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Introduction

1.1 Closed time contour

Consider a quantum many-body system governed by a time-dependent Hamilto-
nian Ĥ(t). Let us assume that in the distant past t = −∞ the system was in a state
specified by a many-body density matrix ρ̂(−∞). The precise form of the latter is
of no importance. It may be, e.g., the equilibrium density matrix associated with
the Hamiltonian Ĥ(−∞). We shall also assume that the time-dependence of the
Hamiltonian is such that at t = −∞ the particles were non-interacting. The inter-
actions are then adiabatically switched on to reach their actual physical strength
sometime prior to the observation time. In addition, the Hamiltonian may con-
tain true time dependence through e.g. external fields or boundary conditions. Due
to such true time-dependent perturbations the density matrix is driven away from
equilibrium.

The density matrix evolves according to the Von Neumann equation

∂t ρ̂(t) = −i
�
Ĥ(t), ρ̂(t)

�
, (1.1)

where we set � = 1. It is formally solved with the help of the unitary evolution
operator as ρ̂(t) = Ût,−∞ρ̂(−∞)

�
Ût,−∞

�† = Ût,−∞ρ̂(−∞)Û−∞,t , where the †
denotes Hermitian conjugation. The evolution operator obeys

∂t Ût,t � = −iĤ(t) Ût,t � ; ∂t �Ût,t � = i Ût,t � Ĥ(t �).

Notice that the Hamiltonian operators taken at different moments of time, in gen-
eral, do not commute with each other. As a result, Ût,t � must be understood as
an infinite product of incremental evolution operators with instantaneous locally
constant Hamiltonians

Ût,t � = lim
N→∞ e−iĤ(t−δt )δt e−iĤ(t−2δt )δt . . . e−iĤ(t−Nδt )δt e−iĤ(t �)δt

= T exp

�
−i

� t

t �
Ĥ(t) dt

�
, (1.2)

where an infinitesimal time-step is δt = (t − t �)/N and to shorten the notations the
infinite product is abbreviated as the time-ordered, or T-exponent.
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2 Introduction

One is usually interested to know an expectation value of some observable Ô
(say density or current operator) at a time t .1 It is defined as

〈
Ô

〉
(t) ≡ Tr{Ôρ̂(t)}

Tr{ρ̂(t)} = 1

Tr{ρ̂(t)} Tr
{
Û−∞,tÔÛt,−∞ρ̂(−∞)

}
, (1.3)

where the trace is performed over many-body Hilbert space and in the last equality
we cyclically permuted the Û−∞,t operator under the trace sign. The expression
under the last trace describes (read from right to left) evolution from t = −∞,
where the initial density matrix is specified, toward t , where the observable is cal-
culated, and then back to t = −∞. Therefore calculation of an observable implies
evolving the initial state both forward and backward.

Such forward–backward evolution is avoided in the equilibrium quantum field
theory with a special trick. Let us recall how it works, for example, in the zero-
temperature equilibrium formalism [2]. The latter deals with the ground state
expectation values of the type �GS|Ô|GS�, where |GS� is a ground state of an inter-
acting many-body system. It is obtained from the known and simple ground state of
the corresponding non-interacting system |0� by acting on the latter with the evolu-
tion operator |GS� = Ût,−∞|0�. Since we are dealing with the equilibrium situation,
the only time dependence allowed for the Hamiltonian is an adiabatic switching of
the interactions on and off in the distant past and distant future, respectively. The
evolution operator therefore describes the evolution of a simple non-interacting
ground state |0� toward |GS� upon adiabatic switching of the interactions and thus
�GS|Ô|GS� = �0|Û−∞,tÔÛt,−∞|0�.

Now comes the trick: one argues that

Û+∞,−∞|0� = eiL |0�. (1.4)

That is, evolution of the non-interacting ground state upon adiabatic switching of
the interactions on and subsequent adiabatic switching them off brings the system
back into the state |0�, up to a phase factor eiL . This statement is based on the belief
that the adiabatic perturbation keeps the system in its (evolving) ground state at
all times. If so, in view of normalization �0|0� = 1, the only possible change
is the phase of the non-interacting ground state eiL = �0|Û+∞,−∞|0�. Similarly
�0|Û+∞,−∞ = �0|eiL . Accepting this, one proceeds as follows:

�GS|Ô|GS� = �0|Û−∞,tÔÛt,−∞|0� = e−iL�0|eiL Û−∞,tÔÛt,−∞|0�
= e−iL�0|Û+∞,−∞Û−∞,tÔÛt,−∞|0� = �0|Û+∞,tÔÛt,−∞|0�

