Earth Materials

INTRODUCTION TO MINERALOGY AND PETROLOGY

The fundamental concepts of mineralogy and petrology are explained in this highly illustrated, full-color textbook, to create a concise overview for students studying Earth materials. The relationship between minerals and rocks and how they relate to the broader Earth, materials, and environmental sciences is interwoven throughout. Beautiful photos of specimens and CrystalViewer's three-dimensional illustrations allow students to easily visualize minerals, rocks, and crystal structures. Review questions at the end of chapters allow students to check their understanding. The importance of Earth materials to human cultural development and the hazards they pose to humans are discussed in later chapters. This ambitious, wide-ranging book is written by two world-renowned textbook authors, each with more than 40 years of teaching experience, who bring that experience here to clearly convey the important topics.

Cornelis ("Kase") Klein is Emeritus Professor in the Department of Earth and Planetary Sciences at the University of New Mexico, Albuquerque. He received his B.Sc. and M.Sc. in geology from McGill University, Canada, and his Ph.D. from Harvard University, also in geology. He has been a member of the geology faculty at Harvard University; Indiana University, Bloomington; and the University of New Mexico; he has taught courses in mineralogy at all these universities. His published books include *Manual of Mineralogy* (19th–21st eds.); *Manual of Mineral Science* (22nd–23rd eds.); and *Mineral and Rocks: Exercises in Crystal and Mineral Chemistry, Crystallography, X-Ray Powder Diffraction, Mineral and Rock Identification, and Ore Mineralogy* (3rd ed., 2008). He has received two awards for excellence in teaching from the University of New Mexico.

Anthony R. Philpotts is Emeritus Professor of Geology and Geophysics at the University of Connecticut, a Visiting Fellow in the Department of Geology and Geophysics at Yale University, and Adjunct Professor in the Department of Geosciences at the University of Massachusetts. He received his B.Sc. and M.Sc. in geology from McGill University, Canada, and his Ph.D. from the University of Cambridge. He has taught igneous and metamorphic petrology courses at McGill University and the University of Connecticut for more than 40 years. His published books include *Principles of Igneous and Metamorphic Petrology* (2nd ed., 2009, Cambridge University Press) and *Petrography of Igneous and Metamorphic Rocks* (1989, 2003).

Cueva de Los Cristales (Cave of the Crystals) in Naica, Chihuahua, Mexico. The main chamber of the cave contains enormous gypsum (variety selenite) crystals, some of the largest natural crystals ever found. Photograph © Carsten Peter.

Earth Materials

INTRODUCTION TO MINERALOGY AND PETROLOGY

Cornelis Klein University of New Mexico, Emeritus

Anthony R. Philpotts University of Connecticut, Emeritus

Cambridge University Press 978-0-521-76115-4 - Earth Materials: Introduction to Mineralogy and Petrology Cornelis Klein and Anthony R. Philpotts Frontmatter More information

CAMBRIDGE UNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521145213

© Cornelis Klein and A. R. Philpotts 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013 Reprinted with corrections 2013 (twice) Reprinted 2014 (twice) Reprinted with corrections 2015

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data Klein, Cornelis, 1937– Earth materials : introduction to mineralogy and petrology / Cornelis Klein, Anthony Philpotts. p. cm. Includes bibliographical references and index. ISBN 978-0-521-76115-4 (hardback) – ISBN 978-0-521-14521-3 (paperback) 1. Mineralogy – Textbooks. 2. Petrology – Textbooks. I. Philpotts, Anthony R. (Anthony Robert), 1938– II. Title. QE363.2.K529 2012 553–dc23 2011044843

ISBN 978-0-521-76115-4 Hardback ISBN 978-0-521-14521-3 Paperback

Additional resources for this publication at www.cambridge.org/earthmaterials

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication, and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Cover: Photograph of a polished surface of a rock type known as garbenschiefer, from the German words Garbe, meaning sheaf, and Schiefer, meaning schist. It is a metamorphosed igneous rock and consists of coarse black hornblende sheaves and reddish-brown garnets in a fine-grained matrix of plagioclase, quartz, chlorite, and muscovite. This rock is quarried in Ashfield, Massachusetts, as "dimension stone," and is commercially known as "Crowsfoot" Ashfield Stone. It is part of the Ordovician Hawley Formation, which has a minimum age of 462 million years. Field of view: ~15 cm by 20 cm.

Photograph courtesy of Marc Klein.

> **Cornelis Klein** dedicates this book to his two children and their immediate families. His son and daughter-in-law, Marc and Laura Klein, and their two children, Alaxandra and Hugh. And to his daughter and son-in-law, Stephanie and Jack Stahl, and Stephanie's three sons, Max, Miles, and Bo Peponis.

