Advanced Quantum Mechanics

An accessible introduction to advanced quantum theory, this graduate-level textbook focuses on its practical applications rather than on mathematical technicalities. It treats real-life examples, from topics ranging from quantum transport to nanotechnology, to equip students with a toolbox of theoretical techniques.

Beginning with second quantization, the authors illustrate its use with different condensed matter physics examples. They then explain how to quantize classical fields, with a focus on the electromagnetic field, taking students from Maxwell’s equations to photons, coherent states, and absorption and emission of photons. Following this is a unique master-level presentation on dissipative quantum mechanics, before the textbook concludes with a short introduction to relativistic quantum mechanics, covering the Dirac equation and a relativistic second quantization formalism.

The textbook includes 70 end-of-chapter problems. Solutions to some problems are given at the end of the chapter, and full solutions to all problems are available for instructors at www.cambridge.org/9780521761505.

YULI V. NAZAROV is a Professor in the Quantum Nanoscience Department, the Kavli Institute of Nanoscience, Delft University of Technology. He has worked in quantum transport since the emergence of the field in the late 1980s.

JEROEN DANON is a Researcher at the Dahlem Center for Complex Quantum Systems, Free University of Berlin. He works in the fields of quantum transport and mesoscopic physics.
Advanced Quantum Mechanics
A practical guide

YULI V. NAZAROV
Delft University of Technology

JEROEN DANON
Free University of Berlin
Contents

Figure Credits
Preface

PART I SECOND QUANTIZATION

1 **Elementary quantum mechanics**
 1.1 Classical mechanics
 1.2 Schrödinger equation
 1.3 Dirac formulation
 1.4 Schrödinger and Heisenberg pictures
 1.5 Perturbation theory
 1.6 Time-dependent perturbation theory
 1.6.1 Fermi’s golden rule
 1.7 Spin and angular momentum
 1.7.1 Spin in a magnetic field
 1.7.2 Two spins
 1.8 Two-level system: The qubit
 1.9 Harmonic oscillator
 1.10 The density matrix
 1.11 Entanglement

Exercises
Solutions

2 **Identical particles**
 2.1 Schrödinger equation for identical particles
 2.2 The symmetry postulate
 2.2.1 Quantum fields
 2.3 Solutions of the \(N \)-particle Schrödinger equation
 2.3.1 Symmetric wave function: Bosons
 2.3.2 Antisymmetric wave function: Fermions
 2.3.3 Fock space

Exercises
Solutions

3 **Second quantization**
 3.1 Second quantization for bosons
 3.1.1 Commutation relations
 3.1.2 The structure of Fock space

© in this web service Cambridge University Press
www.cambridge.org
3.2 Field operators for bosons
 3.2.1 Operators in terms of field operators 67
 3.2.2 Hamiltonian in terms of field operators 70
 3.2.3 Field operators in the Heisenberg picture 72
3.3 Why second quantization? 72
3.4 Second quantization for fermions
 3.4.1 Creation and annihilation operators for fermions 75
 3.4.2 Field operators 78
3.5 Summary of second quantization 79
Exercises 82
Solutions 83

PART II EXAMPLES 87

4 Magnetism
 4.1 Non-interacting Fermi gas 90
 4.2 Magnetic ground state
 4.2.1 Trial wave function 92
 4.3 Energy
 4.3.1 Kinetic energy 93
 4.3.2 Potential energy 94
 4.3.3 Energy balance and phases 97
 4.4 Broken symmetry 98
 4.5 Excitations in ferromagnetic metals
 4.5.1 Single-particle excitations 99
 4.5.2 Electron–hole pairs 102
 4.5.3 Magnons 103
 4.5.4 Magnon spectrum 105
Exercises 109
Solutions 110

5 Superconductivity
 5.1 Attractive interaction and Cooper pairs
 5.1.1 Trial wave function 114
 5.1.2 Nambu boxes 116
 5.2 Energy
 5.2.1 Energy minimization 119
 5.3 Particles and quasiparticles 120
 5.4 Broken symmetry 125
Exercises 128
Solutions 132