�0|Û+∞,−∞|0� , (1.5)

1 We work in the Schrödinger picture, where observables are t-independent operators, while the wavefunctions
and the density matrix evolve.
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1.1 Closed time contour 3

where in the last equality we used Û+∞,−∞Û−∞,t = Û+∞,t , which is an immediate
consequence of Eq. (1.2). The result of this procedure is that one needs to consider
only the forward evolution. Indeed, the numerator in the last expression (being read
from right to left) calls for evolving the non-interacting ground state |0� from the
distant past to the observation time, where the observable operator acts, and then
proceeding towards the distant future, where the overlap with the same known state
�0| is evaluated.

The similar strategy works in the finite-temperature equilibrium formalism [11,
2, 4]. There, one treats the equilibrium density matrix e−β Ĥ , where β = 1/T is
the inverse temperature, as the evolution operator in the imaginary time τ . The
latter is defined on a finite interval 0 ≤ τ < β. The observables (or correlation
functions) are also evaluated at imaginary time points τ1, τ2, . . . and the result must
be analytically continued back to the real-time axis. One may argue that, since the
adiabatic switching of interactions does not drive the system out of equilibrium, a
statement similar to Eq. (1.4) still holds. As a result one is again left to describe
only the forward evolution, albeit along the finite time interval in the imaginary
direction.

Let us mention that elimination of the backward evolution comes with a price:
the normalization denominator in the last expression in Eq. (1.5). It offsets the
phase accumulation eiL of the non-interacting ground state |0�. In diagrammatic
language it amounts to subtracting the so-called disconnected or vacuum loop dia-
grams. This denominator is a serious liability in the theory of disordered systems.
The reason is that the accumulated phase eiL sensitively depends on a specific real-
ization of the disorder (which may be thought of as being absent at t → ±∞
and adiabatically switched on and off in the process of evolution). Therefore the
denominator absolutely must be included in any disorder averaging procedure,
which complicates the treatment in a very substantial way.

The much more serious trouble with the outlined procedure is that Eq. (1.4) does
not work in a non-equilibrium situation. If the Hamiltonian Ĥ(t) contains non-
adiabatic time-dependent external fields, boundary conditions, etc., the evolution
drives the system away from equilibrium. Even if all such fields are eventually
switched off in the distant future, there is no guarantee that the system returns to
its ground (or equilibrium) state. Therefore acting with the operator Û+∞,−∞ on
the initial ground (or equilibrium) state results in an unknown superposition of
excited states. As a result, the backward evolution, inherent to Eq. (1.3), can’t be
eliminated.

Nevertheless, it is still convenient to extend the evolution in Eq. (1.3) towards
t = +∞ and then back to t . This is achieved with the help of the trivial identity
Ût,+∞Û+∞,t = 1̂. Inserting it into Eq. (1.3) and using Û−∞,t Ût,+∞ = Û−∞,+∞, one
finds
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4 Introduction

t

Ô

Û−∞,+∞

Û+∞,t Ût,−∞ ˆ

+ ∞ − ∞

ρ(−∞)

Fig. 1.1 Closed time contour C. Evolution along such a contour is described by
Eq. (1.6).

〈
Ô

〉
(t) = 1

Tr{ρ̂(−∞)} Tr
{
Û−∞,+∞Û+∞,tÔÛt,−∞ρ̂(−∞)

}
. (1.6)

Here we also used that, according to the Von Neumann equation (1.1), the trace of
the initial density matrix is unchanged under the unitary evolution. Equation (1.6)
describes evolution along the closed time contour C depicted in Fig. 1.1. The
observable Ô is inserted at time t , somewhere along the forward branch of the
contour. Notice that inserting the operator Ût,+∞Û+∞,t = 1̂ to the right of Ô in
Eq. (1.3), one could equally well arrange to have the observable on the backward
branch of the contour. As we shall see, the most convenient choice is to take a half
sum of these two equivalent representations.