Anthony R. Philpotts dedicates this book to his three daughters, Liane, Marlaine, and Alison.

Cambridge University Press 978-0-521-76115-4 - Earth Materials: Introduction to Mineralogy and Petrology Cornelis Klein and Anthony R. Philpotts Frontmatter More information

Contents

Preface		
Acknowledgments		
1		
INTRODUCTION	3	
1.1 Formation of Earth's chemical elements		
in supernovae	4	
1.2 Birth of the solar system and Earth1.3 Accretion and early history of the Earth	5 7	
1.4 Internal structure of the Earth	7	
1.5 Cooling of the planet and plate tectonic		
1.6 Plate tectonics and the formation of roc		
1.6.1 Divergent plate boundaries1.6.2 Convergent plate boundaries	10 10	
1.6.3 Transform boundaries	10	
1.6.4 Mantle plumes and hot spots	10	
1.7 Outline of subsequent chapters	11	
Summary Review questions	12 13	
Online resources	13	
Further reading	13	
2		
MATERIALS OF THE SOLID EARTH	15	
2.1 Definition of a mineral	16	
2.1.1 Examples of some familiar minera2.2 How are minerals classified?	lls 17 21	
2.3 How are minerals named?	21	
2.4 What is a crystal, and what is the crystal		
state?	22	
2.5 What is a rock?	24	
2.6 How do rocks form? Classification into igneous, sedimentary, and metamorphic	24	
2.7 Examples of some familiar rocks	. 24	
2.8 Plate tectonics and the generation of ro		
2.8.1 Midocean-ridge rock factory	31	
2.8.2 Convergent-plate-boundary rock factory	33	
2.8.3 Continental divergent-plate-boun		
rock factory (rift valley)	33	
2.8.4 Mantle plume hot-spot rock facto	ory 34	

- **2.8.4** Mantle plume hot-spot rock factory
- **2.8.5** Passive-margin rock factories **2.8.6** Epeiric-sea rock factories
- **2.8.7** Metamorphic rock factories

		Summary Review questions Online resources Further reading	35 35 36 36
3			
	но	W ARE MINERALS IDENTIFIED?	39
	3.1	Habit	40
	3.2	State of aggregation	41
	3.3	Color and luster	42
		3.3.1 Reasons for color	45
		Cleavage	49
		Hardness	51
	3.6	Specific gravity (relative density)	52
	~ -	3.6.1 Specific gravity and atomic structure	52
	3.7	Magnetism, solubility in acid, and	F 2
	2.0	radioactivity	53
	3.8	Instrumental methods for the quantitative characterization of minerals	53
			53 54
		3.8.1 X-ray powder diffraction3.8.2 Electron beam techniques: scanning	54
		electron microscopy, electron	
		microprobe analysis, and transmission	
		electron microscopy	57
		Summary	60
		Review questions	61
		Further reading	61

4

FUNDAMENTALS OF CRYSTAL STRUCTURES 63 4.1 Naturally occurring chemical elements 64 4.2 Atomic and ionic radii 64 **4.3** What factors control the packing of ions (and atoms) in mineral structures? 66 **4.4** Pauling's rules 70 **4.5** What forces hold crystal structures 75 together? **4.5.1** Electronic configuration of atoms and ions 75 **4.5.2** Chemical bonding 76 **4.6** Atomic substitutions 80 **4.6.1** Factors responsible for the extent of atomic substitution (solid solution) 80 4.6.2 Types of solid solution 83

34

34

34

viii

Summary	
Review questions	
Further reading	

5

Contents

INTRODUCTION TO CRYSTALLOGRAPHY
5 1 Symmetry elements and operations

5.1	Symm	netry elements and operations	89				
5.2	Comb	Combinations of symmetry elements					
5.3	The si	The six crystal systems					
	5.3.1	Crystallographic axes	91				
	5.3.2	Hermann-Mauguin symmetry					
		notation	93				
	5.3.3	Crystallographic notation for planes					
		in crystals	93				
	5.3.4	Definition of crystal form	95				
		Crystallographic notation for					
		directions in crystals	98				
5.4	Crysta	al projections	99				
5.5	Seven	of the thirty-two point groups	103				
	Twins		113				
5.7	Some	aspects of space groups	116				
		Space groups	121				
5.8		lorphism	126				
	Sumn	•	131				
		w questions	132				
		er reading	133				

