AUTHOR INDEX

Agarwal, R. C., 392
Akushskii, I. Ja., 625
Al-Khwarizmi, 444
Antelo, Elisardo, 200
Atkins, Dan, 391
Atrubin, A. J., 241, 270
Avizienis, Algirdas, 55, 200
Baugh, C. R., 222, 270
Benschop, N. F., 624
Booth, A. D., 54, 115
Brabec, Tomáš, 687
Brent, Richard P., 201
Briggs, Willard, 392, 444
Brightman, Thomas, 444
Bruguera, Javier D., 202, 522
Burgess, Neil, 116, 392, 625
Burla, N., 200
Chen, I.-N., 270
Ciminiera, Luigi, 443
Dadda, Luigi, 270, 271
DasSarma, Debjit, 393, 444
Daumas, Marc, 116
Edalat, A., 688
Edwards, D. B. G., 201
Ercegovac, Miloš, 115, 200, 271, 391, 392, 443
Even, Guy, 271
Even, Shimon, 270
Fandrianto, Jan, 443
Farmwald, Paul M., 393, 522
Ferrari, Domenico, 392
Fischer, Michael J., 115, 201
Fit-Florea, Alex, 624
Flynn, Michael J., 391, 392
Freiman, C. V., 391
Garner, Harvey L., 624
Goldschmidt, R. E., 392
Gosling, J. B., 443
Gosper, R. W., 634, 666, 687
Gregory, Robert T., 626
Gustavson, F. G., 392
Hall, Marshall, 634, 687
Hehner, Eric C. R., 626
Hensel, Kurt, 623, 626
Hiasat, A. A., 624
Horn, B. K. P., 687
Horspool, R. N. S., 626
Iordache, Christina S., 392, 444
Ito, M., 393
Jenkins, W. Kenneth, 624
Jensen, Thomas A., 391
Jullien, Graham, 624
Kahan, William, 392
Khinchin, A. Y., 687
Knowles, Simon, 201
Knuth, Donald E., 1, 54, 523, 623, 686
Koç, Çetin K., 116
Kogge, Peter M., 115, 201
Kornerup, Peter, 115, 202, 271, 391, 626, 633, 686
Krishnamurthy, E. V., 392, 626
Kung, H. T., 201
Ladner, Richard E., 115, 201
Lang, Tomáš, 115, 202, 271, 391, 443, 522
Ledley, R. S., 391
Leeser, Miriam, 391
Lehman, M., 200
Lester, David, 688
Litman, Ami, 270
Lyon, R. F., 239
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacSorley, O. L.</td>
<td>115, 201, 270, 391</td>
</tr>
<tr>
<td>Majerski, Stanislaw,</td>
<td>200</td>
</tr>
<tr>
<td>Matula, David W.</td>
<td>54, 115, 116, 200, 271, 392, 393, 444, 624, 633, 686</td>
</tr>
<tr>
<td>Metze, Gernot</td>
<td>200, 201, 391</td>
</tr>
<tr>
<td>Montgomery, Peter L.</td>
<td>550, 624</td>
</tr>
<tr>
<td>Montuschi, Paolo</td>
<td>200, 443</td>
</tr>
<tr>
<td>Muller, Jean-Michel</td>
<td>115</td>
</tr>
<tr>
<td>Munk Nielsen, Asger</td>
<td>115</td>
</tr>
<tr>
<td>Müller, Ole</td>
<td>523</td>
</tr>
<tr>
<td>Nadler, M.</td>
<td>391</td>
</tr>
<tr>
<td>Neumann, John von</td>
<td>54, 200, 391, 522</td>
</tr>
<tr>
<td>Newton, I.</td>
<td>444</td>
</tr>
<tr>
<td>Niqui, Milad</td>
<td>687</td>
</tr>
<tr>
<td>Oberman, Stuart F.</td>
<td>391, 392, 444</td>
</tr>
<tr>
<td>Oklobdzija, Vojin G.</td>
<td>202</td>
</tr>
<tr>
<td>Orup, Holger</td>
<td>624</td>
</tr>
<tr>
<td>Panhaleux, Adrien</td>
<td>115</td>
</tr>
<tr>
<td>Parhami, Behrooz</td>
<td>55</td>
</tr>
<tr>
<td>Phillips, Braden</td>
<td>116</td>
</tr>
<tr>
<td>Piestrak, Stanislaw J.</td>
<td>624</td>
</tr>
<tr>
<td>Potts, Peter J.</td>
<td>688</td>
</tr>
<tr>
<td>Reitwiesner, G. W.</td>
<td>115</td>
</tr>
<tr>
<td>Robertson, James E.</td>
<td>55, 200, 305, 391</td>
</tr>
<tr>
<td>Schmookler, Martin</td>
<td>392, 523</td>
</tr>
<tr>
<td>Schultz, Michael J.</td>
<td>271</td>
</tr>
<tr>
<td>Schwartz, Eric M.</td>
<td>523</td>
</tr>
<tr>
<td>Seidensticker, R. B.</td>
<td>687</td>
</tr>
<tr>
<td>Sklansky, J.</td>
<td>201</td>
</tr>
<tr>