Evolution along the closed time contour C is the central subject of this book.
The fact that the field theory can be constructed with the time ordering along such
a contour was first realized by Schwinger [12] and further developed in [24, 25].
About the same time Konstantinov and Perel’ [13] have developed a diagrammatic
technique, based on the time contour containing forward and backward branches
in the real-time direction along with the imaginary time portion of length β. The
formalism was significantly advanced, in particular its utility to derive the kinetic
theory, in the seminal book of Kadanoff and Baym [1]. Independently Keldysh
[14] (for some of the historic context see [26]) suggested a formulation which
does not rely on imaginary time (and thus on the equilibrium density matrix). He
also introduced a convenient choice of variables (Keldysh rotation), which made
derivation of the kinetic theory particularly transparent. The time contour with-
out the imaginary time piece, along with the Keldysh variables (which we call
“classical” and “quantum”) appear to be by far the most convenient choices for
the functional formulation of the theory presented in this book. For this reason
we occasionally refer to the construction as the Keldysh technique (this should
by no way diminish the credit deserved by the other authors). Reformulation of
the theory for the case of fermions, given later by Larkin and Ovchinnikov [27],
became universally accepted. In fact, other theories developed about the same
time, while not using the time contour explicitly, appear to be close relatives of
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1.1 Closed time contour 5

the Schwinger–Kadanoff–Baym–Keldysh construction. Among them are Feynman
and Vernon [28], Wyld’s [29] diagrammatic technique for fluid dynamics and Mar-
tin, Siggia and Rose [30] and DeDominicis’ [31] calculus for classical stochastic
systems.

The central object of the theory is the evolution operator along the closed con-
tour ÛC = Û−∞,+∞Û+∞,−∞. If the Hamiltonian is the same on the forward and
backward branches, then the forward–backward evolution of any state brings it
back exactly to the original state. (Not even a phase factor is accumulated, indeed,
any phase gained on the forward branch is exactly “unwound” on the back-
ward branch.) As a result ÛC = 1̂ and the partition function, defined as Z ≡
Tr{ÛC ρ̂(−∞)}/Tr{ρ̂(−∞)}, is identically equal to unity, Z = 1. Nevertheless,
the partition function is a convenient object to develop the functional representa-
tion and the normalization identity Z = 1 is a useful check of its consistency. For
this reason we shall use it widely in what follows.

To insert an observable somewhere along the forward (as prescribed by Eq. (1.6))
or backward branches it is convenient to modify the Hamiltonian Ĥ(t) by adding
the source term Ĥ±

V (t) ≡ Ĥ(t) ± ÔV (t), where the plus (minus) sign refers to the
forward (backward) part of the contour. Now, since the Hamiltonian is different on
the two branches, the evolution operator along the contour ÛC[V ] 
= 1̂ becomes
non-trivial and so does the generating function

Z [V ] ≡ Tr{ÛC[V ] ρ̂(−∞)}
Tr{ρ̂(−∞)} . (1.7)

The expectation value of the observable Ô, given by Eq. (1.6) (or rather by a half
sum of the observable inserted along the forward and backward branches) may be
found as �Ô�(t) = (i/2)δZ [V ]/δV (t)

��
V=0. This expression should be compared

with the equilibrium technique [2, 4], where the observables are given by varia-
tional derivatives of the logarithm of the generating (or partition) function. In our
case, since Z = Z [0] = 1, the presence of the logarithm is optional.2 Knowledge
of the generating function allows thus to find observables of interest. Therefore,
after developing the functional formalism for the partition function, we extend it to
include the generating function as well.

2 It is worth mentioning that the denominators in Eqs. (1.5) and (1.7) have very different status. In the latter
case Tr{ρ̂(−∞)} refers entirely to the distant past, when both interactions and disorder are switched off. It
is therefore a simple constant, which may be easily evaluated. In the former case �0|Û+∞,−∞|0� involves
evolution of the ground state upon switching on and off the interactions and disorder. It thus depends on both
disorder and interactions and requires a separate calculation. The absence of a disorder-dependent denominator
makes the closed time contour formalism especially suitable to deal with the averaging over the quenched
disorder. The fact that observables do not require the logarithm is another manifestation of the absence of the
non-trivial denominator.
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6 Introduction

1.2 The outline of this book

Chapter 2 is devoted to a possibly simplest many-body system of bosonic parti-
cles occupying a single quantum state. We briefly develop a second quantization
representation and then proceed towards the functional formalism, based on the
coherent-state functional integral along the contour C. Here we pay close atten-
tion to a fundamental discrete time (see Eq. (1.2)) representation of the evolution
operator. The model allows us to expose explicitly the discrete time structure, to
verify normalization Z = 1 and to explain the meaning and hidden skeletons of
the continuous notation. We then introduce Keldysh rotation, “classical/quantum”
variables and explain the causality structure. Finally we introduce the generat-
ing function in discrete and continuous notations and explain the relation between
them.

