
1 Automatic code generation for
real-time convex optimization
Jacob Mattingley and Stephen Boyd

This chapter concerns the use of convex optimization in real-time embedded systems,
in areas such as signal processing, automatic control, real-time estimation, real-time
resource allocation and decision making, and fast automated trading. By “embedded”
we mean that the optimization algorithm is part of a larger, fully automated system, that
executes automatically with newly arriving data or changing conditions, and without any
human intervention or action. By “real-time” we mean that the optimization algorithm
executes much faster than a typical or generic method with a human in the loop, in
times measured in milliseconds or microseconds for small and medium size problems,
and (a few) seconds for larger problems. In real-time embedded convex optimization
the same optimization problem is solved many times, with different data, often with a
hard real-time deadline. In this chapter we propose an automatic code generation system
for real-time embedded convex optimization. Such a system scans a description of the
problem family, and performs much of the analysis and optimization of the algorithm,
such as choosing variable orderings used with sparse factorizations and determining
storage structures, at code generation time. Compiling the generated source code yields
an extremely efficient custom solver for the problem family. We describe a preliminary
implementation, built on the Python-based modeling framework CVXMOD, and give
some timing results for several examples.

1.1 Introduction

1.1.1 Advisory optimization

Mathematical optimization is traditionally thought of as an aid to human decision mak-
ing. For example, a tool for portfolio optimization suggests a portfolio to a human
decision maker, who possibly carries out the proposed trades. Optimization is also used
in many aspects of engineering design; in most cases, an engineer is in the decision loop,
continually reviewing the proposed designs and changing parameters in the problem
specification, if needed.

When optimization is used in an advisory role, the solution algorithms do not need
to be especially fast; an acceptable time might be a few seconds (for example, when
analyzing scenarios with a spreadsheet), or even tens of minutes or hours for very large

Convex Optimization in Signal Processing and Communication, eds. Daniel P. Palomar and Yonina C. Eldar.
Published by Cambridge University Press © Cambridge University Press, 2010.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76222-9 - Convex Optimization in Signal Processing and Communications
Edited by Daniel P. Palomar and Yonina C. Eldar
Excerpt
More information

http://www.cambridge.org/9780521762229
http://www.cambridge.org
http://www.cambridge.org


2 Automatic code generation for real-time convex optimization

problems (e.g., engineering design synthesis, or scheduling). Some unreliability in the
solution methods can be tolerated, since the human decision maker will review the
proposed solutions, and hopefully catch problems.

Much effort has gone into the development of optimization algorithms for these set-
tings. For adequate performance, they must detect and exploit a generic problem structure
not known (to the algorithm) until the particular problem instance is solved. A good
generic linear programming (LP) solver, for example, can solve, on human-based time
scales, large problems in digital circuit design, supply chain management, filter design,
or automatic control. Such solvers are often coupled with optimization modeling lan-
guages, which allow the user to efficiently describe optimization problems in a high level
format. This permits the user to rapidly see the effect of new terms or constraints.

This is all based on the conceptual model of a human in the loop, with most previous
and current solver development effort focusing on scaling to large problem instances.
Not much effort, by contrast, goes into developing algorithms that solve small- or
medium-sized problems on fast (millisecond or microsecond) time scales, and with
great reliability.

1.1.2 Embedded optimization

In this chapter we focus on embedded optimization, where solving optimization problems
is part of a wider, automated algorithm. Here the optimization is deeply embedded in
the application, and no human is in the loop. In the introduction to the book Convex
Optimization [1], Boyd and Vandenberghe state:

A relatively recent phenomenon opens the possibility of many other applications for mathematical
optimization. With the proliferation of computers embedded in products, we have seen a rapid
growth in embedded optimization. In these embedded applications, optimization is used to auto-
matically make real-time choices, and even carry out the associated actions, with no (or little)
human intervention or oversight. In some application areas, this blending of traditional automatic
control systems and embedded optimization is well under way; in others, it is just starting. Embed-
ded real-time optimization raises some new challenges: in particular, it requires solution methods
that are extremely reliable, and solve problems in a predictable amount of time (and memory).

In real-time embedded optimization, different instances of the same small- or medium-
size problem must be solved extremely quickly, for example, on millisecond or
microsecond time scales; in many cases the result must be obtained before a strict real-
time deadline. This is in direct contrast to generic algorithms, which take a variable
amount of time, and exit only when a certain precision has been achieved.