6 Superfluidity
 6.1 Non-interacting Bose gas 135
6.2 Field theory for interacting Bose gas
 6.2.1 Hamiltonian and Heisenberg equation 138
6.3 The condensate
 6.3.1 Broken symmetry 139
6.4 Excitations as oscillations
 6.4.1 Particles and quasiparticles 141
6.5 Topological excitations
 6.5.1 Vortices 146
 6.5.2 Vortices as quantum states 149
 6.5.3 Vortex lines 151
Exercises 154
Solutions 157

PART III FIELDS AND RADIATION 159

7 Classical fields
 7.1 Chain of coupled oscillators 162
6.2 Continuous elastic string
 7.2.1 Hamiltonian and equation of motion 164
 7.2.2 Solution of the equation of motion 165
 7.2.3 The elastic string as a set of oscillators 166
7.3 Classical electromagnetic field
 7.3.1 Maxwell equations 168
 7.3.2 Useful relations 170
 7.3.3 Vector and scalar potentials 170
 7.3.4 Gauges 171
 7.3.5 Electromagnetic field as a set of oscillators 172
 7.3.6 The LC-oscillator 174
Exercises 177
Solutions 181

8 Quantization of fields
 8.1 Quantization of the mechanical oscillator 183
 8.1.1 Oscillator and oscillators 185
 8.2 The elastic string: phonons 187
 8.3 Fluctuations of magnetization: magnons 189
8.4 Quantization of the electromagnetic field
 8.4.1 Photons 191
 8.4.2 Field operators 192
 8.4.3 Zero-point energy, uncertainty relations, and vacuum fluctuations 194
 8.4.4 The simple oscillator 198
Exercises 201
Solutions 203
9 Radiation and matter
9.1 Transition rates 206
9.2 Emission and absorption: General considerations 207
 9.2.1 Master equations 210
 9.2.2 Equilibrium and black-body radiation 211
9.3 Interaction of matter and radiation 214
9.4 Spontaneous emission by atoms 218
 9.4.1 Dipole approximation 218
 9.4.2 Transition rates 219
 9.4.3 Selection rules 222
9.5 Blue glow: Cherenkov radiation 223
 9.5.1 Emission rate and spectrum of Cherenkov radiation 225
9.6 Bremsstrahlung 227
9.7 Processes in lasers 229
 9.7.1 Master equation for lasers 231
 9.7.2 Photon number distribution 232
Exercises 235
Solutions 238

10 Coherent states
10.1 Superpositions 240
10.2 Excitation of an oscillator 241
10.3 Properties of the coherent state 244
10.4 Back to the laser 249
 10.4.1 Optical coherence time 250
 10.4.2 Maxwell–Bloch equations 252
10.5 Coherent states of matter 256
 10.5.1 Cooper pair box 257
Exercises 262
Solutions 265

