Essential Mathematical Methods for the Physical Sciences

The mathematical methods that physical scientists need for solving substantial problems in their fields of study are set out clearly and simply in this tutorial-style textbook. Students will develop problem-solving skills through hundreds of worked examples, self-test questions and homework problems. Each chapter concludes with a summary of the main procedures and results and all assumed prior knowledge is summarized in one of the appendices. Over 300 worked examples show how to use the techniques and around 100 self-test questions in the footnotes act as checkpoints to build student confidence. Nearly 400 end-of-chapter problems combine ideas from the chapter to reinforce the concepts. Hints and outline answers to the odd-numbered problems are given at the end of each chapter, with fully worked solutions to these problems given in the accompanying Student Solution Manual. Fully worked solutions to all problems, password-protected for instructors, are available at www.cambridge.org/essential.

K. F. Riley read mathematics at the University of Cambridge and proceeded to a Ph.D. there in theoretical and experimental nuclear physics. He became a Research Associate in elementary particle physics at Brookhaven, and then, having taken up a lectureship at the Cavendish Laboratory, Cambridge, continued this research at the Rutherford Laboratory and Stanford; in particular he was involved in the experimental discovery of a number of the early baryonic resonances. As well as having been Senior Tutor at Clare College, where he has taught physics and mathematics for over 40 years, he has served on many committees concerned with the teaching and examining of these subjects at all levels of tertiary and undergraduate education. He is also one of the authors of 200 Puzzling Physics Problems (Cambridge University Press, 2001).

M. P. Hobson read natural sciences at the University of Cambridge, specializing in theoretical physics, and remained at the Cavendish Laboratory to complete a Ph.D. in the physics of star formation. As a Research Fellow at Trinity Hall, Cambridge, and subsequently an Advanced Fellow of the Particle Physics and Astronomy Research Council, he developed an interest in cosmology, and in particular in the study of fluctuations in the cosmic microwave background. He was involved in the first detection of these fluctuations using a ground-based interferometer. Currently a University Reader at the Cavendish Laboratory, his research interests include both theoretical and observational aspects of cosmology, and he is the principal author of General Relativity: An Introduction for Physicists (Cambridge University Press, 2006). He is also a Director of Studies in Natural Sciences at Trinity Hall and enjoys an active role in the teaching of undergraduate physics and mathematics.
Essential Mathematical Methods for the Physical Sciences

K. F. RILEY
University of Cambridge

M. P. HOBSON
University of Cambridge
Contents

Preface xiii
Review of background topics xvi

1 Matrices and vector spaces 1

1.1 Vector spaces 2
1.2 Linear operators 5
1.3 Matrices 7
1.4 Basic matrix algebra 8
1.5 Functions of matrices 13
1.6 The transpose of a matrix 13
1.7 The complex and Hermitian conjugates of a matrix 14
1.8 The trace of a matrix 16
1.9 The determinant of a matrix 17
1.10 The inverse of a matrix 21
1.11 The rank of a matrix 25
1.12 Simultaneous linear equations 27
1.13 Special types of square matrix 36
1.14 Eigenvectors and eigenvalues 40
1.15 Determination of eigenvalues and eigenvectors 45
1.16 Change of basis and similarity transformations 49
1.17 Diagonalization of matrices 51
1.18 Quadratic and Hermitian forms 53
1.19 Normal modes 58
1.20 The summation convention 67
 Summary 68
 Problems 72
 Hints and answers 83

2 Vector calculus 87

2.1 Differentiation of vectors 87
2.2 Integration of vectors 92
2.3 Vector functions of several arguments 93
2.4 Surfaces 94
2.5 Scalar and vector fields 96
Contents

2.6 Vector operators .. 96
2.7 Vector operator formulae .. 103
2.8 Cylindrical and spherical polar coordinates 107
2.9 General curvilinear coordinates
 Summary .. 113
 Problems ... 119
 Hints and answers .. 121

3 Line, surface and volume integrals
3.1 Line integrals ... 128
3.2 Connectivity of regions 134
3.3 Green’s theorem in a plane 135
3.4 Conservative fields and potentials 138
3.5 Surface integrals .. 141
3.6 Volume integrals ... 147
3.7 Integral forms for grad, div and curl 149
3.8 Divergence theorem and related theorems 153
3.9 Stokes’ theorem and related theorems 158
 Summary .. 161
 Problems ... 163
 Hints and answers .. 168

