Contents

Foreword xi
Preface xiii
Acknowledgments xv

1 Introduction to Theory of Gearing, Design, and Generation of Noncircular Gears 1
  1.1 Historical Comments 1
  1.2 Toward Design and Application of Noncircular Gears 6
    1.2.1 Examples of Previous Designs 6
    1.2.2 Examples of New Designs 11
  1.3 Developments Related with Theory of Gearing 14

2 Centrodes of Noncircular Gears 18
  2.1 Introduction 18
  2.2 Centrode as the Trajectory of the Instantaneous Center of Rotation 20
  2.3 Concept of Polar Curve 21
  2.4 Derivation of Centrodes 21
  2.5 Tangent to Polar Curve 22
  2.6 Conditions for Design of Centrodes as Closed Form Curves 24
  2.7 Observation of Closed Centrodes for Function Generation 27
  2.8 Basic and Alternative Equations of Curvature of Polar Curve 27
  2.9 Conditions of Centrode Convexity 30

3 Evolutes and Involutes 31
  3.1 Introduction and Terminology 31
  3.2 Determination of Evolutes 33
  3.3 Local Representation of a Noncircular Gear 36
  3.4 Pressure Angle 37
4 **Elliptical Gears and Gear Drives** ........................................... 40
  4.1 Introduction .................................................................................. 40
  4.2 Basic Concepts ........................................................................... 40
    4.2.1 Ellipse Parameters .................................................................. 40
    4.2.2 Polar Equation of an Ellipse ..................................................... 41
  4.3 External Elliptical Gear Drives ....................................................... 43
    4.3.1 Basic Equations ...................................................................... 43
    4.3.2 Conventional Elliptical Gear Drives ......................................... 45
      4.3.2.1 Centrodes and Transmission Function ................................. 45
      4.3.2.2 Influence of Ellipse Parameters and Design Recommendations .... 47
    4.3.3 Gear Drive with Elliptical Pinion and Conjugated Gear .......... 52
    4.3.4 External Gear Drive with Modified Elliptical Gears ............... 53
      4.3.4.1 Modification of the Ellipse ................................................... 53
      4.3.4.2 Derivation of Modified Centrode $\sigma_1$ .............................. 55
      4.3.4.3 Derivative Functions $m_{21}^{(I)}(\phi_1)$ and $m_{21}^{(II)}(\phi_1)$ ...... 55
      4.3.4.4 Relation between Rotations of Gears 1 and 2 ...................... 55
      4.3.4.5 Derivation of Centrode $\sigma_2$ .............................................. 56
    4.3.5 External Gear Drive with Oval Centrodes .................................. 57
      4.3.5.1 Equation of Oval Centrode .................................................. 57
      4.3.5.2 Derivative Function $m_{21}(\phi_1)$ ......................................... 58
      4.3.5.3 Relation between Rotations of Gears 1 and 2 ...................... 58
      4.3.5.4 Transmission Function $\phi_2(\phi_1)$ ..................................... 60
    4.3.6 Design of Noncircular Gears with Lobes .................................. 60
      4.3.6.1 Design of Gear Drives with Different Number of Lobes for Pinion and Gear ......................................................................... 63
  4.4 Transmission Function of Elliptical Gears as Curve of Second Order ....................................................................................... 65
  4.5 Functional of Identical Centrodes .................................................... 66

5 **Generation of Planar and Helical Elliptical Gears** .......................... 71
  5.1 Introduction .................................................................................. 71
  5.2 Generation of Elliptical Gears by Rack Cutter ................................ 71
  5.3 Generation of Elliptical Gears by Hob ........................................... 79
  5.4 Generation of Elliptical Gears by Shaper ...................................... 86
  5.5 Examples of Design of Planar and Helical Elliptical Gears .......... 90
    5.5.1 Planar Elliptical Gears .............................................................. 90
    5.5.2 Helical Elliptical Gears ............................................................. 92