<td>Smith, J. L.</td>
<td>201</td>
</tr>
<tr>
<td>Soderquist, Peter</td>
<td>391</td>
</tr>
<tr>
<td>Soderstrand, Michael A.</td>
<td>624</td>
</tr>
<tr>
<td>Spira, Philip M.</td>
<td>120-122, 200</td>
</tr>
<tr>
<td>Stone, Harold S.</td>
<td>115, 201</td>
</tr>
<tr>
<td>Sun-Tsū,</td>
<td>571</td>
</tr>
<tr>
<td>Svoboda, Antonin</td>
<td>392, 624</td>
</tr>
<tr>
<td>Swartzlander Jr., Earl E.</td>
<td>201, 523</td>
</tr>
<tr>
<td>Sweeney, D. W.</td>
<td>305, 391</td>
</tr>
<tr>
<td>Szabo, Nicolas S.</td>
<td>624</td>
</tr>
<tr>
<td>Takagi, Naofumi</td>
<td>393, 624</td>
</tr>
<tr>
<td>Tanaka, Richard L.</td>
<td>624</td>
</tr>
<tr>
<td>Taylor, George</td>
<td>391, 443</td>
</tr>
<tr>
<td>Thill, Marco</td>
<td>687</td>
</tr>
<tr>
<td>Tocher, T. D.</td>
<td>305, 391</td>
</tr>
<tr>
<td>Trivedi, Kishor</td>
<td>200, 271, 686</td>
</tr>
<tr>
<td>Tyagi, Akhilesh</td>
<td>201</td>
</tr>
<tr>
<td>Vázquez, Alvaro</td>
<td>200</td>
</tr>
<tr>
<td>Valach, M.</td>
<td>624</td>
</tr>
<tr>
<td>Vuillemin, Jean</td>
<td>688</td>
</tr>
<tr>
<td>Wallace, C. S.</td>
<td>271, 392</td>
</tr>
<tr>
<td>Walter, Colin D.</td>
<td>624</td>
</tr>
<tr>
<td>Weinberger, Arnold</td>
<td>201, 271</td>
</tr>
<tr>
<td>Wheeler, D. J.</td>
<td>392</td>
</tr>
<tr>
<td>Willoner, R.</td>
<td>270</td>
</tr>
<tr>
<td>Wilson, J. B.</td>
<td>391</td>
</tr>
<tr>
<td>Winograd, S.</td>
<td>120, 123, 200</td>
</tr>
<tr>
<td>Wooley, B. A.</td>
<td>222, 270</td>
</tr>
<tr>
<td>Yajima, S.</td>
<td>393</td>
</tr>
<tr>
<td>Zurawski, J. H. P.</td>
<td>443</td>
</tr>
<tr>
<td>Zuse, Konrad</td>
<td>522</td>
</tr>
</tbody>
</table>
INDEX

1’s complement addition, 171, 172
1’s complement representation, 41
2’s complement, 15
2’s complement carry-save sign, 41
2’s complement carry-save polynomial, 40
2’s complement overflow, 171
2’s complement representation, 39
3-to-2 adder, 140
3-to-2 addition, 159
3-to-2 counter, 135
4-to-2 adder, 160
7-to-3 counter, 135
9’s complement representation, 41

adder
borrow-save, 164
carry-in of 0/1, 155
carry-save, 159
digit-serial, 144
G, P composition, 152, 155
on-line, 146
ppp, pnp, npn, nnn, 142
ripple carry, 140
sub-linear time, 147
adder/subtractor, 178

addition
1’s complement, 172
complexity, 123, 155
mapping, 126, 127, 129–131, 135
multipleand, 136
non-regular, 135
on-line, 144
overflow, 167, 170
radix complement, 170
table, 126, 129, 131, 133–135, 161
with redundant digit sets, 129
additive inverse, 40, 111, 531
1’s complement, 42
2’s complement, 40
radix complement, 113
radix polynomial, 112
adjacent, 637, 639, 642
admissible representation, 677
admissible string, 677
arithmetic shift, 222
array multiplier, 210, 229
Atrubin multiplier, 241

B-EEA Algorithm, 540
balanced RNS, 566
base, 4
base conversion, 60
base vector
MR system, 50
RNS system, 564
base and digit set conversion, 95
radix 2 to 2^i, 98, 101, 106
basic–32, 504
basic–64, 504, 505
basic–128, 504, 505
basic digit set, 31
Baugh and Wooley scheme, 222, 270
BCD, 519
BCD code, 138
BCD4221 code, 138, 200
best rational approximation, 642
bi-homographic, 666
bi-linear, 648, 687
bias, 39, 42, 142
floating-point exponent, 504, 505, 517
biconvergent, 660, 662, 665
bijacent, 661, 662, 664
binade, 451
binary