4 Fourier series
4.1 The Dirichlet conditions 170
4.2 The Fourier coefficients 172
4.3 Symmetry considerations 174
4.4 Discontinuous functions 175
4.5 Non-periodic functions 176
4.6 Integration and differentiation
 Summary .. 179
 Problems ... 180
 Hints and answers .. 189

5 Integral transforms .. 191
5.1 Fourier transforms ... 191
5.2 The Dirac δ-function 197
5.3 Properties of Fourier transforms
 Summary .. 202
5.4 Laplace transforms .. 209
5.5 Concluding remarks
 Summary .. 217

Contents

Problems 219
Hints and answers 226

6 Higher-order ordinary differential equations 228
 6.1 General considerations 229
 6.2 Linear equations with constant coefficients 233
 6.3 Linear recurrence relations 237
 6.4 Laplace transform method 242
 6.5 Linear equations with variable coefficients 244
 6.6 General ordinary differential equations 258
 Summary 262
 Problems 264
 Hints and answers 271

7 Series solutions of ordinary differential equations 273
 7.1 Second-order linear ordinary differential equations 273
 7.2 Ordinary and singular points of an ODE 275
 7.3 Series solutions about an ordinary point 277
 7.4 Series solutions about a regular singular point 280
 7.5 Obtaining a second solution 286
 7.6 Polynomial solutions
 Summary 292
 Problems 293
 Hints and answers 297

8 Eigenfunction methods for differential equations 298
 8.1 Sets of functions 300
 8.2 Adjoint, self-adjoint and Hermitian operators 303
 8.3 Properties of Hermitian operators 305
 8.4 Sturm–Liouville equations 308
 8.5 Superposition of eigenfunctions: Green’s functions
 Summary 315
 Problems 316
 Hints and answers 320

9 Special functions 322
 9.1 Legendre functions 322
 9.2 Associated Legendre functions 333
 9.3 Spherical harmonics 339
 9.4 Chebyshev functions 341
Contents

9.5 Bessel functions 347
9.6 Spherical Bessel functions 360
9.7 Laguerre functions 361
9.8 Associated Laguerre functions 366
9.9 Hermite functions 369
9.10 The gamma function and related functions 373
 Summary 377
 Problems 380
 Hints and answers 385

10 Partial differential equations 387
10.1 Important partial differential equations 387
10.2 General form of solution 392
10.3 General and particular solutions 393
10.4 The wave equation 405
10.5 The diffusion equation 408
10.6 Boundary conditions and the uniqueness of solutions 411
 Summary 413
 Problems 414
 Hints and answers 419

11 Solution methods for PDEs 421
11.1 Separation of variables: the general method 421
11.2 Superposition of separated solutions 425
11.3 Separation of variables in polar coordinates 433
11.4 Integral transform methods 455
11.5 Inhomogeneous problems – Green’s functions 460
 Summary 476
 Problems 479
 Hints and answers 486

12 Calculus of variations 488
12.1 The Euler–Lagrange equation 489
12.2 Special cases 490
12.3 Some extensions 494
12.4 Constrained variation 496
12.5 Physical variational principles 498
12.6 General eigenvalue problems 501
12.7 Estimation of eigenvalues and eigenfunctions 503
12.8 Adjustment of parameters 506
 Summary 507
Contents

Problems 509
Hints and answers 514

13 Integral equations 516

13.1 Obtaining an integral equation from a differential equation 516
13.2 Types of integral equation 517
13.3 Operator notation and the existence of solutions 518
13.4 Closed-form solutions 519
13.5 Neumann series 526
13.6 Fredholm theory 528
13.7 Schmidt–Hilbert theory 529
Summary 532
Problems 534
Hints and answers 538

14 Complex variables 540

14.1 Functions of a complex variable 541
14.2 The Cauchy–Riemann relations 543
14.3 Power series in a complex variable 547
14.4 Some elementary functions 549
14.5 Multivalued functions and branch cuts 551
14.6 Singularities and zeros of complex functions 553
14.7 Conformal transformations 556
14.8 Complex integrals 559
14.9 Cauchy’s theorem 563
14.10 Cauchy’s integral formula 566
14.11 Taylor and Laurent series 568
14.12 Residue theorem 573
Summary 576
Problems 578
Hints and answers 580