6 **Design of Gear Drives Formed by Eccentric Circular Gear and Conjugated Noncircular Gear** .................................................. 94
  6.1 Introduction .................................................................................. 94
  6.2 Centrodes of Eccentric Gear Drive ............................................... 94
## Contents

6.2.1 Equations of Mating Centrodes 94  
6.2.2 Curvature of Centrode $\sigma_2$ and Applications 96  
6.3 Generation of the Noncircular Gear by Shaper and Hob 101  
6.3.1 Generation of Noncircular Gear by a Noneccentric Shaper 101  
6.3.2 Generation of the Noncircular Gear by a Hob 105  
6.4 Generation of the Eccentric Gear Providing Localized Contact 112

7 Design of Internal Noncircular Gears .............................. 115  
7.1 Introduction 115  
7.2 Derivation of Centrodes 115  
7.2.1 Preliminary Considerations of Kinematics of Internal Gear Drive 115  
7.2.2 Basic Equations of Centrodes 116  
7.2.3 Design of Centrodes $\sigma_1$ and $\sigma_2$ as Closed-Form Curves 118  
7.3 Examples of Design of Internal Noncircular Gear Drives 118  
7.3.1 Gear Drive with Elliptical Pinion 118  
7.3.2 Gear Drive with Modified Elliptical Pinion 120  
7.3.3 Gear Drive with Oval Pinion 121  
7.3.4 Gear Drive with Eccentric Pinion 123  
7.4 Generation of Planar Internal Noncircular Gears by Shaper 126  
7.5 Conditions of Nonundercutting of Planar Internal Noncircular Gears 132  
7.5.1 Approach A 133  
7.5.2 Approach B 134  
7.5.3 Numerical Example 136

8 Application for Design of Planetary Gear Train with Noncircular and Circular Gears ................................. 138  
8.1 Introduction 138  
8.2 Structure and Basic Kinematic Concept of Planetary Train 138  
8.3 Planetary Gear Train with Elliptical Gears 139  
8.4 Planetary Gear Train with Noncircular and Circular Gears 141

9 Transformation of Rotation into Translation with Variation of Gear Ratio ........................................ 143  
9.1 Introduction 143  
9.2 Determination of Centrodes of Noncircular Gear and Rack 144  
9.3 Application of Mechanism Formed by a Noncircular Gear and Rack 144

10 Tandem Design of Mechanisms for Function Generation and Output Speed Variation .......................... 147  
10.1 Introduction 147  
10.2 General Aspects of Generation of Functions 152
10.3 Generation of Function with Varied Sign of Derivative 153
10.4 Introduction to Design of Multigear Drive with Noncircular Gears
10.4.1 Basic Functionals 156
10.4.2 Interpretations of Lagrange’s Theorem 160
10.4.3 Illustration of Application of Lagrange’s Theorem for Functional \( \psi(\alpha) = g_2(g_1(\alpha)) \) 161
10.4.3.1 Previous Solutions for \( \psi(\alpha) = f(f(\alpha)) \) 161
10.4.3.2 Computational Procedure for Functional (10.4.6) 163
10.5 Design of Multigear Drive 166
10.5.1 Basic Equations 166
10.5.2 Design of Centrodes 168
10.6 Design of Planar Linkages Coupled with Noncircular Gears
10.6.1 Tandem Design of Double-Crank Mechanism Coupled with Two Pairs of Noncircular Gears 171
10.6.2 Tandem Design of Slider-Crank Mechanism Coupled with Modified Elliptical Gears
10.6.2.1 Preliminary Information 174
10.6.2.2 Basic Ideas of Modification of Elliptical Centrodes 174
10.6.2.3 Analytical Determination of Modified Elliptical Centrodes 177
10.6.2.4 Numerical Examples 179
10.6.3 Tandem Design of Scotch-Yoke Mechanism Coupled with Noncircular Gears 180
10.6.4 Tandem Design of Mechanism Formed by Two Pairs of Noncircular Gears and Racks
10.6.4.1 Generation of Function 186

11 Additional Numerical Problems .......................... 188

References 201
Index 203