6

MINERALS AND ROCKS OBSERVED UNDER THE POLARIZING OPTICAL MICROSCOPE 135 **6.1** Light and the polarizing microscope 136 **6.2** Passage of light through a crystal: refractive index and angle of refraction 137 **6.3** Passage of polarized light through minerals 139 6.4 Accessory plates and determination of fast and slow vibration directions 143 6.5 Extinction positions and the sign of elongation 144 6.6 Anomalous interference colors, pleochroism, and absorption 144 6.7 Mineral identification chart 145 6.8 Uniaxial optical indicatrix 146 6.9 Biaxial optical indicatrix 148 **6.10** Uniaxial interference figures 148 6.11 Determination of optic sign from uniaxial optic axis figure 150 6.12 Biaxial interference figures, optic sign, and optic angle (2V) 150 6.13 Modal analysis 152

153
155
155
155

7

84 85

85

87

•••••	,	
IGN	EOUS ROCK-FORMING MINERALS	157
7.1	Common chemical elements in the	
	Earth's crust and in mineral and rock	
	analyses	158
7.2	Calculation of mineral formulas	159
7.3	Triangular diagrams	161
7.4	Systematic mineralogical descriptions of	
	common igneous minerals	162
7.5	Plagioclase feldspar	164
7.6	1	166
7.7		167
7.8	•	168
	Leucite	169
	Sodalite	169
	Enstatite	170
	Pigeonite	171
	Augite	172
	Aegirine	174
	Hornblende	174
	Muscovite	175
	Phlogopite	177
	Biotite Olivine	178
	Zircon	179 179
	Tourmaline	180
	Allanite	180
	Melilite	182
	Magnetite	182
	Chromite	183
	Hematite	183
	Ilmenite	184
	Rutile	185
7.29	Uraninite	186
7.30	Pyrite	187
7.31	Pyrrhotite	187
	Chalcopyrite	188
7.33	Apatite	189
	Summary	189
	Review questions	190
	Further reading	191
8		
0		

.....

HOW DO IGNEOUS ROCKS FORM?	193
8.1 Why, and how, does solid rock become	
molten?	195

Cambridge University Press 978-0-521-76115-4 - Earth Materials: Introduction to Mineralogy and Petrology Cornelis Klein and Anthony R. Philpotts Frontmatter More information

	8.1.1	Composition of the upper mantle	195
	8.1.2	Melting range of upper-mantle	
		peridotite	195
	8.1.3	Geothermal gradient and the	
		geotherm	197
8.2	Three	primary causes of melting and their	
	plate ⁻	tectonic settings	198
	8.2.1	5	
		peridotite to the melting range over	
		hot spots	198
	8.2.2	Decompression melting at divergent	
		plate boundaries	198
	8.2.3	Fluxing with water at convergent plat	
		boundaries (subduction zones)	198
8.3		ng processes in rocks	199
		Melting of a mixture of minerals	199
	8.3.2	Melting of a pair of minerals:	
		the eutectic	201
	8.3.3	Congruent melting and the granite	
		and nepheline syenite eutectics	204
	8.3.4	Incongruent melting and the	
		peritectic	206
~ •		Melting relations of solid solutions	207
8.4		of pressure on melting	210
	8.4.1	Effect of pressure on the anhydrous	211
	0.4.2	melting of rock	211
	8.4.2	Hydrous melting of rock and the	211
	0 4 2	solubility of water in magma	211
		Solubility of other gases in magma	213
	0.4.4	Exsolution of magmatic gases and	214
0 5	Dhucic	explosive volcanism	214 217
0.3	2	al properties of magma	217
		Magma density Magma viscosity	217
		Diffusion in magma, crystal growth,	217
	0.3.3	and grain size of igneous rocks	219
86	Maan	ha ascent	220
0.0		Buoyancy	220
		Buoyant rise of magma	221
87		sses associated with the solidification	221
0.7		gma in the crust	223
		Cooling of bodies of magma by heat	223
		conduction	224
	8.7.2	Cooling of bodies of magma by	
		convection and radiation	225
	8.7.3	Magmatic differentiation by crystal	
		settling	227
	8.7.4	Compaction of crystal mush	229
		Assimilation and fractional	-
		crystallization	229
	8.7.6	Liquid immiscibility	231
	Summ		232
		w questions	233

