SIGNAL PROCESSING AND OPTIMIZATION FOR TRANSCEIVER SYSTEMS

Presenting the first complete treatment of MIMO transceiver optimization, this self-contained book provides all the mathematical information needed to understand transceiver optimization in a single volume. It begins with a review of digital communication fundamentals, and then moves on to a detailed study of joint transceiver optimization, starting from simple single-input single-output channels all the way to minimum bit error rate transceivers for MIMO channels. Crucial background material is covered, such as Schur-convex functions, matrix calculus, and constrained optimization, together with eight appendices providing further background material on topics such as matrix theory, random processes, and sampling theory. A final ninth appendix provides a grand summary of all the optimization results.

With 360 illustrations, over 70 worked examples, and numerous summary tables provided to aid understanding of key concepts, this book is ideal for graduate students, practitioners, and researchers in the fields of communications and signal processing.

P. P. Vaidyanathan is a Professor of Electrical Engineering at the California Institute of Technology, where he has been a faculty member since 1983. He is an IEEE Fellow and has co-authored over 400 technical papers and two previous books in the area of signal processing. He has received numerous awards, including four awards for journal papers, the Award for Excellence in Teaching at the California Institute of Technology three times, and the Technical Achievement Award of the IEEE Signal Processing Society.

See-May Phoong is a Professor in the Graduate Institute of Communication Engineering and the Department of Electrical Engineering at the National Taiwan University. He is a recipient of the Charles H. Wilts Prize for outstanding independent doctoral research at the California Institute of Technology and the Chinese Institute of Electrical Engineering’s Outstanding Youth Electrical Engineer Award.

Yuan-Pei Lin is a Professor in Electrical Engineering at the National Chiao Tung University, Taiwan. She is a recipient of the Ta-You Wu Memorial Award, the Chinese Institute of Electrical Engineering’s Outstanding Youth Electrical Engineer Award, and of the Chinese Automatic Control Society’s Young Engineer in Automatic Control Award.
SIGNAL PROCESSING
AND OPTIMIZATION FOR
TRANSCEIVER SYSTEMS

P. P. VAIDYANATHAN
California Institute of Technology

SEE-MAY PHOONG
National Taiwan University

YUAN-PEI LIN
National Chiao Tung University, Taiwan
To Usha, Vikram, Sagar, and my parents
— P. P. Vaidyanathan

To our families
— See-May Phoong and Yuan-Pei Lin
Contents at a glance

Part 1: Communication fundamentals
1. Introduction 1
2. Review of basic ideas from digital communication 12
3. Digital communication systems and filter banks 70
4. Discrete-time representations 113
5. Classical transceiver techniques 167
6. Channel capacity 216
7. Channel equalization with transmitter redundancy 244
8. The lazy precoder with a zero-forcing equalizer 295

Part 2: Transceiver optimization
9. History and outline 317
10. Single-input single-output transceiver optimization 332
11. Optimal transceivers for diagonal channels 370
12. MMSE transceivers with zero-forcing equalizers 397
13. MMSE transceivers without zero forcing 430
14. Bit allocation and power minimization 452
15. Transceivers with orthonormal precoders 477
16. Minimization of error probability in transceivers 494
17. Optimization of cyclic-prefix transceivers 528
18. Optimization of zero-padded systems 577
19. Transceivers with decision feedback equalizers 592

Part 3: Mathematical background
20. Matrix differentiation 660
21. Convexity, Schur convexity and majorization theory 694
22. Optimization with equality and inequality constraints 730

Part 4: Appendices
A. Inner products, norms, and inequalities 750
B. Matrices: a brief overview 753
C. Singular value decomposition 766
D. Properties of pseudocirculant matrices 771
E. Random processes 779
F. Wiener filtering 792
G. Review of concepts from sampling theory 802
H. Euclid’s algorithm 808
I. Transceiver optimization: summary and tables 812

Glossary 825
Acronyms 826
References 827
Index 845
Contents

Part 1: Communication fundamentals

1 **Introduction**
 1.1 Introduction
 1.2 Communication systems
 1.3 Digital communication systems
 1.4 MIMO channels
 1.5 Scope and outline
 1.6 Commonly used notations

2 **Review of basic ideas from digital communication**
 2.1 Introduction
 2.2 Signal constellations
 2.3 Error probability
 2.4 Carrier-frequency modulation
 2.5 Matched filtering
 2.6 Practical considerations in matched filtering
 2.7 Concluding remarks
 Appendix
 Problems