15 Applications of complex variables 582

15.1 Complex potentials 582
15.2 Applications of conformal transformations 587
15.3 Definite integrals using contour integration 590
15.4 Summation of series 597
15.5 Inverse Laplace transform 599
15.6 Some more advanced applications 602
Summary 605
Contents

Problems 606
Hints and answers 610

16 Probability 612

16.1 Venn diagrams 612
16.2 Probability 617
16.3 Permutations and combinations 627
16.4 Random variables and distributions 633
16.5 Properties of distributions 638
16.6 Functions of random variables 642
16.7 Generating functions 646
16.8 Important discrete distributions 654
16.9 Important continuous distributions 666
16.10 The central limit theorem 681
16.11 Joint distributions 683
16.12 Properties of joint distributions 685
Summary 691
Problems 695
Hints and answers 703

17 Statistics 705

17.1 Experiments, samples and populations 705
17.2 Sample statistics 706
17.3 Estimators and sampling distributions 713
17.4 Some basic estimators 721
17.5 Data modeling 730
17.6 Hypothesis testing 735
Summary 755
Problems 759
Hints and answers 764

A Review of background topics 766

A.1 Arithmetic and geometry 766
A.2 Preliminary algebra 768
A.3 Differential calculus 770
A.4 Integral calculus 771
A.5 Complex numbers and hyperbolic functions 773
A.6 Series and limits 774
A.7 Partial differentiation 777
A.8 Multiple integrals 778
A.9 Vector algebra 779
A.10 First-order ordinary differential equations 781
Contents

B Inner products 782

C Inequalities in linear vector spaces 784

D Summation convention 786

E The Kronecker delta and Levi–Civita symbols 789

F Gram–Schmidt orthogonalization 793

G Linear least squares 795

H Footnote answers 797

Index 810
Since *Mathematical Methods for Physics and Engineering* (Cambridge: Cambridge University Press, 1998) by Riley, Hobson and Bence, hereafter denoted by *MMPE*, was first published, the range of material it covers has increased with each subsequent edition (2002 and 2006). Most of the additions have been in the form of introductory material covering polynomial equations, partial fractions, binomial expansions, coordinate geometry and a variety of basic methods of proof, though the third edition of *MMPE* also extended the range, but not the general level, of the areas to which the methods developed in the book could be applied. Recent feedback suggests that still further adjustments would be beneficial. In so far as content is concerned, the inclusion of some additional introductory material such as powers, logarithms, the sinusoidal and exponential functions, inequalities and the handling of physical dimensions, would make the starting level of the book better match that of some of its readers.

To incorporate these changes, and others to increase the user-friendliness of the text, into the current third edition of *MMPE* would inevitably produce a text that would be too ponderous for many students, to say nothing of the problems the physical production and transportation of such a large volume would entail. It is also the case that for students for whom a course on mathematical methods is not their first engagement with mathematics beyond high school level, all of the additional introductory material, as well as some of that presented in the early chapters of the original *MMPE*, would be ground already covered. For such students, typically those who have already taken two or three semesters of calculus, and perhaps an introductory course in ordinary differential equations, much of the first half of such an omnibus edition would be redundant.

For these reasons, we present under the current title, *Essential Mathematical Methods for the Physical Sciences*, an alternative edition of *MMPE*, one that focuses on the core of a putative extended third edition, omitting, except in summary form, all of the “mathematical tools” at one end, and some of the more specialized topics that appear in the third edition at the other. The emphasis is very much on developing the methods required by physical scientists before they can apply their knowledge of mathematical concepts to significant problems in their chosen fields.

For the record, we note that the more advanced topics in the third edition of *MMPE* that have fallen victim to this approach are quantum operators, tensors, group and representation theory, and numerical methods. The chapters on special functions, and the applications of complex variables have both been reduced to some extent, as have those on probability and statistics.

At the other end of the spectrum, the excised introductory material has not been altogether lost. Indeed, Appendix A of the present text consists entirely of summaries, in the style described in the penultimate paragraph of this Preface, of the material that
is presumed to have been previously studied and mastered by the student. Clearly it can be used both as a reference/reminder and as an indicator of some missing background knowledge.