PART IV DISSIPATIVE QUANTUM MECHANICS 267

11 Dissipative quantum mechanics
11.1 Classical damped oscillator 269
 11.1.1 Dynamical susceptibility 270
 11.1.2 Damped electric oscillator 272
11.2 Quantum description 273
 11.2.1 Difficulties with the quantum description 273
 11.2.2 Solution: Many degrees of freedom 274
 11.2.3 Boson bath 274
 11.2.4 Quantum equations of motion 275
 11.2.5 Diagonalization 277
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3 Time-dependent fluctuations</td>
<td>279</td>
</tr>
<tr>
<td>11.3.1 Fluctuation–dissipation theorem</td>
<td>280</td>
</tr>
<tr>
<td>11.3.2 Kubo formula</td>
<td>281</td>
</tr>
<tr>
<td>11.4 Heisenberg uncertainty relation</td>
<td>282</td>
</tr>
<tr>
<td>11.4.1 Density matrix of a damped oscillator</td>
<td>283</td>
</tr>
<tr>
<td>Exercises</td>
<td>286</td>
</tr>
<tr>
<td>Solutions</td>
<td>288</td>
</tr>
<tr>
<td>12 Transitions and dissipation</td>
<td>290</td>
</tr>
<tr>
<td>12.1 Complicating the damped oscillator: Towards a qubit</td>
<td>290</td>
</tr>
<tr>
<td>12.1.1 Delocalization criterion</td>
<td>292</td>
</tr>
<tr>
<td>12.2 Spin–boson model</td>
<td>292</td>
</tr>
<tr>
<td>12.3 Shifted oscillators</td>
<td>294</td>
</tr>
<tr>
<td>12.4 Shake-up and $P(E)$</td>
<td>296</td>
</tr>
<tr>
<td>12.5 Orthogonality catastrophe</td>
<td>297</td>
</tr>
<tr>
<td>12.6 Workout of $P(E)$</td>
<td>298</td>
</tr>
<tr>
<td>12.7 Transition rates and delocalization</td>
<td>301</td>
</tr>
<tr>
<td>12.8 Classification of environments</td>
<td>302</td>
</tr>
<tr>
<td>12.8.1 Subohmic</td>
<td>304</td>
</tr>
<tr>
<td>12.8.2 Ohmic</td>
<td>305</td>
</tr>
<tr>
<td>12.8.3 Superohmic</td>
<td>306</td>
</tr>
<tr>
<td>12.9 Vacuum as an environment</td>
<td>307</td>
</tr>
<tr>
<td>Exercises</td>
<td>310</td>
</tr>
<tr>
<td>Solutions</td>
<td>312</td>
</tr>
<tr>
<td>13 Relativistic quantum mechanics</td>
<td>317</td>
</tr>
<tr>
<td>13.1 Principles of the theory of relativity</td>
<td>317</td>
</tr>
<tr>
<td>13.1.1 Lorentz transformation</td>
<td>318</td>
</tr>
<tr>
<td>13.1.2 Minkowski spacetime</td>
<td>321</td>
</tr>
<tr>
<td>13.1.3 The Minkowski metric</td>
<td>323</td>
</tr>
<tr>
<td>13.1.4 Four-vectors</td>
<td>324</td>
</tr>
<tr>
<td>13.2 Dirac equation</td>
<td>326</td>
</tr>
<tr>
<td>13.2.1 Solutions of the Dirac equation</td>
<td>330</td>
</tr>
<tr>
<td>13.2.2 Second quantization</td>
<td>333</td>
</tr>
<tr>
<td>13.2.3 Interaction with the electromagnetic field</td>
<td>336</td>
</tr>
<tr>
<td>13.3 Quantum electrodynamics</td>
<td>337</td>
</tr>
<tr>
<td>13.3.1 Hamiltonian</td>
<td>338</td>
</tr>
<tr>
<td>13.3.2 Perturbation theory and divergences</td>
<td>339</td>
</tr>
<tr>
<td>13.4 Renormalization</td>
<td>343</td>
</tr>
<tr>
<td>Exercises</td>
<td>348</td>
</tr>
<tr>
<td>Solutions</td>
<td>351</td>
</tr>
<tr>
<td>Index</td>
<td>352</td>
</tr>
</tbody>
</table>

PART V RELATIVISTIC QUANTUM MECHANICS

13 Relativistic quantum mechanics

13.1 Principles of the theory of relativity

13.1.1 Lorentz transformation

13.1.2 Minkowski spacetime

13.1.3 The Minkowski metric

13.1.4 Four-vectors

13.2 Dirac equation

13.2.1 Solutions of the Dirac equation

13.2.2 Second quantization

13.2.3 Interaction with the electromagnetic field

13.3 Quantum electrodynamics

13.3.1 Hamiltonian

13.3.2 Perturbation theory and divergences

13.4 Renormalization

Exercises

Solutions

Index
Figure Credits

Photo of Erwin Schrödinger: Robertson, obtained via Flickr The Commons from the Smithsonian Institution, www.si.edu page 5
Photo of Werner Heisenberg: Bundesarchiv, Bild183-R57262 / CC-BY-SA 12
Photo of Enrico Fermi: courtesy National Archives, photo no. 434-OR-7(24) 55
Photo of Vladimir Fock: AIP Emilio Segrè Visual Archives, gift of Tatiana Yudovina 68
Photo of Pascual Jordan: SLUB Dresden/Deutsche Fotothek, Grossmann 73
Photo of Yoichiro Nambu: Betsy Devine 100
Photo of John Bardeen: AIP Emilio Segrè Visual Archives 117
Photo of Leon Cooper: AIP Emilio Segrè Visual Archives, gift of Leon Cooper 117
Photo of John Robert Schrieffer: AIP Emilio Segrè Visual Archives 117
Photo of Richard Feynman: Christopher Sykes, courtesy AIP Emilio Segrè Visual Archives 144
Photo of Paul Dirac: Science Service 193
Photo of Max Planck: obtained via Flickr The Commons from the Smithsonian Institution, www.si.edu 213
Photo of Roy Glauber: Markus Pössel 250
Photo of Philip Anderson: Kenneth C. Zirkel 299
Courses on advanced quantum mechanics have a long tradition. The tradition is in fact so long that the word “advanced” in this context does not usually mean “new” or “up-to-date.” The basic concepts of quantum mechanics were developed in the twenties of the last century, initially to explain experiments in atomic physics. This was then followed by a fast and great advance in the thirties and forties, when a quantum theory for large numbers of identical particles was developed. This advance ultimately led to the modern concepts of elementary particles and quantum fields that concern the underlying structure of our Universe. At a less fundamental and more practical level, it has also laid the basis for our present understanding of solid state and condensed matter physics and, at a later stage, for artificially made quantum systems. The basics of this leap forward of quantum theory are what is usually covered by a course on advanced quantum mechanics.