convergent, 660
mediant, 663
number, 8
part, 657
polynomial, 5
single precision, 500
bipartite modular multiplication, 556, 624
bipartite reciprocal, 358
bipartite table, 375
bipartite table look-up, 283
bit-serial subtractor, 183
bits-of-accuracy, 428
BNE Algorithm, 652
Booth recoding, 88, 107, 212, 270
borrow-save, 32, 74
adder, 164
encoding, 104, 143, 213
Brent–Kung prefix tree, 154, 260
broadcast elimination, 233
BSSE Algorithm, 651
canonical complement polynomial, 34
canonical continued fraction, 641, 667
canonical representation, 26, 53, 92, 115, 213
canonical signed-digit form, 35
carry
anticipation, 88, 90, 133, 135
Gi, Pi composition, 152, 155
generate, 147
generate signal Gi , 152
kill, 147
look-ahead generator, 157
propagate, 147
propagate signal Pi , 151
set, 67, 126
carry-absorption table, 133
carry-look-ahead adder, 151
carry-relation, 78
carry-save, 32, 103
2’s complement polynomial, 40
2’s complement sign, 41
adder, 159
addition, 134, 135, 159
digit set, 125
encoding, 103, 138
carry-select adder, 149
carry-skip adder, 148
carry-transfer function, 70, 72, 82
Cauchy sequence, 618
channel, 528, 566
Chinese Remainder Theorem (CRT), 571
coding
complete, 137
non-redundant, 137
combinational circuits, 120
comparision, 185, 187
compatible radices, 62
complement digit-set, 33
complement polynomials, 33
complementary error factor, 344
complementary root pair, 401
complementary roots/tails/remaiders, 402
complementary (q, r)-pair, 291
complete digit set, 16, 18–20, 24, 26, 27
complete residue system, 16, 19, 21, 23, 24
completeness, 14
conditional-sum adder, 150
constant-time adders, 159
continuation, 46
continuation function, 483
continued fraction, 609, 641
convergent, 642
expansion, 609
continued logarithms, 687
convergence division, 281, 345, 350
convergence square root, 434
convergent, 609, 642, 648
conversion diagram, 84
conversion mapping, 67
core
computation of, 592, 595
critical, 593
function, 586, 592
non-critical, 593
weights, 586
correct rounded, 447
corresponding tail, 401
counter
3-to-2, 135
7-to-3, 135
critical core, 593
CRT, 571, 592
alternative form, 579
base extension, 579
for core functions, 592, 597
rank, 579, 593
cube, 668, 672
Dadda scheme, 253
decade, 451
decimal number, 8
decimal polynomial, 5
declet, 138, 519
decoding function, 137
deferred carry-assimilation, 159
denormalized, 469, 523
Densely Packed Decimal, DPD, 138, 200, 519
DGT Algorithm, 21, 23, 213
complete digit sets, 26
digit addition, 125
digit coding, 137
digit-mapping function, 71, 72
digit selection function, 308, 324, 408
digit serial adder, 144
digit set, 14
basic, 31
conversion, 60, 66, 75
conversion complexity, 123
extended, 31
maximally redundant, 31
minimally redundant, 31
standard, 31
symmetric, 31
diminished radix complement, 41, 112
Diophantine equation, 563
direct coding, 137
directed precise rounding, 460
directed root, 400
directed rounding, 460
discrete logarithm, modular, 559
discrete logarithm encoding, 562
dividend, 275, 284
division
2n-by-n-bit fixed-point, 304
binary SRT, 305
correction, 281, 345, 350
digit serial paradigm, 279
Goldschmidt, 345
integer 2's complement, 305
invariant, 275, 277, 284
iterative refinement, 344