3 **Digital communication systems and filter banks**
 3.1 Introduction
 3.2 Multirate building blocks
 3.3 Decimation filters
 3.4 Interpolation filters
 3.5 Blocking and unblocking
 3.6 Parsing a scalar signal into a vector signal
 3.7 Decimation and interpolation in polyphase form
 3.8 The transmultiplexer system
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9 Analysis of the transmultiplexer system</td>
<td>99</td>
</tr>
<tr>
<td>3.10 Concluding remarks</td>
<td>105</td>
</tr>
<tr>
<td>Problems</td>
<td>106</td>
</tr>
<tr>
<td>4 Discrete-time representations</td>
<td>113</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>113</td>
</tr>
<tr>
<td>4.2 Conversion between continuous and discrete time</td>
<td>114</td>
</tr>
<tr>
<td>4.3 Discrete-time representations of channels</td>
<td>116</td>
</tr>
<tr>
<td>4.4 The raised-cosine function</td>
<td>123</td>
</tr>
<tr>
<td>4.5 MIMO systems and multiuser systems</td>
<td>127</td>
</tr>
<tr>
<td>4.6 Digital equalization</td>
<td>128</td>
</tr>
<tr>
<td>4.7 Oversampling the received signal</td>
<td>130</td>
</tr>
<tr>
<td>4.8 Fractionally spaced equalizers</td>
<td>132</td>
</tr>
<tr>
<td>4.9 Noble identities and digital design of filters</td>
<td>149</td>
</tr>
<tr>
<td>4.10 MMSE equalization</td>
<td>152</td>
</tr>
<tr>
<td>4.11 Concluding remarks</td>
<td>161</td>
</tr>
<tr>
<td>Problems</td>
<td>162</td>
</tr>
<tr>
<td>5 Classical transceiver techniques</td>
<td>167</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>167</td>
</tr>
<tr>
<td>5.2 Matched filtering and reconstructibility</td>
<td>167</td>
</tr>
<tr>
<td>5.3 Sampled-noise whitening receiver filter</td>
<td>178</td>
</tr>
<tr>
<td>5.4 Vector space interpretation of matched filtering</td>
<td>181</td>
</tr>
<tr>
<td>5.5 Optimal estimates of symbols and sequences</td>
<td>184</td>
</tr>
<tr>
<td>5.6 The Viterbi algorithm for channel equalization</td>
<td>190</td>
</tr>
<tr>
<td>5.7 Decision feedback equalizers</td>
<td>201</td>
</tr>
<tr>
<td>5.8 Precoders for pre-equalization of a channel</td>
<td>204</td>
</tr>
<tr>
<td>5.9 Controlled ISI and partial-response signals</td>
<td>208</td>
</tr>
<tr>
<td>5.10 Concluding remarks</td>
<td>212</td>
</tr>
<tr>
<td>Appendix</td>
<td>213</td>
</tr>
<tr>
<td>Problems</td>
<td>214</td>
</tr>
<tr>
<td>6 Channel capacity</td>
<td>216</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>216</td>
</tr>
<tr>
<td>6.2 Ideal lowpass channel</td>
<td>216</td>
</tr>
<tr>
<td>6.3 SNR gap for PAM signals</td>
<td>218</td>
</tr>
<tr>
<td>6.4 Capacity of frequency-dependent channel</td>
<td>219</td>
</tr>
<tr>
<td>6.5 Splitting the channel into subbands</td>
<td>220</td>
</tr>
<tr>
<td>6.6 Circularly symmetric complex random vectors</td>
<td>224</td>
</tr>
<tr>
<td>6.7 Capacity for MIMO and complex channels</td>
<td>234</td>
</tr>
<tr>
<td>6.8 Concluding remarks</td>
<td>241</td>
</tr>
<tr>
<td>Problems</td>
<td>242</td>
</tr>
</tbody>
</table>
Contents

7 Channel equalization with transmitter redundancy 244

7.1 Introduction 244
7.2 Zero padding 244
7.3 Introduction of the cyclic prefix 253
7.4 The circulant matrix representation 261
7.5 Variations of the cyclic-prefix system 264
7.6 The discrete multitone system 268
7.7 Concluding remarks 273

Problems 277

8 The lazy precoder with a zero-forcing equalizer 295

8.1 Introduction 295
8.2 Noise amplification and Frobenius norm 298
8.3 Frobenius norm of left inverse as A grows taller 300
8.4 Application in equalization 300
8.5 Autocorrelation property 302
8.6 Effect of increasing the block size 307
8.7 Concluding remarks 308

Appendix 312

Problems 315

Part 2: Transceiver optimization

9 History and outline 317

9.1 Introduction 317
9.2 A brief history of transceiver optimization 318
9.3 Outline for Part 2 328

10 Single-input single-output transceiver optimization 332

10.1 Introduction 332
10.2 Optimization of the SISO communication system 333
10.3 The all-discrete SISO channel 341
10.4 General forms of optimal filters 347
10.5 Excess bandwidth and oversampling 356
10.6 Optimal pulse shape in single-pulse case 360
10.7 Concluding remarks 367

