
Cambridge University Press & Assessment
978-0-521-76217-5 — Steps in Scala
Christos K. K. Loverdos, Apostolos Syropoulos
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1

Introduction

Scala is a scalable object-oriented programming language with features found in

functional programming languages. Nowadays, the object-oriented approach to

software construction is considered the most succesful methodology for software

design, mainly because it makes software reuse extremely easy. On the other hand,

functional programming offers some very elegant tools which when combined

with an object-oriented program development philosophy define a really powerful

programming methodology. Generally, any programming language that can be

extended seamlessly is called scalable. When all these ideas are combined in a single

tool, then the result is a particularly powerful programming language.

1.1 Object orientation

The first object-oriented programming language was SIMULA [18], which was

designed and implemented by Ole-Johan Dahl and Kristen Nygaard. The SIMUla-

tion LAnguage was designed “to facilitate formal description of the layout and rules

of operation of systems with discrete events (changes of state).” In other words,

SIMULA was designed as a simulation tool of discrete systems. Roughly, a simu-

lation involves the representation of the functioning of one system or process by

means of the functioning of another. In order to achieve its design goal, the design-

ers equipped the language with structures that would make easy the correspondence

between a software simulation and the physical system itself. The most important

of these structures is the process. A process “is intended as an aid for decomposing

a discrete event system into components, which are separately describable.” Pro-

cesses, which nowadays are called classes, consist of two parts: a data part and a code

part. In the data part, programmers can declare and/or define variables, while in the

code part they can define actions (procedures) to process the data. Processes can be

combined to describe the functionality of some system. Elements, which nowadays

are called objects, are instances of processes, thus, for a single process there may

1

www.cambridge.org/9780521762175
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-76217-5 — Steps in Scala
Christos K. K. Loverdos, Apostolos Syropoulos
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Introduction

be different instances. It turns out that these simple ideas are the core of what is

now known as object-orientation. Nevertheless, the next major milestone in this

technology was the design and implementation of Smalltalk (see [27] and [40] for

an elegant and concise presentation of Smalltalk).

Smalltalk is an object-oriented programming language1 designed and imple-

mented by Alan Kay, Dan Ingalls, Adele Goldberg, Ted Kaehler, Scott Wallace, and

several other people working at Xeror PARC during the 1970s. The basic design

principle of Smalltalk was the idea that all data manipulated by a program are

objects, that is, software entities capable of interacting with other similar objects.

According to this view, the operation 3+4 is viewed as if the object 3 is sending the

message + to object 4. Then, if object 4 understands the message +, it starts the

execution of a method that specifies how to respond to this particular message. In

this case, the method responds by sending back the object 7.

The paradigm shift pioneered by SIMULA and Smalltalk shaped the whole indus-

try and this is evident in the number of object-oriented languages that emerged and

their use in industry. For example, today any software engineer is fluent in at least

one of the following object-oriented programming languages: C++ [70], Java [28],

Eiffel [52], Self [74], Ruby [22], Python [49], Objective C [16], and Oberon [66]. But

what are the reasons for the success of the object-oriented programming paradigm?
The reason for this success is that object-oriented languages implement a number

of principles that make the software design and construction process much simpler
and elegant when compared to “traditional” approaches. The four basic principles
of object-orientation are described briefly below.

Abstraction Objects lie at the heart of object-oriented program design. A software object

is an abstraction of a real-world object. An object has the essential characteristics of

the real-world object that distinguish it from all other kinds of object. Thus, it is

important to classify the various characteristics as essential or insignificant. This way

the software becomes simpler and easier to understand.

Encapsulation An object is a software component that is characterized by its state and

its behavior. Fields (think of them as placeholders that may hold numbers, words, etc.)

are used to store its state, while its behavior depends on the actions its methods may

take. Typically, the fields of an object are accessible only through its methods. In other

words, one can either change the state of an object or become aware of its current

state by invoking specific methods. This implies that the internal state of an object is

not visible to anyone, thus providing a data protection mechanism. This property is

known as data encapsulation.

Inheritance In general, objects are not independent software components. Usually,

objects are related with an “isa” relationship, that is, if A and B are two objects such

1 In fact, the designers of Smalltalk were the first to introduce the widely used object-oriented parlance that
includes terms such as object-oriented, method, etc.

www.cambridge.org/9780521762175
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-76217-5 — Steps in Scala
Christos K. K. Loverdos, Apostolos Syropoulos
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.1 Object orientation 3

that B extends the functionality of A, then we say that B is a A. Object B may extend

the functionality of A either by defining new fields and/or methods or by changing

the actions taken by some methods. It is customary to say that B inherits A when B is

an A. Objects may inherit characteristics from more than one object and in this case

we talk about multiple inheritance, while if each object may inherit characteristics

from only one object, we talk about single inheritance. When building new systems,

it is not necessary to design all objects from scratch. Instead, one may opt to use

existing objects and extend their functionality to suit one’s own needs by designing

new objects that inherit existing objects. In a nutshell, this is the essence of software

reuse.