				Contents
		Online	e resources	234
		Furthe	er reading	235
0				
9		••		
1	GN	IEOUS	ROCKS: THEIR MODE OF	
			ENCE, CLASSIFICATION, AND	
			CTONIC SETTING	237
				237
	9.1	-	an igneous rock classification is	238
c	22	neces	of occurrence of igneous rocks	238
-			Shallow intrusive igneous bodies:	
			dikes, sills, laccoliths, cone sheets, ring dikes, and diatremes	238
		9.2.2	Plutonic igneous bodies: lopoliths,	
			batholiths, and stocks	, 243
		9.2.3	Extrusive igneous bodies:	
			flood basalts, shield volcanoes,	
			composite volcanoes, domes,	
			calderas, ash-fall and ash-flow	
			deposits	247
9	9.3		ational Union of Geological Scienc	
			ication of igneous rocks Mode and norm	258 258
			IUGS classification of igneous rock	
			Composition of common plutonic	
		51515	igneous rocks	263
		9.3.4	IUGS classification of volcanic	
			igneous rocks	264
		9.3.5	Irvine-Baragar classification of	
			volcanic rocks	265
9	9.4		us rocks and their plate tectonic	266
		settin		266
		9.4.1	Igneous rocks formed at midocean-ridge divergent plate	
			boundaries	266
		9.4.2	Igneous rocks of oceanic islands	200
			formed above hot spots	270
		9.4.3	Continental flood basalts and larg	le
			igneous provinces	270
		9.4.4	Alkaline igneous rocks associated	074
			with continental rift valleys	271
		9.4.5	Igneous rocks formed near	274
c	5	Snocia	convergent plate boundaries al Precambrian associations	274 280
2			Komatiites	280
			Massif-type anorthosites	281
			Rocks associated with large	201
			meteorite impacts	283
		Summ	•	285
		Review	w questions	286

Online resources

Further reading

ix

х

10

Contents

SEDIMENTARY ROCK-FORMING MINERALS			
AND	MATERIALS	289	
10.1	The interaction of the Earth's atmosphere		
	with minerals	290	
10.2	Ice	292	
10.3	Goethite	293	
10.4	Kaolinite	295	
10.5	Calcite	295	
10.6	Aragonite	297	
10.7	Dolomite	297	
10.8	Magnesite	298	
10.9	Siderite	299	
10.10	Rhodochrosite	300	
10.11	Halite	300	
10.12	Sylvite	301	
10.13	Gypsum	301	
10.14	Anhydrite	303	
10.15	Chert and agate	303	
10.16	Phosphorite	305	
10.17	Soil	305	
	Summary	306	
	Review questions	307	
	Further reading	307	

11

. . . .

FORMATION, TRANSPORT, AND LITHIFICATION OF SEDIMENT

LITH	IFICATI	ON OF SEDIMENT	309
11.1	Import	ance of sediments in understanding	
	the his	tory of the Earth	310
11.2	Sedime	nt formed from weathering of rock	311
	11.2.1	Role of carbon dioxide in	
		weathering	311
	11.2.2	Weathering products of rock	312
		Detrital grain size	313
	11.2.4	Detrital grain roundness and	
		resistance to abrasion	315
11.3	Organi	cally produced sediment	316
	11.3.1	Formation of carbonate and	
		siliceous sediment	316
	11.3.2	Formation of hydrocarbons in	
		sediment	319
11.4	Chemi	cally produced sediment	319
11.5	Sedime	ent produced by glacial erosion	320
11.6	Transport of sediment		321
	11.6.1	Laminar and turbulent flow	321
	11.6.2	Movement of particles by fluid flow	322
	11.6.3	Movement of particles in turbidity	
		currents	326
	11.6.4	Movement of sediment in debris	
		flows	327

11.7	Layerin	g in sediments and sedimentary	
	rocks		327
	11.7.1	Law of superposition	328
	11.7.2	Milankovitch cycles	328
	11.7.3	Sediments related to tectonic	
		processes	329
11.8	Sites of	deposition and tectonic significance	330
	11.8.1	Convergent plate boundaries	330
	11.8.2	Passive continental margins	331
		Rift and pull-apart basins	331
11.9	Conver	sion of unconsolidated sediment to	
		ntary rock: lithification	332
		Porosity and compaction	332
	11.9.2	Cementation of sediment	333
		Pressure solution	334
	11.9.4	Recrystallization, replacement,	
		dolomitization	334
	Summa		335
		questions	336
		resources	337
	Further	reading	337

12

SEDIMENTARY ROCK CLASSIFICATION, OCCURRENCE, AND PLATE TECTONIC SIGNIFICANCE

SIGNIFICANCE		
12.1 Siliciclastic sedimentary rocks		
12.1.1 Mudrocks (includes shales)	340	
12.1.2 Sandstones	343	
12.1.3 Conglomerates and breccias	350	
12.2 Carbonate sedimentary rocks	352	
12.2.1 Limestones	352	
12.2.2 Dolostones	360	
12.2.3 Tectonic settings of carbonate rocks	360	
12.3 Coals	360	
12.4 Oil and natural gas	361	
12.5 Evaporites	362	
12.6 Phosphorites	363	
12.7 Iron-formations	363	
Summary	363	
Review questions	364	
Online resources	365	
Further reading	365	