An early example of this kind of embedded optimization, though not on the time scales
that we envision, is model predictive control (MPC), a form of feedback control sys-
tem. Traditional (but still widely used) control schemes have relatively simple control
policies, requiring only a few basic operations like matrix-vector multiplies and lookup
table searches at each time step [2,3]. This allows traditional control policies to be exe-
cuted rapidly, with strict time constraints and high reliability. While the control policies
themselves are simple, great effort is expended in developing and tuning (i.e., choosing
parameters in) them. By contrast, with MPC, at each step the control action is determined
by solving an optimization problem, typically a (convex) quadratic program (QP). It was

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76222-9 - Convex Optimization in Signal Processing and Communications
Edited by Daniel P. Palomar and Yonina C. Eldar
Excerpt
More information

http://www.cambridge.org/9780521762229
http://www.cambridge.org
http://www.cambridge.org


1.1 Introduction 3

first deployed in the late 1980s in the chemical process industry, where the hard real-time
deadlines were in the order of 15 minutes to an hour per optimization problem [4]. Since
then, we have seen huge computer processing power increases, as well as substantial
advances in algorithms, which allow MPC to be carried out on the same fast time scales
as many conventional control methods [5, 6]. Still, MPC is generally not considered by
most control engineers, even though there is much evidence that MPC provides better
control performance than conventional algorithms, especially when the control inputs
are constrained.

Another example of embedded optimization is program or algorithmic trading, in
which computers initiate stock trades without human intervention. While it is hard to
find out what is used in practice due to trade secrets, we can assume that at least some of
these algorithms involve the repeated solution of linear or quadratic programs, on short,
if not sub-second, time scales. The trading algorithms that run on faster time scales are
presumably just like those used in automatic control; in other words, simple and quickly
executable. As with traditional automatic control, huge design effort is expended to
develop and tune the algorithms.

In signal processing, an algorithm is used to extract some desired signal or information
from a received noisy or corrupted signal. In off-line signal processing, the entire noisy
signal is available, and while faster processing is better, there are no hard real-time
deadlines. This is the case, for example, in the restoration of audio from wax cylinder
recordings, image enhancement, or geophysics inversion problems, where optimization
is already widely used. In on-line or real-time signal processing, the data signal samples
arrive continuously, typically at regular time intervals, and the results must be computed
within some fixed time (typically, a fixed number of samples). In these applications, the
algorithms in use, like those in traditional control, are still relatively simple [7].

Another relevant field is communications. Here a noise-corrupted signal is received,
and a decision as to which bit string was transmitted (i.e., the decoding) must be made
within some fixed (and often small) period of time. Typical algorithms are simple, and
hence fast. Recent theoretical studies suggest that decoding methods based on convex
optimization can deliver improved performance [8–11], but the standard methods for
these problems are too slow for most practical applications. One approach has been the
development of custom solvers for communications decoding, which can execute far
faster than generic methods [12].

We also envisage real-time optimization being used in statistics and machine learning.
At the moment, most statistical analysis has a human in the loop. But we are starting
to see some real-time applications, e.g., spam filtering, web search, and automatic fault
detection. Optimization techniques, such as support vector machines (SVMs), are heavily
used in such applications, but much like in traditional control design, the optimization
problems are solved on long time scales to produce a set of model parameters or weights.
These parameters are then used in the real-time algorithm, which typically involves not
much more than computing a weighted sum of features, and so can be done quickly. We
can imagine applications where the weights are updated rapidly, using some real-time,
optimization-based method. Another setting in which an optimization problem might be
solved on a fast time scale is real-time statistical inference, in which estimates of the

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76222-9 - Convex Optimization in Signal Processing and Communications
Edited by Daniel P. Palomar and Yonina C. Eldar
Excerpt
More information

http://www.cambridge.org/9780521762229
http://www.cambridge.org
http://www.cambridge.org


4 Automatic code generation for real-time convex optimization

probabilities of unknown variables are formed soon after new information (in the form
of some known variables) arrives.

Finally, we note that the ideas behind real-time embedded optimization could also
be useful in more conventional situations with no real-time deadlines. The ability to
extremely rapidly solve problem instances from a specific problem family gives us the
ability to solve large numbers of similar problem instances quickly. Some example uses
of this are listed below.