Most courses and textbooks are designed for a fundamentally oriented education: building on basic quantum theory, they provide an introduction for students who wish to learn the advanced quantum theory of elementary particles and quantum fields. In order to do this in a “right” way, there is usually a strong emphasis on technicalities related to relativity and on the underlying mathematics of the theory. Less frequently, a course serves as a brief introduction to advanced topics in advanced solid state or condensed matter.

Such presentation style does not necessarily reflect the taste and interests of the modern student. The last 20 years brought enormous progress in applying quantum mechanics in a very different context. Nanometer-sized quantum devices of different kinds are being manufactured in research centers around the world, aiming at processing quantum information or making elements of nano-electronic circuits. This development resulted in a fascination of the present generation of students with topics like quantum computing and nanotechnology. Many students would like to put this fascination on more solid grounds, and base their understanding of these topics on scientific fundamentals. These are usually people with a practical attitude, who are not immediately interested in brain-teasing concepts of modern string theory or cosmology. They need fundamental knowledge to work with and to apply to “real-life” quantum mechanical problems arising in an unusual context. This book is mainly aimed at this category of students.

The present book is based on the contents of the course Advanced Quantum Mechanics, a part of the master program of the Applied Physics curriculum of the Delft University of Technology. The DUT is a university for practically inclined people, jokingly called “bike-repairmen” by the students of more traditional universities located in nearby cities. While probably meant to be belittling, the joke does capture the essence of the research in Delft. Indeed, the structure of the Universe is not in the center of the physics curriculum
in Delft, where both research and education rather concentrate on down-to-earth topics. The DUT is one of the world-leading centers doing research on quantum devices such as semiconductor quantum dots, superconducting qubits, molecular electronics, and many others. The theoretical part of the curriculum is designed to support this research in the most efficient way: after a solid treatment of the basics, the emphasis is quickly shifted to apply the theory to understand the essential properties of quantum devices. This book is written with the same philosophy. It presents the fundamentals of advanced quantum theory at an operational level: we have tried to keep the technical and mathematical basis as simple as possible, and as soon as we have enough theoretical tools at hand we move on and give examples how to use them.

The book starts with an introductory chapter on basic quantum mechanics. Since this book is intended for a course on advanced quantum mechanics, we assume that the reader is already familiar with all concepts discussed in this chapter. The reason we included it was to make the book more “self-contained,” as well as to make sure that we all understand the basics in the same way when we discuss advanced topics. The following two chapters introduce new material: we extend the basic quantum theory to describe many (identical) particles, instead of just one or two, and we show how this description fits conveniently in the framework of second quantization.

We then have all the tools at our disposal to construct simple models for quantum effects in many-particle systems. In the second part of the book (Chapters 4–6), we provide some examples and show how we can understand magnetism, superconductivity, and superfluidity by straightforward use of the theoretical toolbox presented in the previous chapters.

After focusing exclusively on many-particle quantum theory in the first parts of the book, we then move on to include fields into our theoretical framework. In Chapters 7 and 8, we explain in very general terms how almost any classical field can be “quantized” and how this procedure naturally leads to a very particle-like treatment of the excitations of the fields. We give many examples, but keep an emphasis on the electromagnetic field because of its fundamental importance. In Chapter 9 we then provide the last “missing piece of the puzzle”: we explain how to describe the interaction between particles and the electromagnetic field. With this knowledge at hand, we construct simple models to describe several phenomena from the field of quantum optics: we discuss the radiative decay of excited atomic states, as well as Cherenkov radiation and Bremsstrahlung, and we give a simplified picture of how a laser works. This third part is concluded with a short introduction on coherent states: a very general concept, but in particular very important in the field of quantum optics.