iterative refinement paradigm, 281
Newton–Raphson, 280, 346
n-by-n-bit fixed-point, 300, 301
n-by-n-bit integer, 305
non-restoring, 279, 298
non-restoring 2's complement, 300
postscaled, 282, 345, 354
prescaled, 280, 334; with remainder, 338
quarter-ulp, 344
recurrence, 290
restoring, 279, 293
short reciprocal, 280, 330
SRT, 280, 307
testing, 392
with remainder zero, 568
divisor, 275, 284
dlgs factorization, 560
dot-matrices, 162
dot-products, 211
double-base system, 52
double-rounding, 460
exception, 508
exceptional value, 451
exponent, 450, 500
exponent bias, 517
factorization, 450, 499
Hensel code, 622
IEEE rounding modes, 510
infinity, 454
normalized, 451, 500
not-a-number, 454
number, 450
polynomials, 453
range-width, 503
rounding, 460
scale factor, 450
significant, 450, 500
sign bit, 450
sign factor, 450
single precision, 500
subnormal, 500
unit (FPU), 450
floating-slash, 636
fma: fused multiply-add, 211, 471, 475, 482, 522
forward mapping, 607
forward path, 473, 479, 481
Farey fraction, 605, 606, 636
Farey set, 637
fault tolerance, 625
Fermat's Little Theorem, 534
Fibonacci number, 665
fixed-point system, 36
fixed-slash, 636
floating-point
directed rounding, 460
exception, 508
exceptional value, 451
exponent, 450, 500
exponent bias, 517
factorization, 450, 499
Hensel code, 622
IEEE rounding modes, 510
infinity, 454
normalized, 451, 500
not-a-number, 454
number, 450
polynomials, 453
range-width, 503
rounding, 460
scale factor, 450
significant, 450, 500
sign bit, 450
sign factor, 450
single precision, 500
subnormal, 500
unit (FPU), 450
floating-slash, 636
fma: fused multiply-add, 211, 471, 475, 482, 522
forward mapping, 607
FPU, 450
fraction, 634
full-adder, 135, 140, 160
fused multiply-add, 211, 471, 475, 522
gap, 455, 637, 639, 664
relative, 502
gap function, 502
gates, 120
GCD algorithm
binary, 623
classical, 537
extended, 538
generalized matrix multiplication, 672
generalized residue class, 604
generator, 548
Goldschmidt division, 345, 350
Goldschmidt square root, 434
gradual underflow, 469
guard digits, 166, 176, 323, 329, 332, 429, 447, 486, 487
leading, 166–168, 174, 176
hj-separable set, 122, 125
half-adder, 138
half-period of modulus, 533
half-ulp approximation, 43
half-ulp root, 400
half-ulp rounding, 463
Hensel code, 613, 618, 621
hereditary function, 558
hexadecimal number, 8
hexadecimal polynomial, 5
high radix multiplication, 217
hyperbolic chain, 637
IEEE rounding, 89, 286
IEEE Standard, 462, 498
inheritance property, 558
interleaved modular multiplication, 549, 624
interpolation in table support, 383
interval arithmetic, 447
inverse
additive, 531
multiplicative, 531, 534, 535, 538
inverse mapping, 610
irreducible fraction, 635
irreducible factorization, 8
irreducible fraction, 635
iterative multiplication, 210
iterative multiplier, 228
iterative refinement division, 344
Kogge–Stone prefix tree, 154
LW: multiply latency, 345
Ly: table look-up latency, 345
last bit problem, 47
last place, 5
LCF, 657
LCF tree, 660, 664
leading zeroes determination (LZD), 193, 474
least-significant digit first (LSD), 209
lexibinary encoding, 657
lexicographic continued fraction (LCF), 657
lexicographically adjacent, 661
linear-time adders, 136