13

METAMORPHIC ROCK-FORMINGMINERALS36713.1Systematic mineralogical descriptions of
common metamorphic minerals36813.2Garnet368

13.3 Andalusite 370

Contents

	Silliman Kyanite		370 371
13.5	Stauroli		371
	Diopsid		372
	Anthop	2	372
		ngtonite-grunerite	373 373
			374
	Wollast		375
	Rhodor	hite	376
13.14			376
	Chlorite		377
	Antigor		378
	Chrysot		379
		and clinozoisite	380
	Cordier		381
	Vesuvia		381
		(sphene)	382
	Scapoli		382
	Lawson		383 384
	Topaz		
	Corundum		
13.27	Chabazite		
	Summa		388
		questions	389
	Further	reading	389
14			
META	MORPI	HIC ROCKS	391
14.1	What cl	nanges occur during	
	metamo	orphism?	392
14.2	Why do	o rocks change?	394
	14.2.1	Thermodynamics and the reason	
		for change	394
	14.2.2	Rates of metamorphic reactions	396
	14.2.3	Gibbs phase rule and the number	
		of minerals a metamorphic rock	
		can contain	396
14.3	Metam	orphic grade and facies	398
	- .		404

14.5	Metallioiphic grade and facies		
14.4	Textures of metamorphic rocks	401	
	14.4.1 Textures of contact metamorphic		
	rocks	401	
	14.4.2 Deformation and textures of		
	regional metamorphic rocks	402	
14.5	Simple descriptive classification of		
	metamorphic rocks	408	
14.6	Metamorphism of mudrock	408	

1.0	ivic turri	orphism of muulock	-00
	14.6.1	Graphical representation of a	
		simple metamorphic reaction	409
	14.6.2	A simple pressure-temperature	
		petrogenetic grid	410
	14.6.3	Metamorphic field gradients	411

	14.6.4	Graphical representation of mine	ral
		assemblages in metapelites	411
	14.6.5	Mineral assemblages in Barrow's	
		metamorphic zones and part of th	е
		petrogenetic grid for metapelites	413
14.7	Metamo	orphism of impure dolomitic	
	limestor	ne	415
14.8	Metamo	orphism and partial melting:	
	migmat	ites	419
14.9	Geothe	rmometers and geobarometers	420
14.10	Plate tectonic significance of		
	metamo	orphism	421
	14.10.1	Pressure-temperature-time	
		(P-T-t) paths	422
	14.10.2	Plate tectonic setting of	
		metamorphic facies	424
	Summa	ry	425
	Review	questions	427
	Further	reading	428

15

SOME ECONOMIC MINERALS, MAINLY				
FROM VEINS AND PEGMATITES				
15.1	Gold	432		
15.2	Silver	433		
15.3	Copper	433		
15.4	Diamond	434		
15.5	Sulfur	435		
15.6	Galena	436		
15.7	Sphalerite	436		
15.8	Bornite	438		
15.9	Chalcocite	439		
15.10	Marcasite	439		
15.11	Molybdenite	440		
15.12	Arsenopyrite	441		
15.13	Bauxite	442		
15.14	Fluorite	442		
15.15	Barite	443		
15.16	Spodumene	444		
	Lepidolite	444		
15.18	Several gem minerals	444		
	Summary	448		
	Review questions	449		
	Further reading	449		

16

SOME SELECTED EARTH MATERIALS		
RESOURCES		
16.1 Construction materials		
16.1.1 Building stones	452	
16.1.2 Bricks, cement, and concrete		
16.1.3 Crushed stone, sand, and gravel	455	

Cambridge University Press 978-0-521-76115-4 - Earth Materials: Introduction to Mineralogy and Petrology Cornelis Klein and Anthony R. Philpotts Frontmatter More information

xii

Contents

16.2	Iron ore	456		
16.3	Clay minerals	457		
16.4	Copper ore	459		
16.5	Lithium ore	460		
16.6	Rare earth elements	461		
16.7	Zeolites			
16.8	Energy resources	462		
	16.8.1 Oil, natural gas, and coal reserves	462		
	16.8.2 Nuclear energy	464		
	16.8.3 Geothermal energy	464		
	Summary	465		
	Review questions	466		
	Online resources	467		
	Further reading	467		

