, where s = ejφ with φ uniform on [0, 2π).

∞-QAM, where s is uniform over the square
[

−
√

3/2,
√

3/2
]

×
[

−
√

3/2,
√

3/2
]

on the complex plane.
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�Fig. 1.1 Unit-variance 8-PSK and 16-QAM constellations.

Except for BPSK, all the foregoing distributions, both continuous and discrete, are

proper complex in the sense of Section C.1.4.

Lastly, a distribution that is relevant for ultrawideband communication is “on–off” key-

ing [63, 64]

s =

{

0 with probability 1− ε
√

1/ε with probability ε
(1.3)

parameterized by ε. Practical embodiments of this distribution include pulse-position mod-

ulation [65] and impulse radio [66]. Generalizations of (1.3) to multiple “on” states are

also possible.

1.3 Information content

Information equals uncertainty. If a given quantity is certain, then knowledge of it provides

no information. It is therefore only natural, as Shannon recognized, to model information

and data communication using probability theory. All the elements that play a role in com-

munications (signals, channel, noise) are thereby abstracted using random variables and

random processes. For the reader’s convenience, reviews of the basic results on random

variables and random processes that are necessary for the derivations in this chapter are

respectively available in Appendices C.1 and C.3.

As the starting point of our exposition, let us see how to quantify the information content

of random variables and processes. We adopt the bit as our information currency and,

consequently, all applicable logarithms are to the base 2; other information units can be
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7 1.3 Information content

obtained by merely modifying that base, e.g., the byte (base 256), the nat (base e), and the

ban (base 10).

All the summations and integrals that follow should be taken over the support of the

corresponding random variables, i.e., the set of values on which their probabilities are

nonzero.

1.3.1 Entropy

Let x be a discrete random variable with PMF px(·). Its entropy, denoted by H(x), is

defined as

H(x) = −
∑

x

px(x) log2 px(x) (1.4)

= −E
[

log2 px(x)
]

. (1.5)

Although the entropy is a function of px(·) rather than of x, it is rather standard to slightly

abuse notation and write it as H(x). The entropy is nonnegative and it quantifies the amount

of uncertainty associated with x: the larger the entropy, the more unpredictable x. Not

surprisingly then, the uniform PMF is the entropy-maximizing one. If the cardinality of x

is M , then its entropy under a uniform PMF trivially equals H(x) = log2 M bits and

thus we can affirm that, for any x with cardinality M , H(x) ≤ log2 M bits. At the other

extreme, variables with only one possible outcome (i.e., deterministic quantities) have an

entropy of zero. The entropy H(x) gives the number of bits required to describe x on

average. Note that the actual values taken by x are immaterial in terms of H(x); only the

probabilities of those values matter.

Similar to Boltzmann’s entropy in statistical mechanics, the entropy was introduced as

a measure of information by Shannon with the rationale of being the only measure that is

continuous in the probabilities, increasing in the support if px(·) is uniform, and additive

when x is the result of multiple choices [67].

Example 1.2

Express the entropy of the Bernoulli random variable

x =

{

0 with probability p

1 with probability 1− p.
(1.6)

Solution

The entropy of x is the so-called binary entropy function,

H(x) = −p log2 p− (1− p) log2(1− p), (1.7)

which satisfies H(x) ≤ 1 with equality for p = 1/2.

Example 1.3

Express the entropy of an equiprobable M -ary constellation.
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8 A primer on information theory and MMSE estimation

Solution

For s conforming to a discrete constellation with M equiprobable points,

H(s) = −
M−1
∑

m=0

1

M
log

1

M
(1.8)

= log2 M. (1.9)

These log2 M bits can be mapped onto the M constellation points in various ways. Par-

ticularly relevant is the so-called Gray mapping, characterized by nearest-neighbor con-

stellation points differing by a single bit. This ensures that, in the most likely error event,

when a constellation point is confused with its closest neighbor, a single bit is flipped. Gray

mapping is illustrated for a PSK constellation in Fig. 1.1.