LR optimal recoding, 94
Lyon multiplier, 239, 270
LZD, leading zeroes determination, 193
M-residue, 550
Manchester carry chain, 149
Maniac-III, 523
mapping between residue and radix, 569
maximally redundant digit set, 31
mediant, 638, 663
mediant rounding, 644, 654
Mersenne prime, 532, 612
minimally redundant digit set, 31
mixed-radix representation (MRR), 574
Möbius transformation, 648, 687
modified Booth recoding, 34, 90, 107, 213, 270
modular addition, 544, 547
modular addition select adder, 542
modular division, 531, 539
modular exponentiation, 557
modular multiplication, 532, 541, 548, 551, 561
bipartite, 556, 624
interleaved, 549, 624
Montgomery, 552, 555
modular multiplier, 543
modulus operator, generalized, 39
Montgomery modular multiplication, 552, 555
most-significant digit first (MSD), 209
MR base extension, 579
multioperand modular addition, 544, 547
multipartite table, 381
multipartite table look-up, 283
multiple-modulus rational systems, 613
multiple-modulus residue representation, 125
multiplicand, 208
multiplication complexity, 124
multiplicative inverse, 531, 538
multiplier, 208
2’s complement, 222
array, 210, 229
Atrubin, 241
Baugh and Wooley, 222
broadcast elimination, 233, 236
integer with overflow detection, 258
iterative, 210, 228
logarithmic time, 252
Lyon serial/parallel, 239
Lyon serial/serial, 246
on-line, 211, 249
pipeline, 237
radix-4, 214, 225
recoded, 224
recording, 212, 216, 218
rectangular, 219
redundant, 215
retraining, 231
serial, 211
serial/parallel, 232
tree, 210, 256
multiply-add operation, 211, 475
N-mapping, 96, 105
NAF, non-adjacent form, 35, 92, 115, 213
NaN, not-a-number, 508, 635
<table>
<thead>
<tr>
<th>Index</th>
<th>697</th>
</tr>
</thead>
<tbody>
<tr>
<td>nearest precise rounding, 461</td>
<td>partial quotient, 609, 641</td>
</tr>
<tr>
<td>near path, 472, 479</td>
<td>partial quotient distribution, 657</td>
</tr>
<tr>
<td>nega-binary polynomial, 5</td>
<td>partial remainder, 290, 310</td>
</tr>
<tr>
<td>negated digit set, 111</td>
<td>partial squarand, 267</td>
</tr>
<tr>
<td>Newton–Raphson Division, 281, 345, 346</td>
<td>partial squarand generator, 267</td>
</tr>
<tr>
<td>Newton–Raphson Root-Reciprocal, 432</td>
<td>period of modulus, 533, 546</td>
</tr>
<tr>
<td>Newton–Raphson square root, 428</td>
<td>pipeline, 237</td>
</tr>
<tr>
<td>non-adjacent form (NAF), 35, 92, 115, 213</td>
<td>PLA, 196, 308</td>
</tr>
<tr>
<td>non-critical core, 593</td>
<td>place digit, 76</td>
</tr>
<tr>
<td>non-redundant, 14</td>
<td>positional number systems, 1</td>
</tr>
<tr>
<td>non-redundant digit encoding, 104</td>
<td>postscaled division, 282, 345, 354</td>
</tr>
<tr>
<td>non-redundant digit set, 15, 17–19, 26, 31</td>
<td>PPG, 212, 228, 257</td>
</tr>
<tr>
<td>conversion into, 66, 72</td>
<td>PQR-algorithm, 291, 301, 305</td>
</tr>
<tr>
<td>on-the-fly conversion into, 69</td>
<td>precise rounding, 460</td>
</tr>
<tr>
<td>non-redundant representation, 125</td>
<td>precision</td>
</tr>
<tr>
<td>non-restoring division, 279, 298</td>
<td>binary floating-point, 504</td>
</tr>
<tr>
<td>non-restoring square root, 299, 299</td>
<td>decimal floating-point, 505</td>
</tr>
<tr>
<td>normalization, 171, 192, 199</td>
<td>wobble, 457</td>
