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STOCHASTIC PHYSICS AND CLIMATE MODELLING

This is the first book to promote the use of stochastic, or random, processes to understand,

model and predict our climate system.

One of the most important applications of this technique is in the representation in

comprehensive climate models of processes that, although crucial, are too small or fast

to be explicitly modelled. The book shows how stochastic methods can lead to improve-

ments in climate simulation and prediction, compared with more conventional bulk-formula

parameterisation procedures.

Beginning with expositions of the relevant mathematical theory, the book moves on to

describe numerous practical applications. It covers the complete range of time scales of

climate variability, from seasonal to decadal, centennial and millennial.

With contributions from leading experts in climate physics, this book is invaluable

to anyone working on climate models, including graduate students and researchers in

the atmospheric and oceanic sciences, numerical weather forecasting, climate prediction,

climate modelling and climate change.
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Preface

Eleven chapters of this book were originally published as an issue of the

Philosophical Transactions of the Royal Society A: Mathematical, Physical &

Engineering Sciences (Volume 366; Issue 1875). Several chapters have been

materially changed and updated. Seven new chapters have been added, which

were commissioned specially for this book. We are grateful for the assistance

of our Senior Commissioning Editors at CUP, Dr Matt Lloyd and Dr Susan

Francis; our Production Editor at CUP, Anna-Marie Lovett; and our copy-

editor, Zoë Lewin.

The dynamical evolution equations for weather and climate are formally deter-

ministic. As such, one might expect that solutions of these dynamical evolution

equations are uniquely determined by the imposed initial condition. A key purpose

of this book is to suggest otherwise.

Before expanding on this seemingly paradoxical claim, let us first outline the rea-

son why the theme of this book is of enormous practical importance. As discussed

below, we could legitimately call it a trillion-dollar topic.

While weather forecasting has a long and perhaps chequered history, the present

era, whereby predictions are made from numerical solutions of the underlying

dynamic and thermodynamic equations, can be traced back to the pioneering work

of L. F. Richardson in the early years of the twentieth century. As is well known, the

notion that detailed weather forecasts could be made arbitrarily far into the future

was dealt a practical blow through the discovery that weather was chaotic, i.e. that

weather forecasts are sensitive to small errors in their initial conditions. To some

people, the fact that the weather is chaotic seemed to imply that it is hopeless to try to

forecast it. However, a fundamental property of any chaotic system is that the degree

to which it is predictable is itself a function of the initial state; forecasts from some

initial states can be very predictable, even though the system as a whole is chaotic.

To exploit this property of weather as a chaotic dynamical system, methods

based on ensemble forecasting have been developed to try to predict when the

xi

www.cambridge.org/9780521761055
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-76105-5 — Stochastic Physics and Climate Modelling
Edited by Tim Palmer , Paul Williams
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xii Preface

weather is predictable and when it is unpredictable. The method is conceptually

simple: an ensemble is a collection of forecasts made from almost, but not quite,

identical initial conditions. The spread among members of the ensemble gives an

estimate of flow-dependent predictability.

In recent years, the ensemble method has become a backbone of numerical

weather prediction and is used not only by weather forecasters but also by com-

mercial traders whose activities depend on weather. For example, weather is a

dominant driver of many commodities traded in liberalised markets (electricity,

gas, coal, oil, crops). Having an estimate of flow-dependent uncertainty in fore-

casts of weather is critical to the success of such trading, and ensemble weather

forecasting is the tool used by the traders to determine this.

Developing practical tools for estimating the uncertainty of a forecast requires

a detailed knowledge of the sources of forecast uncertainty. The simple chaotic

paradigm discussed above suggests that the only relevant uncertainty lies in the

weather observations that determine the initial state of the forecast, e.g. that the

measuring instruments are never perfectly accurate or never sufficiently dense in

space to determine every small fluctuation in the initial atmospheric state. However,

the problem is not nearly as simple as this. Another key source of uncertainty in

any weather forecast is the numerical model used to make the predictions.