17

EARTH MATERIALS AND HUMAN HEALTH 469

- **17.1** The human body's need for Earth materials 470
- **17.2** Soils and human health
 - 17.2.1 What constitutes a fertile soil?17.2.2 Increasing crop production from

470

470

471

472

474

- agricultural land and soil depletion **17.2.3** The need for fertilizers
- **17.3** Carcinogenic and chemical hazards posed by Earth materials

	17.3.1	Erionite	474
	17.3.2	Asbestos minerals	474
	17.3.3	Silica minerals	476
	17.3.4	Arsenic, an example of a chemical	ly
		hazardous Earth material	476
	17.3.5	Health hazards due to radioactivity	477
	17.3.6	Carbon sequestration to mitigate	
		climate change	478
17.4	Hazard	s from volcanic eruptions	479
	17.4.1	Monitoring active volcanoes	481
	17.4.2	Lahars	482
17.5	Tsunam	nis	483
17.6	Ejecta f	from meteorite impacts	483
	Summa	ary	484
	Review	questions	486
	Online	resources	486
	Further	reading	487
Glossar	y		489
Minerals and varieties			515
Commo	on igne	ous, sedimentary,	
and me	tamorp	ohic rocks	517
ndex			519
		index 5	

Preface

Over the past two decades, many curriculum changes have occurred in geology, Earth science, and environmental science programs in universities. Many of these have involved the compression of separate one-semester courses in mineralogy, optical mineralogy, and petrology into a single-semester offering that combines mineralogy and petrology, commonly called Earth Materials. Such a course is a challenge to the instructor (or a team of instructors) and the students. This is especially so when few, if any, textbooks for such a one-semester course have been available.

This text, *Earth Materials*, is an introduction to mineralogy and petrology in which both subjects are covered with a roughly even balance. To keep this textbook reasonably short and applicable to a one-semester course, we decided against providing a shallow survey of everything and instead concentrated on what we consider the most fundamental aspects of the various subjects.

In the writing of this text, we assumed that the students who enroll in an Earth materials course would have previously taken an introductory physical geology course, as well as a course in college-level chemistry.

Coverage

Basic aspects of mineralogy must precede the coverage of petrology. This sequence is obvious from the chapter headings. After a brief, general introduction in Chapter 1, minerals and rocks are broadly defined in Chapter 2. That is followed by three chapters that relate to various mineralogical aspects and concepts. Chapter 3 covers the identification techniques that students must become familiar with to recognize unknown minerals in the laboratory and in the field. It also includes discussion of two common instrumental techniques: X-ray powder diffraction and electron beam methods. Chapter 4 covers the most fundamental aspects of crystal chemistry, and Chapter 5 is a short introduction to basic aspects of crystallography. Chapter 6 covers optical mineralogy. This subject is included so that instructors who plan to introduce thin sections of rocks in their course can give their students quick access to the fundamentals of optical mineralogy and the optical properties of rock-forming minerals.

The sequencing of subsequent systematic mineralogy chapters is completely different from that most commonly used in mineralogy textbooks. In these chapters, minerals are discussed in groups based first on chemistry (native elements, oxides, silicates, and so on) and, subsequently, for the silicates, on structural features (layer, chain, and framework silicates, and so on). Here, the decision was made to group systematic mineralogy descriptions as part of the three major rock types: igneous, sedimentary, and metamorphic. This allows for the closest possible integration of mineralogy and petrology.

Chapter 7 gives systematic mineralogical data on 29 of the most common igneous minerals, including, in order of decreasing abundance, silicates, oxides, a few sulfides, and a phosphate. This is followed by Chapter 8, which presents the most fundamental aspects of the formation of igneous rocks. Chapter 9 addresses the occurrence of igneous rock types, their classification, and plate tectonic settings.

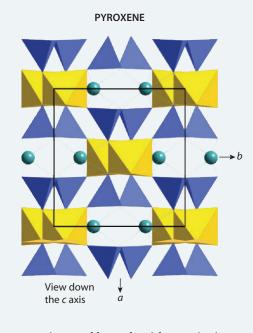
This approach is repeated with respect to sedimentary and metamorphic minerals and rocks. Chapter 10 gives systematic mineralogical descriptions of 14 common sedimentary minerals as well as phosphorite and soil. (The siliciclastic components of sedimentary rocks are discussed in Chapter 7, which deals with igneous minerals). Chapter 11 deals with the formation, transport, and lithification of sediment, and Chapter 12 discusses sedimentary rock classification, as well as the occurrence and plate tectonic setting of sedimentary rocks.