</tr>
<tr>
<td>quasi–, 193, 471, 654</td>
<td>precision conversion, 467</td>
</tr>
<tr>
<td>normalized, 500</td>
<td>precision wobble, 502</td>
</tr>
<tr>
<td>normalized remainder, 290</td>
<td>preconvergent, 662</td>
</tr>
<tr>
<td>normalized residue vector, 616</td>
<td>prescaled division, 280</td>
</tr>
<tr>
<td>normalized rounding eqv-interval, 468</td>
<td>prescaled short radicand-reciprocal, 426</td>
</tr>
<tr>
<td>octal number, 8</td>
<td>prescaled square root, 418, 422</td>
</tr>
<tr>
<td>octal polynomial, 5</td>
<td>prescaling SRT, 319</td>
</tr>
<tr>
<td>on-line, 45</td>
<td>prime decomposition, 9</td>
</tr>
<tr>
<td>on-line adder, 146</td>
<td>principal binade, 451</td>
</tr>
<tr>
<td>on-line addition, 144</td>
<td>projection of residue vector, 572</td>
</tr>
<tr>
<td>on-line algorithms, 108</td>
<td>proper quotient, remainder pair, 289</td>
</tr>
<tr>
<td>on-line converter, 109</td>
<td>pseudo-overflow, 607</td>
</tr>
<tr>
<td>on-line delay, 109</td>
<td>Q-mapping, 101, 106</td>
</tr>
<tr>
<td>on-line multiplier, 211, 249</td>
<td>quadruple precision, 504, 505</td>
</tr>
<tr>
<td>on-the-fly conversion, 69, 413</td>
<td>quantization error, 583</td>
</tr>
<tr>
<td>on-the-fly rounding, 495, 523</td>
<td>quarter-square method, 547</td>
</tr>
<tr>
<td>one-ulp root, 400</td>
<td>quarter-ulp division, 344</td>
</tr>
<tr>
<td>one-ulp rounding, 463</td>
<td>quasi-normalization, 193, 471, 654</td>
</tr>
<tr>
<td>oneulp radix approximation, 43</td>
<td>quotient, 275, 284</td>
</tr>
<tr>
<td>order, 6, 452</td>
<td>rounding, 483</td>
</tr>
<tr>
<td>LCF expansion, 658</td>
<td>quotient–remainder representation, 573</td>
</tr>
<tr>
<td>ordering relation</td>
<td>radical, 400</td>
</tr>
<tr>
<td>complexity, 188, 190</td>
<td>radicand, 400</td>
</tr>
<tr>
<td>three-way, 189, 190</td>
<td>radicand-reciprocal, 422</td>
</tr>
<tr>
<td>two-way, 189</td>
<td>radix, 4</td>
</tr>
<tr>
<td>overflow</td>
<td>β monomials of order j, 6</td>
</tr>
<tr>
<td>2’s complement integer multiplication, 262</td>
<td>β polynomials, 5</td>
</tr>
<tr>
<td>2’s complement, 171</td>
<td>complement, 33</td>
</tr>
<tr>
<td>redundant addition, 166</td>
<td>complement addition, 170</td>
</tr>
<tr>
<td>unsigned integer multiplication, 259</td>
<td>complement representation, 38, 169, 188</td>
</tr>
<tr>
<td>p-adic expansion, 619</td>
<td>digit-string, 11</td>
</tr>
<tr>
<td>P-D diagram, 310</td>
<td>factorization, 8</td>
</tr>
<tr>
<td>P-mapping, 96, 105</td>
<td>fraction part, 12</td>
</tr>
<tr>
<td>parallel prefix</td>
<td>integer part, 12</td>
</tr>
<tr>
<td>adder, 153</td>
<td>point, 11, 12</td>
</tr>
<tr>
<td>computation, 72, 151, 153, 201</td>
<td>vector (MR-system), 50</td>
</tr>
<tr>
<td>structure, 73</td>
<td>radix-β digit set, 16</td>
</tr>
<tr>
<td>parent, 639</td>
<td>radix-β factorization, 450</td>
</tr>
<tr>
<td>partial product, 208</td>
<td>radix-β number, 7</td>
</tr>
<tr>
<td>partial product array, 252</td>
<td>radix-β rational, 7</td>
</tr>
<tr>
<td>partial product generator (PPG), 212, 228, 257</td>
<td></td>
</tr>
<tr>
<td>radix polynomial</td>
<td>mapping into, 569</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>addition mapping, 127</td>