So let us return to the beginning of this preface. The dynamic and thermodynamic

equations are given as deterministic partial differential equations, but are solved by

discretisation onto some sort of grid (or spectral or other equivalent representation).

Since there are inevitably scales of motion and indeed key processes that are not

resolved by this discretisation, methods must be found to represent approximately

the subgrid features of the flow. For example, if a global numerical weather predic-

tion problem has a typical grid spacing of 50 km, then all individual cloud systems

will be unresolved. For this reason, the numerical equations are ‘closed’ by adding

empirically based subgrid parameterisation formulae to represent the effects of

the unresolved scales. Hence, for example, convective clouds (e.g. associated with

thunderstorms) are represented by convective subgrid parameterisation formulae.

Other subgrid parameterisation formulae represent the effects of flow over and

around small-scale topography, boundary-layer turbulence and the absorption and

emission of radiation in various relevant parts of the electromagnetic spectrum by

radiatively active constituents in our atmosphere.

The formulation of these parameterisation formulae is motivated by notions

in statistical mechanics. So, just as the momentum transfer by the bulk effects

of molecular motions is represented by a diffusive formula, so a similar type of

formula might represent the bulk effects of cumulus clouds on vertical temperature,

humidity and momentum transfer on the grid scale. However, there is a problem

with such an approach. Within a typical 50 km square grid box, there often exist
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Preface xiii

sufficiently few individual cumulus clouds for the parameterised bulk formula to

be an accurate estimate of the subgrid effects.

How can we represent this source of error in ensemble forecasts? This is where

the concept of stochastic modelling of the subgrid scales is relevant. By representing

model uncertainty through stochastic equations (or more generally by stochastic–

dynamic models) the resulting ensemble forecasts can sample the effects of both

initial observation uncertainties and forecast model uncertainties. The resulting

ensemble weather forecasts are more reliable (in a precise statistical sense) than

those associated with only a sampling of initial observation error, and this has

made the whole process of predicting uncertainty more valuable to the real-world

customers of weather forecasts.

But this is only half the story! Although weather forecasting has a long history,

it is only in recent years that the world has become aware of the threat of climate

change. Many regard this as the most serious threat facing humanity – a threat

literally to our civilisation. Others, while perhaps acknowledging that the world

has warmed in recent years and that some of this could be due to human activities,

believe that the climate-change problem is not as important as other problems facing

society. To some extent, extreme views about climate change, the cataclysmic

and the dismissive, arise because there remains considerable uncertainty in the

magnitude of future global warming, e.g. as reflected in the Intergovernmental Panel

on Climate Change (IPCC) assessment reports. Certainly the IPCC assessment

reports show that among the range of model predictions, there is a quantifiable

risk of dangerous climate change in the coming century; most sensible observers

deduce from this that the world needs to take action, first to reduce emissions

of greenhouse gases and second to start preparing to adapt to inevitable climate

change.

Climate-change predictions will play a key role in both mitigation and adapta-

tion policies in years to come. For mitigation, policy makers need more precise

predictions about how much more likely dangerous climate change will occur, as

a function of anticipated atmospheric greenhouse-gas concentrations. For adapta-

tion, predictions are needed to guide decisions on infrastructure investment. For

example, how will patterns of precipitation change; what parts of the world need

to be prepared for water shortages and what parts of the world need to be prepared

for more frequent and devastating flooding?

Reducing uncertainty in climate prediction, both global and regional, requires

improvements in the models used to predict climate. These models are similar

in many respects to the types of weather forecast model discussed above, but

differ in two key respects. First, because climate models have to be run over

century time scales, rather than days, they must include processes like dynamic

sea ice and biogeochemistry, processes that are not especially relevant for weather
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xiv Preface

prediction. This makes the climate models intrinsically more complex than weather

prediction models. Owing to this additional complexity and the need to simulate

climate on longer time scales than numerical weather prediction models, climate

models typically have much coarser grid resolution than weather prediction models:

hundreds of kilometres rather than tens of kilometres.