Polymorphism Seemingly different real-life structures may actually differ only in the

items they process. So instead of defining an object for each instance of the real-life

structure (something that is practically not possible),one can design a generic software

module and then instantiate it to model particular real-life structures. For example,

a stack consists of items that are put one atop the other and one can remove and/or

add items only from/to the top of the stack. Thus, if we want a stack of integers or a

stack of software modules modeling books, we can create a generic software module

that will implement the functionality of any stack and then use particular instances

of this software module to simulate stacks of integers and/or books. This marvelous

capability is known as polymorphism. To put it very simply, a polymorphic software

module is one that may have different instances with identical behavior.

Without worrying about the details, let us see by means of an example how these

principles are realized in the language that is presented in this book.

Assume that we want to build a system simulating a zoo. In order to achieve this

goal we need to build a hierarchy of classes that will describe the species living in

the zoo. Naturally, we do not need to build a different class for each species since,

for example, a bee is an insect and all insects are arthropods. Let us start by defining

a class that describes arthropods:

class arthropod (NumberOfEyes: Int, NumberOfFeet : Int) {

def numberOfFeet () = println(NumberOfFeet)

def numberOfEyes () = println(NumberOfEyes)

}

We are not interested in every aspect of what makes an animal an arthropod. Instead,

we center upon two quite important things: the number of eyes and the number

of feet. Obviously, our choice is subjective, but it depends on the task we are trying

to accomplish and this is exactly the essence of abstraction. Note that the values

stored in the fields NumberOfEyes and NumberOfFeet cannot be changed.

An ant has six legs and let us assume it has two eyes. The declaration that follows

creates an ant object that corresponds to an ant:

www.cambridge.org/9780521762175
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-76217-5 — Steps in Scala
Christos K. K. Loverdos, Apostolos Syropoulos
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 Introduction

val ant = new arthropod(2,6)

Although we cannot alter the number of feet or the number of eyes of an ant object,

we can inspect these values. Indeed, the commands

ant.numberOfFeet()

ant.numberOfEyes()

print the number of feet and eyes of an ant, correspondingly. Although we have

used an indirect way to access the values of each field, one can use the fields directly

to access or modify the corresponding values, However, one can also declare the

fields in such a way that such operations are not directly possible, and this is a

simple example of data encapsulation.

An insect is an arthropod with six feet. Instead of defining a new class for insects

from scratch, we can extend the functionality of class arthropod to define a class

for insects:

class insect (NumberOfEyes: Int)

extends arthropod (NumberOfEyes, 6){ }

Creating and using insect is easy. The commands that follow

val bee = new insect(4)

bee.numberOfFeet()

bee.numberOfEyes()

create a new insect object (stored in variable bee) and print the numbers of feet

and eyes of a bee. In this particular case, the numbers six and four will be printed

on the computer screen. This very simple code shows the essence of inheritance.

We extend the functionality of existing software modules by creating new software

modules that inherit the properties of these existing modules and add new features

making the resulting module more expressive. Although the examples presented are

very simple, nevertheless, any real-world application uses inheritance in exactly the

same way. The important benefit of the introduction of inheritance is that software

modules become reusable. Thus, there is no need to invent the wheel every time one

tries to solve a particular problem. And when a programming language is equipped

with a huge library of such software modules, then it attracts many users. After all,

this is just one of the reasons that the Java programming language has become so

popular.

Although there are animals that change their forms entirely during their lifetime

(think of butterflies for example), still it makes no sense merely to demonstrate poly-

morphism using such a complex example. Instead, we will use stacks to demonstrate

www.cambridge.org/9780521762175
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-76217-5 — Steps in Scala
Christos K. K. Loverdos, Apostolos Syropoulos
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.1 Object orientation 5

polymorphism. As noted already, a stack is a structure where one can add/remove

elements from its top. Let us first define a class that simulates a stack of integers:

class IntStack (n: Int) {

private var S = new Array[Int](n)

private var top = 0;

private var TopElement;

def push(elem: Int) {

top = top + 1

S(top) = elem

}

def pop () : Q = {

var oldtop = top

top = top - 1

S(oldtop)

}

}

Note that we have intentionally left out various checks that should be performed

(for example, we cannot pop something from an empty stack) just to keep things

simple. Creating new stacks is easy. We just specify the height of the stack as shown

below:

var x = new IntStack(3)

x.push(3)

x.push(4)

println(x.pop())