<td>multiplication, 567</td>
</tr>
<tr>
<td>canonical symmetric, 34</td>
<td>multiplicative inverse, 568</td>
</tr>
<tr>
<td>subtraction mapping, 178</td>
<td>orthogonal base, 572</td>
</tr>
<tr>
<td>range-width, 503</td>
<td>overflow, 567, 584</td>
</tr>
<tr>
<td>rank, 579</td>
<td>overflow check, 590</td>
</tr>
<tr>
<td>reciprocal</td>
<td>parity check, 590</td>
</tr>
<tr>
<td>best approximation, 366</td>
<td>projection, 572, 576</td>
</tr>
<tr>
<td>best real approximation, 364</td>
<td>representation, 564</td>
</tr>
<tr>
<td>bipartite approximation, 375, 381</td>
<td>residue recovery, 591</td>
</tr>
<tr>
<td>by interpolation, 383</td>
<td>scaling, 582, 583</td>
</tr>
<tr>
<td>direct table lookup, 363</td>
<td>sign determination, 584, 597, 598</td>
</tr>
<tr>
<td>monotonic approximation, 371, 373, 374</td>
<td>Robertson diagram, 297, 308, 391</td>
</tr>
<tr>
<td>multipartite approximation, 381</td>
<td>round bit, 465</td>
</tr>
<tr>
<td>table support, 361</td>
<td>round digit, signed, 467</td>
</tr>
<tr>
<td>reciprocal bit, 658</td>
<td>round-to-nearest, 89</td>
</tr>
<tr>
<td>recoded multiplier, 224</td>
<td>round-to-nearest representation, 89</td>
</tr>
<tr>
<td>recoding, 212</td>
<td>round-away-from-zero, ra, 461</td>
</tr>
<tr>
<td>in table support, 382</td>
<td>round-down, rd, 461, 510</td>
</tr>
<tr>
<td>rectangular multiplier, 209</td>
<td>round-to-nearest-away, rna, 462, 510</td>
</tr>
<tr>
<td>redundancy</td>
<td>round-to-nearest-even, rne, 461, 510</td>
</tr>
<tr>
<td>class, 9</td>
<td>round-towards-zero, rz, 447, 461, 510</td>
</tr>
<tr>
<td>factor, 308, 408</td>
<td>round-up, ru, 461, 510</td>
</tr>
<tr>
<td>index, 86</td>
<td>rounded fp-arithmetic, 463</td>
</tr>
<tr>
<td>redundant digit set, 17</td>
<td>rounding, 48, 89, 460</td>
</tr>
<tr>
<td>conversion into, 76, 77, 86</td>
<td>directed, 48</td>
</tr>
<tr>
<td>on-line conversion into, 108</td>
<td>equivalent, 465</td>
</tr>
<tr>
<td>redundant representations, 3</td>
<td>precise, 460</td>
</tr>
<tr>
<td>regular addition table, 126</td>
<td>rule, 635</td>
</tr>
<tr>
<td>relative error factor, 344</td>
<td>rounding interval</td>
</tr>
<tr>
<td>relative gap, 456</td>
<td>normalized, 468</td>
</tr>
<tr>
<td>reigap, 640</td>
<td>quasi-normalized, 471</td>
</tr>
<tr>
<td>remainder, 275, 284</td>
<td>rounding-equivalent interval, 465</td>
</tr>
<tr>
<td>residue</td>
<td>RPQ Algorithm, 678</td>
</tr>
<tr>
<td>class, 3</td>
<td>RPQ cell, 683</td>
</tr>
<tr>
<td>determination, 532</td>
<td>RPQ radix representation, 682</td>
</tr>
<tr>
<td>mapping of rationals, 604</td>
<td>RPQ representation, 677</td>
</tr>
<tr>
<td>standard, 530</td>
<td>scaled remainder, 290, 300</td>
</tr>
<tr>
<td>symmetric, 530</td>
<td>scientific notation, 448, 451</td>
</tr>
<tr>
<td>vector, 564</td>
<td>seed matrix, 537, 608, 647, 648, 656, 657</td>
</tr>
<tr>
<td>residue number system (RNS), 564</td>
<td>selection function, 310</td>
</tr>
<tr>
<td>restoring division, 279, 293</td>
<td>self timed, 147</td>
</tr>
<tr>
<td>retiming, 231, 233</td>
<td>self delimiting, 657, 677</td>
</tr>
<tr>
<td>ripple carry adder, 140</td>
<td>semi complete, 33</td>
</tr>
<tr>
<td>RL canonical recoding, 93</td>
<td>sequential circuit, 120</td>