• Trade-off analysis.An engineer formulating a design problem as an optimization prob-
lem solves a large number of instances of the problem, while varying the constraints,
to obtain a sampling of the optimal trade-off surface. This provides useful design
guidelines.

• Global optimization. A combinatorial optimization problem is solved using branch-
and-bound or a similar global optimization method. Such methods require the solution
of a large number of problem instances from a (typically convex, often LP) problem
family. Being able to solve each instance very quickly makes it possible to solve the
overall problem much faster.

• Monte Carlo performance analysis. With Monte Carlo simulation, we can find the
distribution of minimum cost of an optimization problem that depends on some random
parameters. These parameters (e.g., prices of some resources or demands for products)
are random with some given distribution, but will be known before the optimization
is carried out. To find the distribution of optimized costs, we use Monte Carlo: we
generate a large number of samples of the price vector (say), and for each one we
carry out optimization to find the minimal cost. Here, too, we end up solving a large
number of instances of a given problem family.

1.1.3 Convex optimization

Convex optimization has many advantages over general nonlinear optimization, such as
the existence of efficient algorithms that can reliably find a globally optimal solution. A
less appreciated advantage is that algorithms for specific convex optimization problem
families can be highly robust and reliable; unlike many general purpose optimization
algorithms, they do not have parameters that must be manually tuned for particular
problem instances. Convex optimization problems are, therefore, ideally suited to real-
time embedded applications, because they can be reliably solved.

A large number of problems arising in application areas like signal processing,
control, finance, statistics and machine learning, and network operation can be cast
(exactly, or with reasonable approximations) as convex problems. In many other prob-
lems, convex optimization can provide a good heuristic for approximate solution of the
problem [13, 14].

In any case, much of what we say in this chapter carries over to local optimization
methods for nonconvex problems, although without the global optimality guarantee, and
with some loss in reliability. Even simple methods of extending the methods of convex
optimization can work very well in pratice. For example, we can use a basic interior-point

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76222-9 - Convex Optimization in Signal Processing and Communications
Edited by Daniel P. Palomar and Yonina C. Eldar
Excerpt
More information

http://www.cambridge.org/9780521762229
http://www.cambridge.org
http://www.cambridge.org


1.1 Introduction 5

method as if the problem were convex, replacing nonconvex portions with appropriate
convex approximations at each iteration.

1.1.4 Outline

In Section 1.2, we describe problem families and the specification languages used to for-
mally model them, and two general approaches to solving problem instances described
this way: via a parser-solver, and via code generation. We list some specific example
applications of real-time convex optimization in Section 1.3. In Section 1.4 we describe,
in general terms, some requirements on solvers used in real-time optimization applica-
tions, along with some of the attributes of real-time optimization problems that we can
exploit. We give a more detailed description of how a code generator can be constructed
in Section 1.5, briefly describe a preliminary implementation of a code generator in
Section 1.6, and report some numerical results in Section 1.7. We give a summary and
conclusions in Section 1.8.

1.1.5 Previous and related work

Here we list some representative references that focus on various aspects of real-time
embedded optimization or closely related areas.

Control
Plenty of work focuses on traditional real-time control [15–17], or basic model predictive
control [18–23]. Several recent papers describe methods for solving various associated
QPs quickly. One approach is explicit MPC, pioneered by Bemporad and Morari [24],
who exploit the fact that the solution of the QP is a piecewise linear function of the
problem data, which can be determined analytically ahead of time. Solving instances of
the QPthen reduces to evaluating a piecewise linear function. Interior-point methods [25],
including fast custom interior-point methods [6], can also be used to provide rapid
solutions. For fast solution of the QPs arising in evaluation of control-Lyapunov policies
(a special case of MPC), see [26]. Several authors consider fast solution of nonlinear
control problems using an MPC framework [27–29]. Others discuss various real-time
applications [30, 31], especially those in robotics [32–34].