The last command will print the number 4 on the computer screen. Suppose that

we also need a stack of strings. The most “natural” thing to do is to define a

StringStack by replacing all but the first occurrence of Int with String. Here

the words Int and String are data types or just types. Roughly, a type is defined

by prescribing how its elements are formed as well as when two elements are equal

(see [64] for a practical account of type theory and [36] and the references therein

for an account more suitable for theoretical computer scientists). With types one

can distinguish between one as a natural number and one as a real number. In the

simplest case, types may be seen as sets of data values. Thus, when one says x : Z,

where Z is the set of integers, one means that x can assume any value that is an

integer number. Note that Int and String denote (a system dependent range of)

integer numbers and finite character sequences, respectively. After this brief but

necessary explanation, let us continue with our example. If one wants yet another

stack structure, it can be defined in a similar way. Nevertheless, a far more elegant

www.cambridge.org/9780521762175
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-76217-5 — Steps in Scala
Christos K. K. Loverdos, Apostolos Syropoulos
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 Introduction

solution would be to define a parametric structure in which the type of its elements

would be specified when a new instance of the structure is declared. Consider the

following generic definition:

class Stack [í] (n: Int) {

private var S = new Array[í](n)

private var top = 0;

def push(elem: í) {

top = top + 1

S(top) = elem

}

def pop () : í = {

var oldtop = top

top = top - 1

S(oldtop)

}

}

Here í is a type variable, in other words, a variable whose values can be any type.

This means that types are treated as values of the type of all types, usually called Type,

and Stack[í] is a generic type, that is, roughly a type pattern that can be used to

specify particular types and, therefore, define particular objects of these particular

types. In order to create a stack of integers, we need to declare an identifier to be an

instance of Stack[Int]. In other words, by replacing í with the name of a specific

type (for example Int), we create a stack with elements of this particular type. Let

us give some concrete examples:

var x = new Stack[Int](3)

x.push(3)

x.push(4)

println(x.pop())

var y = new Stack[String](4)

y.push("C++")

y.push("Java")

println(y.pop())

The really great benefit of polymorphism is that programmers do not have to spend

time and energy defining similar things. On the other hand, finding the similarities

between seemingly different structures is another problem that depends on the

mathematical maturity of each person.

www.cambridge.org/9780521762175
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-76217-5 — Steps in Scala
Christos K. K. Loverdos, Apostolos Syropoulos
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 An overview of functional programming 7

1.2 An overview of functional programming

A function can be viewed as a black box that maps elements drawn from a set (i.e.,

a collection of similar objects), which is called the domain of the function, into

elements drawn from another set known as the codomain of the function. However,

there is one restriction: no domain element can be mapped simultaneously to two

or more different codomain elements. Let us consider a simple function that maps

any integer number to an element of a set that consists of the words minus, zero, and

plus. Obviously, the domain of the function is Z and its codomain is the three-word

set {plus, zero,minus}. Function sign will map all negative integers to minus and all

positive integers to plus. Finally, it will map 0 to zero. Verbal descriptions are not

precise enough, so we need a more formal method to describe functions. One simple

method is to write down a set of equations that specify which domain element is

mapped to which codomain element. For example, the following equations can be

considered to define function sign:

...

sign(−3) = minus

sign(−2) = minus

sign(−1) = minus

sign(0) = zero

sign(1) = plus

sign(2) = plus

sign(3) = plus

...

Another method to describe a function is to specify a single rule:

sign(x) =







minus if x < 0

zero if x = 0

plus if x > 0.

The second definition can be easily coded into a Scala function:

def sign(x: Int) = if (x > 0)

"plus"

else if (x == 0)

www.cambridge.org/9780521762175
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-76217-5 — Steps in Scala
Christos K. K. Loverdos, Apostolos Syropoulos
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 Introduction

"zero"

else

"minus"

Using the function is straightforward:

println(sign(4))

println(sign(-4))

Let us consider one more function. Assume that we want to define a function

that computes the maximum of its two arguments. Clearly, if the first argument is

greater than the second, then the first argument is the maximum. Otherwise, the

second argument is the maximum. This function can be easily encoded as a Scala

function as shown below:2

def max(x: Int, y: Int) = if (x > y) x else y

Let us make our life a little bit more difficult and let us try to define a function

that finds the maximum of three numbers. In order to solve this problem we need

to check the various cases – if the first argument is greater than the second and

the second is greater than the third, then the first argument is the greatest of all

three, etc. Although this computes what we want, it does it in a very complicated

way. A simpler approach is to compute the maximum of the second and the third

argument and then the maximum of the first argument and the maximum of the

second and the third argument, or in Scala

def max3(x : Int, y : Int, z : Int) = max(x,max(y,z))