Chapter 13 gives the systematic mineralogy of 26 of the most common metamorphic minerals, all of which are silicates, except for one, an oxide. Chapter 14 addresses the causes of metamorphism, gives rock classifications, and relates their occurrence to plate tectonic settings.

Chapter 15 gives systematic mineralogical descriptions of selected minerals that are of economic importance. Chapter 16 gives a brief overview of some selected resources of Earth materials, and Chapter 17 discusses the health effects of several minerals and chemical elements, and the hazards presented by certain rock-forming processes.

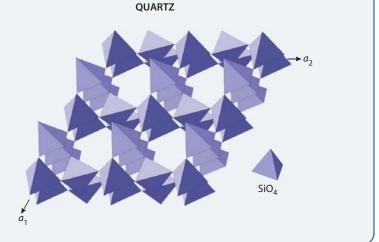
xiv

Preface


In the chapters that deal mainly with systematic mineralogy (Chapters 7, 10, 13, and 15), the main emphasis is on geologic occurrence (paragenesis), chemistry and atomic structure, physical properties that are pertinent to hand specimen identification (in laboratory sessions associated with an Earth materials course), and uses in industry and manufacturing. Hand specimen photographs and atomic structure illustrations are given for each mineral discussed.

This text is meant to be not only a supplement to lectures but also a reference source in the applied laboratory sessions of the course. Basic concepts in crystal chemistry, crystallography, and the origin of various rock types are best presented by the instructor in lectures in the classroom. Mineral and rock identification and classification schemes, however, are best learned in the laboratory with hand specimens and thin sections, using those parts of the book that specifically address the applied aspects.

All chapters begin with a boxed overview of what follows and end with a summary and set of review questions. When a new term is first encountered in the text, it is printed in bold type to signify that its definition is included in the glossary at the end of the text.


CRYSTALVIEWER

The atomic structure illustrations, which are static images in this text, can also be viewed as interactive visualizations in CrystalViewer, a crystal structures visualization program for Mac and Windows. CrystalViewer is designed to provide the missing "third dimension" for crystal structure illustrations in the book. Each structure can be rotated and scaled with the computer mouse, and it is hoped that such interactive exploration will lead to an improved visual understanding of the complex three-dimensional atomic arrangements of minerals. The program contains 105

notation, and legends with atomic site occupancies. The files and the CrystalViewer download are at www.cambridge.org/earthmaterials.

structure illustrations, which are distributed over two files. The first file, with the title "Learning," contains 24 structures that are referenced with figure numbers from Chapters 2, 4, and 5. These 24 structures illustrate basic aspects of crystal chemistry. The other file, entitled "Reference" with 81 crystal structures, is arranged in alphabetical order, by mineral name. This file contains the structures of the rock-forming minerals discussed in Chapters 5, 7, 10, 13, and 15. These structures complement the structure illustrations in the text that show unit cell outlines, space group

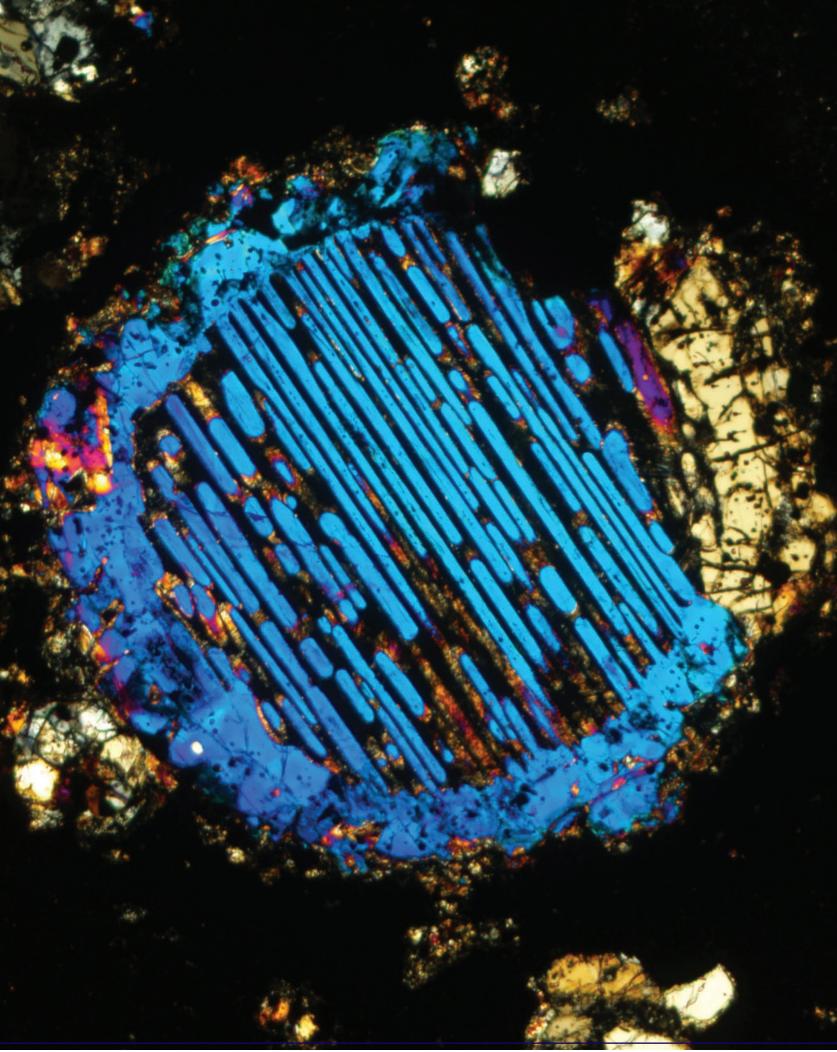
Our overall goal was the production of an accessible, highly illustrated and visually attractive, condensed and wellintegrated mineralogy-petrology textbook suitable for one-semester Earth materials courses. It is our hope that we have succeeded.