In the fourth part of the book follows a unique master-level introduction to dissipative quantum mechanics. This field developed relatively recently (in the last three decades), and is usually not discussed in textbooks on quantum mechanics. In practice, however, the concept of dissipation is as important in quantum mechanics as it is in classical mechanics. The idea of a quantum system, e.g. a harmonic oscillator, which is brought into a stationary excited eigenstate and will stay there forever, is in reality too idealized: interactions with a (possibly very complicated) environment can dissipate energy from the system and can ultimately bring it to its ground state. Although the problem seems inconceivably hard
at first sight (one needs a quantum description of a huge number of degrees of freedom),
we show that it can be reduced to a much simpler form, characterizing the environment in
terms of its damping coefficient or dynamical susceptibility. After explaining this proce-
dure for the damped oscillator in Chapter 11 and discussing dissipation and fluctuations,
in Chapter 12 we extend the picture to a qubit (two-level system) in a dissipative envi-
ronment. We elucidate the role the environment plays in transitions between the two qubit
states, and, based on what we find, we provide a very general scheme to classify all possible
types of environment.

In the last part (and chapter) of the book, we give a short introduction to relativistic
quantum mechanics. We explain how relativity is a fundamental symmetry of our world,
and recognize how this leads to the need for a revised “relativistic Schrödinger equation.”
We follow the search for this equation, which finally leads us to the Dirac equation. Apart
from obeying the relativistic symmetry, the Dirac equation predicted revolutionary new
concepts, such as the existence of particles and anti-particles. Since the existence of anti-
particles has been experimentally confirmed, just a few years after Dirac had put forward
his theory, we accept their existence and try to include them into our second quantization
framework. We then explain how a description of particles, anti-particles, and the electro-
magnetic field constitutes the basis of quantum electrodynamics. We briefly touch on this
topic and show how a naive application of perturbation theory in the interaction between
radiation and matter leads to divergences of almost all corrections one tries to calculate.
The way to handle these divergences is given by the theory of renormalization, of which
we discuss the basic idea in the last section of the chapter.

The book thus takes examples and applications from many different fields: we discuss
the laser, the Cooper pair box, magnetism, positrons, vortices in superfluids, and many
more examples. In this way, the book gives a very broad view on advanced quantum the-
ory. It would be very well suited to serve as the principal required text for a master-level
course on advanced quantum mechanics which is not exclusively directed toward elemen-
tary particle physics. All material in the book could be covered in one or two semesters,
depending on the amount of time available per week. The five parts of the book are also
relatively self-contained, and could be used separately.

All chapters contain many “control questions,” which are meant to slow the pace of the
student and make sure that he or she is actively following the thread of the text. These ques-
tions could for instance be discussed in class during the lectures. At the end of each chapter
there are four to ten larger exercises, some meant to practice technicalities, others present-
ing more interesting physical problems. We decided to provide in this book the solutions to
one or two exercises per chapter, enabling students to independently try to solve a serious
problem and check what they may have done wrong. The rest of the solutions are available
online for teachers, and the corresponding exercises could be used as homework for the
students.

We hope that many students around the world will enjoy this book. We did our absolute
best to make sure that no single typo or missing minus sign made it to the printed version,
but this is probably an unrealistic endeavor: we apologize beforehand for surviving errors.
If you find one, please be so kind to notify us, this would highly improve the quality of a
possible next edition of this book.
Finally, we would like to thank our colleagues in the Kavli Institute of Nanoscience at the Delft University of Technology and in the Dahlem Center for Complex Quantum Systems at the Free University of Berlin. Especially in the last few months, our work on this book often interfered severely with our regular tasks, and we very much appreciate the understanding of everyone around us for this. J.D. would like to thank in particular Piet Brouwer and Dganit Meidan: they both were always willing to free some time for very helpful discussions about the content and style of the material in preparation.

Yuli V. Nazarov
Jeroen Danon