In Chapter 3 we exploit the analogy between the toy model of Chapter 2 and
the harmonic oscillator to formulate the single-particle quantum mechanics as a
path integral on the closed time contour. We then use it to investigate a quantum
particle coupled to an equilibrium bath of harmonic oscillators. Integrating out the
oscillators, degrees of freedom, we derive the real-time version of the celebrated
Caldeira–Leggett model. We then use the ideas of time contour to discuss quantum
mechanical tunneling in the presence of an external ac field (both with and without
coupling to the bath).

In Chapter 4 we pick up the discussion of a particle coupled to a bath, introduced
in Chapter 3. In particular we focus on its classical limit, where the correspond-
ing real-time action acquires local (in time) form. We show ultimate relations of
the emerging theory to the physics of classical stochastic systems. To this end
we derive Langevin and Fokker–Planck equations from the time contour action
and explain its connections to the Martin–Siggia–Rose–DeDominicis construction.
We then focus on a few examples, which include escape from a metastable state,
reaction models, fluctuation theorem and time-dependent perturbations acting on a
stochastic system.

All the considerations so far were limited to systems with one (or a few) degrees
of freedom, possibly coupled to an external bath. In Chapter 5 we start general-
izing the formalism to true many-body systems. We introduce free bosonic fields
(both complex and real) and their functional description on the closed contour. We
then add interactions (collisions) between the particles and derive diagrammatic
technique and the Dyson equation. Following Keldysh [14], we show that the lat-
ter contains the kinetic equation for a non-equilibrium distribution function. We
demonstrate then how the collision integral emerges from a perturbative treatment
of the self-energy.
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1.2 The outline of this book 7

Chapters 2–5 form the basis of the book. They serve to introduce most of the the-
oretical apparatus, notations and conventions used throughout the rest of the book.
They are absolutely necessary for comprehension of what follows. We then branch
into a number of applications, which are to a large extent logically independent of
each other. Therefore the subsequent chapters may be read (or omitted) in an arbi-
trary order, without much damage to the understanding. Yet they share a number of
common themes and methods which are developed in a certain sequence. The lat-
ter was meant to emphasize the connection between various fields and to reinforce
common techniques at every successive encounter of them.

The first example, Chapter 6, is collisionless (i.e. where the particles inter-
act only with a collective electromagnetic field) dynamics of a classical plasma.
We derive the Vlasov equations, collective excitations – plasmons, and Landau
damping. Though the system is purely classical, we treat it with the quantum
formalism. Besides methodological illustration, it allows us to treat fluctua-
tions of the collective electric potential and derive the so-called quasi-linear
theory. The latter deals with the coupled kinetic equations for particles and plas-
mons (while Vlasov theory treats the electric field as fully deterministic, i.e. no
fluctuations).

We then go to the essentially quantum system: low temperature weakly inter-
acting Bose gas, in Chapter 7. We derive the Gross–Pitaevskii description of the
condensate as a stationary point approximation of the corresponding functional
integral. We then consider small fluctuations on top of the stationary field configu-
ration and show that they bring the celebrated Bogoliubov quasiparticle spectrum.
We then proceed to a description of a non-equilibrium quasiparticle cloud. To this
end we derive a system of equations for the distribution function of quasiparticles
coupled to the (modified) Gross–Pitaevskii equation for the condensate wavefunc-
tion. Following analogy with the collisionless plasma of Chapter 6, we show that
this system contains Langevin forcing of the condensate fluctuations along with
their collisionless damping. We then derive various contributions to the collision
integral and use them to discuss kinetics of the condensate growth upon evaporative
cooling.

Chapter 8 is devoted to the dynamics of phase transitions (mostly classical
and only briefly quantum). Following Langer, we first discuss nucleation dynam-
ics of critical droplets in first order transitions. We then switch to dynamics of
continuous phase transitions, starting from equilibrium transitions and classifica-
tion of their dynamic universality classes given by Hohenberg and Halperin. We
then turn to essentially non-equilibrium phase transitions. The examples include
absorbing state transitions in reaction-diffusion models and Kardar–Parisi–Zhang
consideration of the roughening transition on growing interfaces.
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8 Introduction

The rest of the book, i.e. Chapters 9–14, is devoted to fermions. Chapter 9
presents a fermionic version of the one degree of freedom toy model. It uses a
Grassmann functional integral on the closed time contour and is essentially par-
allel to its bosonic counterpart of Chapter 2. We then introduce fermionic fields
and their interactions and derive a diagrammatic technique, the Dyson equation
and finally the kinetic equation, again essentially parallel to their bosonic counter-
parts of Chapter 5. Finally we focus on the spin of the electron and discuss Stoner
ferromagnetic transition and the spin part of the kinetic equation.