Having seen how to quantify the amount of information in an individual variable, we

now extend the concept to multiple ones. Indeed, because of the multiple inputs and out-

puts, the most convenient MIMO representation uses vectors for the signals and matrices

for the channels.

Let x0 and x1 be discrete random variables with joint PMF px0x1
(·, ·) and marginals

px0
(·) and px1

(·). The joint entropy of x0 and x1 is

H(x0, x1) = −
∑

x0

∑

x1

px0x1
(x0, x1) log2 px0x1

(x0, x1) (1.10)

= −E
[

log2 px0x1
(x0, x1)

]

. (1.11)

If x0 and x1 are independent, then H(x0, x1) = H(x0)+H(x1). Furthermore, by regarding

x0 and x1 as entries of a vector, we can claim (1.10) as the entropy of such a vector. More

generally, for any discrete random vector x,

H(x) = −E
[

log2 px(x)
]

. (1.12)

Often, it is necessary to appraise the uncertainty that remains in a random variable x

once a related random variable y has been observed. This is quantified by the conditional

entropy of x given y,

H(x|y) = −
∑

x

∑

y

pxy(x, y) log2 px|y(x|y). (1.13)

If x and y are independent, then naturally H(x|y) = H(x) whereas, if x is a deterministic

function of y, then H(x|y) = 0.

The joint and conditional entropies are related by the chain rule

H(x, y) = H(x) +H(y|x), (1.14)

which extends immediately to vectors. When more than two variables are involved, the

chain rule generalizes as

H(x0, . . . , xN−1) =

N−1
∑

n=0

H(xn|x0, . . . , xn−1). (1.15)
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9 1.3 Information content

1.3.2 Differential entropy

A quantity seemingly analogous to the entropy, the differential entropy, can be defined for

continuous random variables. If fx(·) is the probability density function (PDF) of x, its

differential entropy is

h(x) = −
∫

fx(x) log2 fx(x) dx (1.16)

= −E
[

log2 fx(x)
]

(1.17)

where the integration in (1.16) is over the complex plane. Care must be exercised when

dealing with differential entropies, because they may be negative. Indeed, despite the sim-

ilarity in their forms, the entropy and differential entropy do not admit the same interpre-

tation: the former measures the information contained in a random variable whereas the

latter does not. Tempting as it may be, h(x) cannot be approached by discretizing fx(·)
into progressively smaller bins and computing the entropy of the ensuing discrete random

variable. The entropy of a b-bit quantization of x is approximately h(x)+b, which diverges

as b → ∞. This merely confirms what one may have intuitively guessed, namely that the

amount of information in a continuous variable, i.e., the number of bits required to describe

it, is generally infinite. The physical meaning of h(x) is thus not the amount of information

in x. In fact, the differential entropy is devoid—from an engineering viewpoint—of oper-

ational meaning and ends up serving mostly as a stepping stone to the mutual information,

which does have plenty of engineering significance.

Example 1.4

Calculate the differential entropy of a real random variable x uniformly distributed in [0, b].

Solution

h(x) = −
∫ b

0

1

b
log2

(

1

b

)

dx (1.18)

= log2 b. (1.19)

Note that h(x) < 0 for b < 1.

Example 1.5 (Differential entropy of a complex Gaussian scalar)

Let x ∼ NC(μ, σ
2). Invoking the PDF in (C.14),

h(x) = E

[ |x− μ|2
σ2

log2 e+ log2
(

πσ2
)

]

(1.20)

= log2
(

πeσ2
)

. (1.21)

Observe how, in Example 1.5, the mean μ is immaterial to h(x). This reflects the prop-

erty of differential entropy being translation-invariant, meaning that h(x + a) = h(x) for
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10 A primer on information theory and MMSE estimation

any constant a; it follows from this property that we can always translate a random variable

and set its mean to zero without affecting its differential entropy.

In the context of information content, the importance of the complex Gaussian distribu-

tion stems, not only from its prevalence, but further from the fact that it is the distribution

that maximizes the differential entropy for a given variance [14]. Thus, for any random

variable x with variance σ2, h(x) ≤ log2(πeσ
2).