Acknowledgments

Cornelis Klein thanks Charles Langmuir, Professor in the Department of Earth and Planetary Sciences at Harvard University, for granting him permission (together with a professional photographer, David Nufer, of David Nufer Photography in Albuquerque, New Mexico) to access and photograph specimens from the Harvard Mineralogy Collections. David and I spent three full days there and with the full-time and very attentive help of Carl Francis (curator of the Harvard Mineralogy Museum and Collections) – whose enormous knowledge of the collections allowed us to locate the most appropriate specimens quickly – we completed all of the necessary hand specimen photography of the minerals for this text. Overnight lodging for our four nights in Cambridge, Massa-chusetts, was generously provided by Leverett House, one of the college houses of which I had been Allston Burr Senior Tutor between 1966 and 1970. We are most grateful to JoAnn DiSalvo Haas and Lauren Brandt for having provided us with some great student rooms.

Throughout the two-year period devoted to the writing of my sections of this text, many colleagues, be it at the University of New Mexico or elsewhere, have been helpful and generous with their time in reviewing sections of text while still in progress. They appear here in alphabetical order: Adrian Brearley, Jonathan Callender, Brian Davis, Amy Ellwein, Maya Elrick, Dave Gutzler, Rhian Jones, Bruce Loeffler, Matt Nyman, Frans Rietmeijer, Malcolm Ross, Jane Selverstone, and Mary Simmons.

I am grateful to David Palmer of CrystalMaker Software Limited, Yarnton, Oxfordshire, England, for providing expertise and guidance in the design of the crystal structure visualization program that accompanies this textbook.


This book would not have been possible without the support and patient understanding of my wife, Shirley Morrison. The word processing of my part of this text was most efficiently and enthusiastically accomplished by Mabel Chavez of Santo Domingo Pueblo, New Mexico.

Anthony R. Philpotts would like to thank the many reviewers who have painstakingly struggled through what we have written and suggested improvements. We have tried to incorporate as many of these as possible within the limits set by the length of the book. I would particularly like to thank Grant Cawthorn for one of the most thorough reviews I have ever received. His knowledge of igneous rocks and the photographs he provided have greatly benefited the book. Dan Kontak, Tony Morse, Brian Robins, and Jane Selverstone also offered valuable advice, as did numerous anonymous reviewers. I am grateful to all of them.

While writing this book, I have greatly appreciated interactions with many colleagues. Jay Ague, Brian Skinner, and Leo Hickey at Yale University, and Sheila Seaman, Mike Rhodes, and Tony Morse at the University of Massachusetts have all provided me with geological insights. I have also learned a considerable amount about sedimentary rocks from Randy Steinen, formerly of the University of Connecticut, and Paul Olsen, of the Lamont-Dougherty Earth Observatory of Columbia University.

I am grateful to the many petrology students I have had over the years. Their many questions and interests played a big role in how I taught the courses and in no small way have determined what, and how, petrology is presented in this book.

Last, none of my part of this book would have been possible without the support of my wife, who allowed me to disappear into my study for fully two years. She is owed an enormous debt of gratitude, especially in view of the fact that when I finished revising my previous book (*Principles of Igneous and Metamorphic Petrology*), I promised her that it was definitely the last one!