On the other hand, as with weather prediction, neglecting the small-scale motions

causes problems. For climate models, it causes the models to drift compared with

reality, even for variables that, in principle, are well resolved in terms of the

model’s grid spacing. The problem of systematic error is an endemic problem in

climate modelling. One of the primary goals of any climate-modelling centre is to

eliminate, or at least minimise, this systematic drift. To give one example, many

climate models have difficulty simulating the atmospheric phenomenon known as

persistent anticyclonic blocking. However, such persistent anticyclonic blocks are

the primary cause of drought in many locations; a persistent block causes rain-

bearing weather systems to be diverted away from the region of interest. Hence, in

order to know whether such a region is likely to be more prone to drought under

climate change, it is necessary to know whether the frequency of occurrence of

persistent blocking anticyclones will increase in that region as a result of increases

in greenhouse-gas concentrations. However, if the models have difficulty simulating

the blocking phenomenon in the first place, due to systematic drift, they are not

well placed to answer this key question.

Clearly a potential solution to the problem of model drift is to reduce the

grid spacing, e.g. to that of contemporary numerical weather prediction models.

However, to do this would require computing resources beyond the means of most

climate institutes. For example, to run century-long integrations with a 10 km grid

would require sustained multi-petaflop computing capability.

This raises a fundamental theoretical question. How can we expect uncertainty in

our predictions of climate change to reduce as the grid spacing reduces? If we look

to our knowledge of the mathematical properties of the Navier–Stokes equations

for guidance, we are left with a potential dilemma: a simple scaling argument based

on the Kolmogorov turbulence suggests that any systematic truncation error, no

matter how small scale it may be, can infect the large-scale systematic error of the

model in finite time. Whether the Navier–Stokes equations really have this property

is the topic of one of the unsolved million-dollar Clay Mathematics Millennium

Prize problems.

This analysis suggests that, effectively, solutions of the dynamic and thermo-

dynamic equations may have some irreducible uncertainty. In this case, it makes

sense to try to treat at least the small-scale components of the flow by computa-

tionally simple stochastic processes, rather than by the conventional deterministic

bulk formula.
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Preface xv

This should not be seen as a council of despair, but as a way forward for a

problem, climate prediction, that is arguably the most challenging of problems in

computational science. For example, let us return to the problem of simulating

persistent blocking anticyclones. One way of thinking of the persistent blocking

anticyclone is as a preferred regime in the state space of our climate. However,

it is secondary to the normal westerly flow that could be viewed as defining the

dominant flow regime. Hence think of a double-well potential, the deeper of which

represents normal westerly flow, the shallower representing blocking anticyclonic

flow. With a highly resolved model, it should be possible not only to represent

this potential well but also the right transition frequency between regimes. With

a lower resolution model, perhaps the potential well structure is resolved, but the

model is sufficiently damped and inactive that the state resides too frequently in the

dominant, deeper, westerly flow regime. As a result, this low-resolution model will

exhibit a westerly systematic bias, and be poor at simulating spells of persistent

anticyclonic weather. However, if this is the case, then injecting stochastic noise

into the near-grid scale may be sufficient to lead to a significant improvement in

simulating the correct regime statistics.

Hence, as well as exploring the benefits of high resolution (and this work must

certainly be done), climate modellers should additionally explore the benefits of

improving the representation of near and subgrid flow in lower-resolution models

by stochastic processes. In practice, it is quite probable that these pursuits are not

mutually exclusive: as explicit resolution approaches that associated with indi-

vidual convective cloud systems, the unresolved sub-cloud dynamics will then be

represented stochastically.

In his study of the economics of climate change, Lord Stern has shown that the

climate problem is, globally, a trillion-dollar problem. Reliable global and regional

climate predictions with accurate error bars are an essential element in trying to

combat the threat of climate change. This is the reason why, at the beginning of this

preface, we suggested that the theme of this book is itself a trillion-dollar theme!

We believe we are at the beginning of a new era in weather and climate mod-

elling – an era that recognises that although the equations of motion are formally

deterministic, the best predictions, whether of weather on time scales of days, or

climate on time scales of a century or more, may be based on models that are at

least partially stochastic.

Tim Palmer and Paul Williams

Reading, UK
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