In Chapter 10 we use fermionic formalism to discuss non-equilibrium quantum
transport. In particular we derive the Landauer formula for tunneling conductance,
the Lesovik formula for shot-noise, the Levitov’s result for the full counting statis-
tics of transmitted charge, the Brouwer formula for adiabatic pumping of charge
and, following Nazarov and Tobiska, the exact fluctuation relation and its conse-
quences. We also deal with the spin transport, deriving the Slonczewski–Berger
spin-torque term in the Landau–Lifshitz equation along with the spin-torque noise
and associated Gilbert damping.

Chapters 11–14 deal with fermionic systems in the presence of a static
(quenched) disorder potential. We start in Chapter 11 from the kinetic equation
approach, which leads to the diffusive dynamics of density fluctuations and the
concept of transport scattering time. The kinetic approximation misses quantum
interference and mesoscopic fluctuation effects. To improve upon it we develop
a systematic disorder averaging procedure, which takes advantage of the fun-
damental normalization Z = 1 of the closed time contour technique. It leads
to the so-called matrix non-linear sigma-model, which we use to rederive the
kinetic equation and diffusive density response and supplement it with quantum
weak-localization corrections and the scaling theory of Anderson localization.

In Chapter 12 we focus on mesoscopic, i.e. sample-to-sample, fluctuations due to
differences in disorder configurations in small metallic samples. We deal with den-
sity of states fluctuation and its particular limit, known as Wigner–Dyson statistics.
We then proceed to describe universal conductance fluctuations and fluctuations
of current–voltage characteristics. Finally we discuss full counting statistics of a
disordered quasi-one-dimensional wire and the tunneling action.

We then include electron–electron interactions in disordered systems, which lead
to non-trivial singular corrections to the density of states (the so-called zero bias
anomaly) and conductivity (Altshuler–Aronov corrections). They also provide col-
lision terms (and thus finite relaxation time) to the diffusive kinetic equation. These
effects are the subject of Chapter 13.

Chapter 14 is devoted to the physics of disordered superconductors. We gen-
eralize the non-linear sigma-model to include superconducting correlations. Its
stationary state condition yields the Usadel equation, which includes equations
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1.2 The outline of this book 9

for the spectrum of the superconductor under non-equilibrium conditions as
well as the kinetic equation for the quasiparticles distribution function. Together
with the self-consistency condition they provide a complete framework to study
non-equilibrium superconductivity. As examples we work out the spectrum of
the collective (Carlson–Goldman) mode of the superconductor, derive the time-
dependent Ginzburg–Landau theory and fluctuation corrections to the conductivity
above the critical temperature.
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2

Bosons

The aim of this chapter is to develop a functional integral representation for the
evolution operator along the closed time contour. To this end we use an example
of a single quantized level populated by bosonic particles. Notations and structures
introduced in this chapter are used throughout the rest of the book.

2.1 Bosonic coherent states

We start by considering a single quantum level occupied by bosonic particles.
A many-body state with n bosons is denoted by |n�. Such pure number states form
a complete orthonormal basis, meaning �n|n�� = δnn� and

�
n |n��n| = 1̂. It is con-

venient to introduce bosonic annihilation and creation operators, b̂ and b̂†, which
operate in the many-body Hilbert space of the system according to the following
rules:

b̂ |n� = √
n |n − 1� ; b̂†|n� = √

n + 1 |n + 1�. (2.1)

By acting on an arbitrary basis state, one may check the following relations:

b̂†b̂|n� = n|n� ; b̂b̂†|n� = (n + 1)|n� ; [b̂, b̂†] = 1̂. (2.2)

An extremely useful tool for our purposes is the algebra of bosonic coherent
states, which we summarize briefly in this section. A coherent state, parametrized
by a complex number φ, is defined as a right eigenstate of the annihilation operator
with the eigenvalue φ:

b̂ |φ� = φ|φ� ; �φ| b̂† = φ̄�φ|, (2.3)

where the bar denotes complex conjugation. As a result, the matrix elements in the
coherent state basis of any normally ordered operator Ĥ(b̂†, b̂) (i.e. such that all
the creation operators are to the left of all the annihilation operators) are given by

�φ|Ĥ(b̂†, b̂)|φ�� = H(φ̄, φ�) �φ|φ��. (2.4)
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