Signal processing, communications, and networking
Work on convex optimization in signal processing includes �1-norm minimization for
sparse signal recovery, recovery of noisy signals, or statistical estimation [35, 36], or
linear programming for error correction [37]. Goldfarb and Yin discuss interior-point
algorithms for solving total variation image restoration problems [38]. Some combi-
natorial optimization problems in signal processing that are approximately, and very
quickly, solved using convex relaxations and local search are static fault detection [14],
dynamic fault detection [39], query model estimation [40] and sensor selection [13]. In
communications, convex optimization is used in DSL [41], radar [42], and CDMA [43],
to list just a few examples.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76222-9 - Convex Optimization in Signal Processing and Communications
Edited by Daniel P. Palomar and Yonina C. Eldar
Excerpt
More information

http://www.cambridge.org/9780521762229
http://www.cambridge.org
http://www.cambridge.org


6 Automatic code generation for real-time convex optimization

Since the publication of the paper by Kelly et al. [44], which poses the optimal
network flow control as a convex optimization problem, many authors have looked
at optimization-based network flow methods [45–48], or optimization of power and
bandwidth [49, 50].

Code generation
The idea of automatic generation of source code is quite old. Parser-generators such as
Yacc [51], or more recent tools like GNU Bison [52], are commonly used to simplify
the writing of compilers. For engineering problems, in particular, there are a range of
code generators: one widely used commercial tool is Simulink [53], while the open-
source Ptolemy project [54] provides a modeling environment for embedded systems.
Domain-specific code generators are found in many different fields [55–58].

Generating source code for optimization solvers is nothing new either; in 1988 Oohori
and Ohuchi [59] explored code generation for LPs, and generated explicit Cholesky fac-
torization code ahead of time. Various researchers have focused on code generation for
convex optimization. McGovern, in his PhD thesis [60], gives a computational complex-
ity analysis of real-time convex optimization. Hazan considers algorithms for on-line
convex optimization [61], and Das and Fuller [62] hold a patent on an active-set method
for real-time QP.

1.2 Solvers and specification languages

It will be important for us to carefully distinguish between an instance of an optimization
problem, and a parameterized family of optimization problems, since one of the key
features of real-time embedded optimization applications is that each of the specific
problems to be solved comes from a single family.

1.2.1 Problem families and instances

We consider continuously parameterized families of optimization problems, of the form

minimize F0(x, a)

subject to Fi(x, a) ≤ 0, i = 1, . . . , m
Hi(x, a) = 0, i = 1, . . . , p,

(1.1)

where x ∈ Rn is the (vector) optimization variable, and a ∈ A ⊂ R� is a parameter
or data vector that specifies the problem instance. To specify the problem family (1.1),
we need descriptions of the functions F0, . . . , Fm, H1, . . . , Hp, and the parameter set A.
When we fix the value of the parameters, by fixing the value of a, we obtain a problem
instance.

As a simple example, consider the QP

minimize (1/2)xT Px + qT x
subject to Gx ≤ h, Ax = b,

(1.2)

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76222-9 - Convex Optimization in Signal Processing and Communications
Edited by Daniel P. Palomar and Yonina C. Eldar
Excerpt
More information

http://www.cambridge.org/9780521762229
http://www.cambridge.org
http://www.cambridge.org


1.2 Solvers and specification languages 7

with variable x ∈ Rn, where the inequality between vectors means componentwise. Let
us assume that in all instances we care about, the equality constraints are the same, that
is, A and b are fixed. The matrices and vectors P, q, G, and h can vary, although P must
be symmetric positive semidefinite. For this problem family we have

a = (P, q, G, h) ∈ A = Sn+ × Rn × Rm×n × Rm,

where Sn+ denotes the set of symmetric n × n positive semidefinite matrices. We can
identify a with an element of R�, with total dimension

� = n(n + 1)/2
︸ ︷︷ ︸

P

+ n
︸︷︷︸

q

+ mn
︸︷︷︸

G

+ m
︸︷︷︸

h

.

In this example, we have

F0(x, a) = (1/2)xT Px + qT x,

Fi(x, a) = gT
i x − hi, i = 1, . . . , m,

Hi(x, a) = ãT
i x − bi, i = 1, . . . , p,

where gT
i is the ith row of G, and ãT

i is the ith row of A. Note that the equality constraint
functions Hi do not depend on the parameter vector a; the matrix A and vector b are
constants in the problem family (1.2).