Problems 368
11 Optimal transceivers for diagonal channels 370
11.1 Introduction 370
11.2 Minimizing MSE under the ZF constraint 372
11.3 Minimizing MSE without ZF constraint 376
11.4 Maximizing channel capacity 380
11.5 Minimizing the symbol error rate 382
11.6 Examples of optimal diagonal transceivers 388
11.7 Concluding remarks 395
Problems 396

12 MMSE transceivers with zero-forcing equalizers 397
12.1 Introduction 397
12.2 Assumptions on noise and signal statistics 398
12.3 Problem formulation 401
12.4 Solution to the ZF-MMSE optimization problem 407
12.5 Optimizing the noise-to-signal ratio 417
12.6 Concluding remarks 419
Appendices 420
Problems 428

13 MMSE transceivers without zero forcing 430
13.1 Introduction 430
13.2 Formulation of the problem 431
13.3 MMSE equalizer for fixed precoder 432
13.4 Formulating the optimal precoder problem 434
13.5 Solution to the optimal precoder problem 437
13.6 Structure of the MMSE transceiver 441
13.7 Concluding remarks 446
Appendix 447
Problems 449

14 Bit allocation and power minimization 452
14.1 Introduction 452
14.2 Error probabilities, bit rates, and power 453
14.3 Minimizing transmitter power with bit allocation 455
14.4 Optimizing the precoder and equalizer 457
14.5 Optimal transceiver in terms of channel SVD 460
14.6 Further properties of optimal solutions 464
14.7 Coding gain due to bit allocation 471
14.8 Concluding remarks 473
Appendix 474
Problems 475
Contents

15 Transceivers with orthonormal precoders 477
 15.1 Introduction 477
 15.2 Orthonormal precoders restricted to be square 478
 15.3 Rectangular orthonormal precoder matrices 486
 15.4 Concluding remarks 492
 Problems 493

16 Minimization of error probability in transceivers 494
 16.1 Introduction 494
 16.2 Minimizing error probability in ZF transceivers 494
 16.3 Bias in the reconstruction error 500
 16.4 Minimizing error probability without ZF 505
 16.5 Bias-removed MMSE versus ZF-MMSE 508
 16.6 Concluding remarks 511
 Appendices 513
 Problems 526

17 Optimization of cyclic-prefix transceivers 528
 17.1 Introduction 528
 17.2 Optimal cyclic-prefix systems: preliminaries 528
 17.3 Cyclic-prefix systems optimized for MSE: details 533
 17.4 CP systems with minimum error probability 539
 17.5 DMT systems optimized for power 544
 17.6 The cyclic-prefix system with unitary precoder 547
 17.7 Cyclic-prefix optimization examples 552
 17.8 Increasing the block size in cyclic-prefix systems 561
 17.9 Power minimization using bit allocation 564
 17.10 Concluding remarks 572
 Appendix 573
 Problems 576

18 Optimization of zero-padded systems 577
 18.1 Introduction 577
 18.2 Zero-padded optimal transceivers 577
 18.3 Effect of increasing M in zero-padded systems 585
 18.4 Concluding remarks 590
 Problems 591

19 Transceivers with decision feedback equalizers 592
 19.1 Introduction 592
 19.2 Fundamentals of decision feedback equalizers 592
Part 3: Mathematical background

20 Matrix differentiation

- **20.1 Introduction**
- **20.2 Real matrices and functions**
- **20.3 Complex gradient operators**
- **20.4 Complex matrices and derivatives**
- **20.5 Optimization examples**
- **20.6 Being careful with interpretations ...**
- **20.7 Summary and conclusions**

21 Convexity, Schur convexity and majorization theory

- **21.1 Introduction**
- **21.2 Review of convex functions**
- **21.3 Schur-convex functions**
- **21.4 Examples of Schur-convex functions**
- **21.5 Relation to matrix theory**
- **21.6 Multiplicative majorization**
- **21.7 Summary and conclusions**

22 Optimization with equality and inequality constraints

- **22.1 Introduction**
- **22.2 Setting up the problem**
- **22.3 Maximizing channel capacity**
- **22.4 MMSE transceiver**
- **22.5 KKT conditions are only necessary conditions**
- **22.6 Concluding remarks**
Part 4: Appendices

Appendix A Inner products, norms, and inequalities 750
 A.1 Inner products and norms 750
 A.2 Cauchy-Schwartz inequality 751
 A.3 The AM-GM inequality 752

Appendix B Matrices: a brief overview 753
 B.1 Introduction 753
 B.2 Determinant and trace 754
 B.3 Rank 756
 B.4 Eigenvalues and eigenvectors 757
 B.5 Matrices with special properties 761
 B.6 Positive definite matrices 763
 B.7 Rayleigh-Ritz principle 765