One aspect that has remained constant throughout the three editions of *MMPE*, is the general style of presentation of a topic – a qualitative introduction, physically based wherever possible, followed by a more formal presentation or proof, and finished with one or two full-worked examples. This format has been well received by reviewers, and there is no reason to depart from its basic structure.

In terms of style, many physical science students appear to be more comfortable with presentations that contain significant amounts of verbal explanation and comment, rather than with a series of mathematical equations the last line of which implies “job done”. We have made changes that move the text in this direction. As is explained below, we also feel that if some of the advantages of small-group face-to-face teaching could be reflected in the written text, many students would find it beneficial.

One of the advantages of an oral approach to teaching, apparent to some extent in the lecture situation, and certainly in what are usually known as tutorials,\(^1\) is the opportunity to follow the exposition of any particular point with an immediate short, but probing, question that helps to establish whether or not the student has grasped that point. This facility is not normally available when instruction is through a written medium, without having available at least the equipment necessary to access the contents of a storage disc.

In this book we have tried to go some way towards remedying this by making a non-standard use of footnotes. Some footnotes are used in traditional ways, to add a comment or a pertinent but not essential piece of additional information, to clarify a point by restating it in slightly different terms, or to make reference to another part of the text or an external source. However, about half of the nearly 300 footnotes in this book contain a question for the reader to answer or an instruction for them to follow; neither will call for a lengthy response, but in both cases an understanding of the associated material in the text will be required. This parallels the sort of follow-up a student might have to supply orally in a small-group tutorial, after a particular aspect of their written work has been discussed.

Naturally, students should attempt to respond to footnote questions using the skills and knowledge they have acquired, re-reading the relevant text if necessary, but if they are unsure of their answer, or wish to feel the satisfaction of having their correct response confirmed, they can consult the specimen answers given in Appendix H. Equally, footnotes in the form of observations will have served their purpose when students are consistently able to say to themselves “I didn’t need that comment – I had already spotted and checked that particular point”.

One further feature of the present volume is the inclusion at the end of each chapter, just before the problems begin, of a summary of the main results of that chapter. For some areas, this takes the form of a tabulation of the various case types that may arise in the context of the chapter; this should help the student to see the parallels between situations which in the main text are presented as a consecutive series of often quite lengthy pieces of mathematical development. It should be said that in such a summary it is not possible to state every detailed condition attached to each result, and the reader should consider

\(^{1}\) But in Cambridge are called “supervisions”!
Preface

the summaries as reminders and formulae providers, rather than as teaching text; that is the job of the main text and its footnotes.

Finally, we note, for the record, that the format and number of problems associated with the various remaining chapters have not been changed significantly, though problems based on excised topics have naturally been omitted. This means that hints or abbreviated solutions to all 200 odd-numbered problems appear in this text, and fully worked solutions of the same problems can be found in an accompanying volume, the Student Solution Manual for Essential Mathematical Methods for the Physical Sciences. Fully worked solutions to all problems, both odd- and even-numbered, are available to accredited instructors on the password-protected website www.cambridge.org/essential. Instructors wishing to have access to the website should contact solutions@cambridge.org for registration details.
Review of background topics

As explained in the Preface, this book is intended for those students who are pursuing a course in mathematical methods, but for whom it is not their first engagement with mathematics beyond high school level. Typically, such students will have already taken two or three semesters of calculus, and perhaps an introductory course in ordinary differential equations. The emphasis in the text is very much on developing the methods required by physical scientists before they can apply their knowledge of mathematical concepts to significant problems in their chosen fields; the basic mathematical “tools” that the student is presumed to have mastered are therefore not discussed in any detail.

However this introductory note and the associated appendix (Appendix A) are included both to act as a reference (or reminder) and to be an indicator of any presumed, but missing, topics in the student’s background knowledge. The appendix consists of summary pages for ten major topic areas, ranging from powers and logarithms at one extreme to first-order ordinary differential equations at the other. The style they adopt is identical to that used for the chapter summary pages in the 17 main chapters of the book. It should be noted that in such summaries it is not possible to state every detailed condition attached to each result. In the areas covered in Appendix A, there are very few subtle situations to consider, but the reader should be aware that they may exist.

Naturally, being only summaries, the various sections of the appendix will not be sufficient for the student who needs to catch up in some area, to learn the particular topics from scratch. A more elementary text will clearly be needed; *Foundation Mathematics for the Physical Sciences* written by the current authors would be one such possibility.