Here we assume that the data matrices have no structure, such as sparsity. But in many
cases, problem families do have structure. For example, suppose that we are interested
in the problem family in which P is tridiagonal, and the matrix G has some specific
sparsity pattern, with N (possibly) nonzero entries. Then A changes, as does the total
parameter dimension, which becomes

� = 2n − 1
︸ ︷︷ ︸

P

+ n
︸︷︷︸

q

+ N
︸︷︷︸

G

+ m
︸︷︷︸

h

.

In a more general treatment, we could also consider the dimensions and sparsity
patterns as (discrete) parameters that one specifies when fixing a particular problem
instance. Certainly when we refer to QP generally, we refer to families of QPs with
any dimensions, and not just a family of QPs with some specific set of dimensions
and sparsity patterns. In this chapter, however, we restrict our attention to continuously
parameterized problem families, as described above; in particular, the dimensions n, m,
and p are fixed, as are the sparsity patterns in the data.

The idea of a parameterized problem family is a central concept in optimization
(although in most cases, a family is considered to have variable dimensions). For exam-
ple, the idea of a solution algorithm for a problem family is sensible, but the idea of
a solution algorithm for a problem instance is not. (The best solution algorithm for a
problem instance is, of course, to output a pre-computed solution.)

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76222-9 - Convex Optimization in Signal Processing and Communications
Edited by Daniel P. Palomar and Yonina C. Eldar
Excerpt
More information

http://www.cambridge.org/9780521762229
http://www.cambridge.org
http://www.cambridge.org


8 Automatic code generation for real-time convex optimization

Nesterov and Nemirovsky refer to families of convex optimization problems, with
constant structure and parameterized by finite dimensional parameter vectors as well
structured problem (families) [63].

1.2.2 Solvers

Asolver or solution method for a problem family is an algorithm that, given the parameter
value a ∈ A, finds an optimal point x�(a) for the problem instance, or determines that
the problem instance is infeasible or unbounded.

Traditional solvers [1,64,65] can handle problem families with a range of dimensions
(e.g., QPs with the form (1.2), any values for m, n, and p, and any sparsity patterns in the
data matrices). With traditional solvers, the dimensions, sparsity patterns and all other
problem data a are specified only at solve time, that is, when the solver is invoked. This
is extremely useful, since a single solver can handle a very wide range of problems,
and exploit (for efficiency) a wide variety of sparsity patterns. The disadvantage is that
analysis and utilization of problem structure can only be carried out as each problem
instance is solved, which is then included in the per-instance solve time. This also limits
the reasonable scope of efficiency gains: there is no point in spending longer looking for
an efficient method than it would take to solve the problem with a simpler method.

This traditional approach is far from ideal for real-time embedded applications, in
which a very large number of problems, from the same continuously parameterized
family, will be solved, hopefully very quickly. For such problems, the dimensions and
sparsity patterns are known ahead of time, so much of the problem and efficiency analysis
can be done ahead of time (and in relative leisure).

It is possible to develop a custom solver for a specific, continuously parameterized
problem family. This is typically done by hand, in which case the development effort
can be substantial. On the other hand, the problem structure and other attributes of
the particular problem family can be exploited, so the resulting solver can be far more
efficient than a generic solver [6, 66].

1.2.3 Specification languages

A specification language allows a user to describe a problem instance or problem family
to a computer, in a convenient, high-level algebraic form. All specification languages
have the ability to declare optimization variables; some also have the ability to declare
parameters. Expressions involving variables, parameters, constants, supported operators,
and functions from a library can be formed; these can be used to specify objectives and
constraints. When the specification language supports the declaration of parameters, it
can also be used to describe A, the set of valid parameters. (The domains of functions
used in the specification may also implicitly impose constraints on the parameters.)

Some specification languages impose few restrictions on the expressions that can
be formed, and the objective and constraints that can be specified. Others impose
strong restrictions to ensure that specified problems have some useful property such as

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76222-9 - Convex Optimization in Signal Processing and Communications
Edited by Daniel P. Palomar and Yonina C. Eldar
Excerpt
More information

http://www.cambridge.org/9780521762229
http://www.cambridge.org
http://www.cambridge.org


1.2 Solvers and specification languages 9

convexity, or are transformable to some standard form such as an LP or a semidefinite
program (SDP).

1.2.4 Parser-solvers

A parser-solver is a system that scans a specification language description of a problem
instance, checks its validity, carries out problem transformations, calls an appropriate
solver, and transforms the solution back to the original form. Parser-solvers accept direc-
tives that specify which solver to use, or that override algorithm parameter defaults, such
as required accuracy.