</tr>
<tr>
<td>RN, RU, RD, RZ, RA roundings, 48, 460</td>
<td>serial/parallel multiplier, 232</td>
</tr>
<tr>
<td>RN codings, 115</td>
<td>serial multiplier, 211</td>
</tr>
<tr>
<td>RNS</td>
<td>sgn (signum function), 46</td>
</tr>
<tr>
<td>addition, 567</td>
<td>short radicand-reciprocal, 424</td>
</tr>
<tr>
<td>additive inverse, 567</td>
<td>short reciprocal, 331, 332</td>
</tr>
<tr>
<td>balanced, 566</td>
<td>short reciprocal division, 280, 330</td>
</tr>
<tr>
<td>base, 564</td>
<td>short reciprocal square root, 418, 419</td>
</tr>
<tr>
<td>base 2n − 1, 2n, and 2n + 1, 625</td>
<td>short root reciprocal, 419</td>
</tr>
<tr>
<td>base extension, 578</td>
<td>sign determination, three-way, 190, 199</td>
</tr>
<tr>
<td>channel, 566</td>
<td>sign extension, 177</td>
</tr>
<tr>
<td>core: base, 592; computation, 592; function, 586, 592</td>
<td>sign magnitude</td>
</tr>
<tr>
<td>divide and conquer conversion, 577</td>
<td>addition and subtraction, 180, 183</td>
</tr>
<tr>
<td>division, 568, 600, 602</td>
<td>conversion into, 157</td>
</tr>
<tr>
<td>error detection, 568</td>
<td>encoding, 137, 213; of digits, 104</td>
</tr>
</tbody>
</table>
Index

fixed point system, 38
radix polynomials, 32
representation, 32, 112
signed continued fraction, 653
signed digit, binary, 32
signed digit encoding, 104, 143
signed digit set, 14
signed infinity, 514
signed zero, 514
significance arithmetic, 523
significand, 192, 500
sign function, 46, 190
sign bit, 499
sign factor, 450
simpler-than relation, 635
simple chain, 635
single-modulus integer arithmetic, 530
single-modulus integer system, 529
single precision, 504, 505
SLCF, 659
squarand, 266
square root
 binary non-restoring, 406
 combined with SRT division, 409
 convergence, 427, 434
 digit serial, 400
 Goldschmidt, 427, 434
 invariant, 400
 Newton–Raphson, 427, 428
 remainder form, 430
 remainder update, 403
 restoring, 404
 root reciprocal, 427, 432
 scaled remainder, 404
 school method, 404, 429
 shifted tail, 404
 short reciprocal, 416
 SRT digit selection, 411
squaring, 262
SRT division, 280, 307
SRT square root, 407
standard
 binary, 32
 complement digit set, 33
 digit set, 31
 mixed-radix system, 51
 residue system, 530
stereographic projection, 676
Stem–Brocot tree, 641, 687
sticky bit, 465
sticky digit, 475
signed, 467
storage-16, 504
storage-32, 505
string signum function, 190
subnormal, 469, 500
subtractor, 143, 178
suffix, 191
switch bit, 657, 658
symmetric digit set, 31
symmetric residue system, 530
system modulus, 529
systolic, 233
systolic array, 235
table look-up
 bipartite, 283
direct LUT, 283
 multipartite, 283
table maker’s dilemma, 47, 55
Taylor diagram, 310
tensor, 671
tensor product, 671, 672, 687
ternary polynomial, 5
transducer, 68, 144, 145
transfer digit, 67
tree-multiplier, 210
truncated p-adic system, 618
truncation rule, 49
two-level radix system, 52
ulp (unit in the last place), 6, 43, 48, 454
ulp function, 454
Ulp Approximation Lemma, 47
unary part, 657
unit in the last place (ulp), 43
unit monomial, 6
Wallace scheme, 253
weight, 53
 minimal, 94, 116
 of a digit set, 217
 of a digit string, 92
weighted number system, 50
zero polynomial, 28
Zrange, 669, 673, 679