Appendix C Singular value decomposition 766
 C.1 Introduction 766
 C.2 Left inverse computed from SVD 767
 C.3 Frobenius norm and SVD 768
 C.4 Frobenius norm of the left inverse 769

Appendix D Properties of pseudocirculant matrices 771
 D.1 Introduction 771
 D.2 Circulant matrices 771
 D.3 Diagonalization of pseudocirculants 773
 D.4 Further properties of pseudocirculants 775

Appendix E Random processes 779
 E.1 Introduction 779
 E.2 Wide sense stationary processes 779
 E.3 Cyclo WSS processes 784
 E.4 Linear combinations of random variables 787
Appendix F Wiener filtering

- **F.1 Introduction** 792
- **F.2 Theory of statistically optimal filtering** 792
- **F.3 Wiener filter for zero-mean uncorrelated noise** 798
- **F.4 Concluding remarks** 801

Appendix G Review of concepts from sampling theory

- **G.1 Introduction** 802
- **G.2 Noble identities for C/D and D/C converters** 803
- **G.3 The generalized alias-free(T) band** 804
- **G.4 Alias-free(T) signals with identical samples** 806

Appendix H Euclid's algorithm

808

Appendix I Transceiver optimization: summary and tables

812

Glossary

825

Acronyms

826

References

827

Index

845
Preface

Digital communication systems have been studied for many decades, and they have become an integral part of the technological world we live in. Many excellent books in recent years have told the story of this communication revolution, and have explained in considerable depth the theory and applications. Since the late 1990s particularly, there have been a number of significant contributions to digital communications from the signal processing community. This book presents a number of these recent developments, with emphasis on the use of filter bank precoders and equalizers. Optimization of these systems will be one of the main themes in this book. Both multiple-input multiple-output (MIMO) systems and single-input single-output (SISO) systems will be considered.

The book is divided into four parts. Part 1 contains introductory material on digital communication systems and signal processing aspects. In Part 2 we discuss the optimization of transceivers, with emphasis on MIMO channels. Part 3 provides mathematical background material for optimization of transceivers. This part can be used as a reference, and will be useful for readers wishing to pursue more detailed literature on optimization. Part 4 contains eight appendices on commonly used material such as matrix theory, Wiener filtering, and so forth. Thus, while it is assumed that the reader has some exposure to digital communications and signal processing at the introductory level, there is plenty of review material at the introductory level (Part 1) and at the advanced level (Parts 3 and 4). The material in Parts 2 and 3 will be useful for students wishing to pursue advanced work in the field, which is still a very active area for research. A detailed outline of the book can be found in Sec. 1.5 of Chap. 1.

Some of the material herein has been tested in the classroom, and a considerable part has benefited students at an advanced level. While many of the results in Part 2 can be regarded as results which appeared since the late 1990s, the mathematical foundation for this material is much older. Starting with the days of Shannon and Nyquist, there have been many giants in the field who contributed to this strong foundation since the 1940s. However, because of technological advances and the directions in which applications evolved, such as wireless communication and DSL technology, some of the theoretical problems have been revisited and some new problems solved by researchers in recent years. This freshness and novelty in the midst of old grandeur can clearly been seen from the combination of topics covered in Parts 1, 2, and 3 of the book.

We have endeavored to come up with a text that will be useful in the classroom, and which will serve as a research reference for advanced students. The writing style is in the form of an easy-to-read text book with detailed theory, plenty of examples, discussions, and homework problems. It is self-contained for students with an introductory background in signal processing and communications.
Acknowledgements

The wonderful environment provided by the California Institute of Technology, and the generous support from the Office of Naval Research and the National Science Foundation, have been crucial in developing the material covered in this book. As mentioned in the introductory and historical review sections of this book, many great minds have been involved in making the fields of communication and signal processing what they are today. Without their fundamental contributions this book would have been impossible.

Many graduate students have participated in extensive discussions relating to the material in this book. It is my pleasure to thank them here, and especially acknowledge the extensive discussions I have had with Chun-Yang Chen and Ching-Chih Weng regarding the material in Part 2 of the book.

For a project of this magnitude, long hours of hard work and concentration are absolutely essential. I have to thank Usha for creating the peaceful atmosphere which is crucial for the success of such a project. She has shown infinite patience during the long evenings and weekends of my absorption in this book. Her total unconditional love and sincere support, and the enthusiasm and love from Vikram and Sagar, are much appreciated!

P. P. Vaidyanathan
California Institute of Technology, Pasadena, CA

It is our pleasure to acknowledge the support of National Taiwan University and National Chiao-Tung University. We would also like to thank the National Science Council, Taiwan, for continued support of our research.

See-May Phoong
National Taiwan University, Taipei, Taiwan

and

Yuan-Pei Lin
National Chiao Tung University, Hsinchu, Taiwan