Parser-solvers are widely used. Early (and still widely used) parser-solvers include
AMPL [67] and GAMS [68], which are general purpose. Parser-solvers that handle more
restricted problem types include SDPSOL [69], LMILAB [70], and LMITOOL [71] for
SDPs and linear matrix inequalities (LMIs), and GGPLAB [72] for generalized geo-
metric programs. More recent examples, which focus on convex optimization, include
YALMIP [73], CVX [74], CVXMOD [75], and Pyomo [76]. Some tools [77–79] are
used as post-processors, and attempt to detect convexity of a problem expressed in a
general purpose modeling language.

As an example, an instance of the QP problem (1.2) can be specified in CVXMOD as

P = matrix(...); q = matrix(...); A = matrix(...)

b = matrix(...); G = matrix(...); h = matrix(...)

x = optvar('x', n)

qpinst = problem(minimize(0.5*quadform(x, P) + tp(q)*x),

[G*x <= h, A*x == b])

The first two (only partially shown) lines assign names to specific numeric values,
with appropriate dimensions and values. The third line declares x to be an optimization
variable of dimension n, which we presume has a fixed numeric value. The last line
generates the problem instance itself (but does not solve it), and assigns it the name
qpinst. This problem instance can then be solved with

qpinst.solve()

which returns either 'optimal' or 'infeasible', and, if optimal, sets x.value to an
optimal value x�.

For specification languages that support parameter declaration, numeric values must
be attached to the parameters before the solver is called. For example, the QP problem
family (1.2) is specified in CVXMOD as

A = matrix(...); b = matrix(...)

P = param('P', n, n, psd=True); q = param('q', n)

G = param('G', m, n); h = param('h', m)

x = optvar('x', n)

qpfam = problem(minimize(0.5*quadform(x, P) + tp(q)*x),

[G*x <= h, A*x == b])

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76222-9 - Convex Optimization in Signal Processing and Communications
Edited by Daniel P. Palomar and Yonina C. Eldar
Excerpt
More information

http://www.cambridge.org/9780521762229
http://www.cambridge.org
http://www.cambridge.org


10 Automatic code generation for real-time convex optimization

In this code segment, as in the example above, m and n are fixed integers. In the first
line, A and b are still assigned fixed values, but in the second and third lines, P, q,
G, and h are declared instead as parameters with appropriate dimensions. Additionally,
P is specified as symmetric positive semidefinite. As before, x is declared to be an
optimization variable. In the final line, the QP problem family is constructed (with
identical syntax), and assigned the name qpfam.

If we called qpfam.solve() right away, it would fail, since the parameters have no
numeric values. However (with an overloading of semantics), if values are attached to
each parameter first, qpfam.solve() will create a problem instance and solve that:

P.value = matrix(...); q.value = matrix(...)

G.value = matrix(...); h.value = matrix(...)

qpfam.solve() # Instantiates, then solves.

This works since the solvemethod will solve the particular instance of a problem family
specified by the numeric values in the value attributes of the parameters.

1.2.5 Code generators

A code generator takes a description of a problem family, scans it and checks its validity,
carries out various problem transformations, and then generates source code that com-
piles into a (hopefully very efficient) solver for that problem family. Figures 1.1 and 1.2
show the difference between code generators and parser-solvers.

Acode generator will have options configuring the type of code it generates, including,
for example, the target language and libraries, the solution algorithm (and algorithm
parameters) to use, and the handling of infeasible problem instances. In addition to source
code for solving the optimization problem family, the output might also include:

• Auxiliary functions for checking parameter validity, setting up problem instances,
preparing a workspace in memory, and cleaning up after problem solution.

Problem
instance

Parser-solver
x*

Figure 1.1 A parser-solver processes and solves a single problem instance.

x*

Source code
Code generatorProblem family

description

Custom solver

Custom solver
Compiler

Problem
instance

Figure 1.2 A code generator processes a problem family, generating a fast, custom solver, which is used to
rapidly solve problem instances.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76222-9 - Convex Optimization in Signal Processing and Communications
Edited by Daniel P. Palomar and Yonina C. Eldar
Excerpt
More information

http://www.cambridge.org/9780521762229
http://www.cambridge.org
http://www.cambridge.org