This is a form of function composition, that is, a process by means of which one can

generate a new function from two or more other functions. In addition, functional

programming can be defined as a programming discipline where programs are

usually composite functions.3 And this is the reason why functional programming

2 This function is predefined in Scala, but we use it to demonstrate the notion of function composition.
3 In a sense, this is similar to the divide and conquer programming methodology, that is, the decomposition of a

particular problem to two or more simpler problems and the subsequent decomposition of these problems until
we have problems that are simple enough to be solved directly. Then the composition of these solutions gives a
solution to the original problem.

www.cambridge.org/9780521762175
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-76217-5 — Steps in Scala
Christos K. K. Loverdos, Apostolos Syropoulos
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.3 Extendable languages 9

is particularly elegant. In order to ensure that procedure functions can be composed

as their mathematical counterparts, one must avoid the so-called side effects. To

understand what we mean by side effects, consider the following code:

var flag = true // a switch: can be either true or false

def f(n : Int) = {

var k = 0 // local variable

if (flag) k=n else k=2*n

flag = ! flag // destructive assignment!

k // what the function yields

}

println(f(1) + f(2))

println(f(2) + f(1))

This code will print the numbers 5 and 4 on the computer screen. If f was a

pure function, then the two commands would print exactly the same. The problem

with this code is the destructive assignment, that is, a command that modifies the

value of a variable. Programming languages that allow the use of such assign-

ments are called referentially opaque. On the other hand, languages that do not

permit the use of destructive assignments are called referentially transparent. In

general, languages that are referentially transparent are purely functional languages

like Haskell [38] and Erlang [5]. Obviously, one can keep side effects out of the

programs in a referentially opaque language by deliberately avoiding the use of

destructive assignments. Nevertheless, functional programming languages pro-

vide a number of tools (for example, pattern matching, algebraic types, that is,

the disjoint union of several types) that greatly facilitate programming in these

languages. But these are not the fundamental differences between an imperative

language (i.e., nonfunctional for our purposes) and a functional programming

language. The fundamental difference lies in the way solutions to problems are

expressed. Typically, an imperative program is a sequence of “imperatives which

describe how the computer must solve a problem in terms of state changes (updates

to assignable variables)” while “a functional program describes what is to be

computed, that is the program is just an expression, defined in terms of the pre-

defined and user-defined functions, the value of which constitues the result of the

program” [21].

1.3 Extendable languages

In October 1998, at the ACM Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications, Guy L. Steele Jr. advocated that “[A] language

www.cambridge.org/9780521762175
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-76217-5 — Steps in Scala
Christos K. K. Loverdos, Apostolos Syropoulos
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 Introduction

design can no longer be a thing. It must be a pattern – a pattern for growth – a

pattern for growing the pattern for defining the patterns that programmers can

use for their real work and their main goal” [69]. According to Steele there are two

kinds of growth in a language – one should be able to change either the vocabu-

lary or the rules that say what a sequence of words means (i.e., the semantics of a

sequence of words). The essence of these two kinds of growth is that one should be

able either to define new keywords or to change the meaning of operators and/or

keywords. Similarly, there two ways by which a language can grow – either this can

be done by a person, or a small group of persons (for example, a committee), or

by a whole community. In the second case, members of the user community can

actively participate in the extention of a language. Nevertheless, the development

cannot be anarchical. For this reason a person or a small group of persons act as

project coordinators. But how can a language be designed to be extendable?

Steele argues that the best way to make a language extendable is to include

generic types, operator redefinition, and user-defined types of light weight, which

could be used to define numeric and related types. In Section 1.1 we have discussed

generic types, but we have said nothing about operator overloading and light weight

user-defined types.

Instead of providing different predefined types for different kinds of numbers

(for example, complex numbers, fractions, etc.), it is far better to provide an infras-

tructure by means of which one can easily implement such types. Many engineers

need to be able to manipulate complex numbers easily, thus, the availability of a

numeric type providing the functionality of complex numbers is a key factor in

their choice of programming language. Defining a light weight user-defined type

where ordinary arithmetic operators are redefined while their original meaning is

not lost solves this problem, see Figure 1.1. Here a complex number is simulated by

a class with two fields that can assume as values real numbers of double precision.

Also, we (re)define the meaning of the operators +, -, *, and /. This way, we can

write things like the following:

var a = new Complex (1.0, 3.0)

var b = new Complex (4.5, -2.5)

println ("a + b = " + (a + b) )

The last command will print “a + b = 5.5+0.5i” on the computer screen. Note

also that in the last command the first + is used to concatenate character sequences

and the second to add complex variables. And this is the reason we need the extra

parentheses, or else we will get the following “erroneous” output

a + b = 1.0+3.0i4.5-2.5i

www.cambridge.org/9780521762175
www.cambridge.org