As in the discrete case, the notion of differential entropy readily extends to the multi-

variate realm. If x is a continuous random vector with PDF fx(·), then

h(x) = −E
[

log2 fx(x)
]

. (1.22)

Example 1.6 (Differential entropy of a complex Gaussian vector)

Let x ∼ NC(µ,R). From (C.15) and (1.22),

h(x) = −E
[

log2 fx(x)
]

(1.23)

= log2 det(πR) + E
[

(x− µ)∗R−1(x− µ)
]

log2 e (1.24)

= log2 det(πR) + tr
(

E
[

(x− µ)∗R−1(x− µ)
])

log2 e (1.25)

= log2 det(πR) + tr
(

E
[

R−1(x− µ)(x− µ)∗
])

log2 e (1.26)

= log2 det(πR) + tr
(

R−1
E
[

(x− µ)(x− µ)∗
])

log2 e (1.27)

= log2 det(πR) + tr(I) log2 e (1.28)

= log2 det(πeR), (1.29)

where in (1.25) we used the fact that a scalar equals its trace, while in (1.26) we invoked

the commutative property in (B.26).

As in the scalar case, the complex Gaussian distribution maximizes the differential en-

tropy for a given covariance matrix. For any complex random vector x with covariance R,

therefore, h(x) ≤ log2 det(πeR).

The conditional differential entropy of x given y equals

h(x|y) = −E
[

log2 fx|y(x|y)
]

(1.30)

with expectation over the joint distribution of x and y. The chain rule that relates joint and

conditional entropies is

h(x0, . . . , xN−1) =

N−1
∑

n=0

h(xn|x0, . . . , xn−1), (1.31)

which extends verbatim to vectors.

1.3.3 Entropy rate

To close the discussion on information content, let us turn our attention from random vari-

ables to random processes. A discrete random process x0, . . . , xN−1 is a sequence of dis-

crete random variables indexed by time. If x0, . . . , xN−1 are independent identically dis-
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11 1.4 Information dependence

tributed (IID), then the entropy of the process grows linearly with N at a rate H(x0). More

generally, the entropy grows linearly with N at the so-called entropy rate

H = lim
N→∞

1

N
H(x0, . . . , xN−1). (1.32)

If the process is stationary, then the entropy rate can be shown to equal

H = lim
N→∞

H(xN |x0, . . . , xN−1). (1.33)

When the distribution of the process is continuous rather than discrete, the same defini-

tions apply to the differential entropy and a classification that proves useful in the context

of fading channels can be introduced: a process is said to be nonregular if its present value

is perfectly predictable from noiseless observations of the entire past, while the process is

regular if its present value cannot be perfectly predicted from noiseless observations of the

entire past [68]. In terms of the differential entropy rate h, the process is regular if h > −∞
and nonregular otherwise.

1.4 Information dependence

Although it could be—and has been—argued that Shannon imported the concept of entropy

from statistical mechanics, where it was utilized to measure the uncertainty surrounding

the state of a physical system, this was but a step toward something radically original: the

idea of measuring with information (e.g., with bits) the interdependence among different

quantities. In the context of a communication channel, this idea opens the door to relating

transmit and receive signals, a relationship from which the capacity ultimately emerges.

1.4.1 Relative entropy

Consider two PMFs, p(·) and q(·). If the latter is nonzero over the support of the former,

then their relative entropy is defined as

D(p||q) =
∑

x

p(x) log2
p(x)

q(x)
(1.34)

= E

[

log2
p(x)

q(x)

]

(1.35)

where the expectation is over p(·). The relative entropy, also referred to as the Kullback–

Leibler divergence or the information divergence, can be interpreted as a measure of the

similarity of p(·) and q(·). Note, however, that it is not symmetric, i.e., D(p||q) �= D(q||p)
in general. It is a nonnegative quantity, and it is zero if and only if p(x) = q(x) for every x.

Similarly, for two PDFs f(·) and g(·),

D(f ||g) =
∫

f(x) log2
f(x)

g(x)
dx. (1.36)

www.cambridge.org/9780521762281
www.cambridge.org

