For engineers, product designers and technical marketers who need to design a cost-effective, easy-to-use, short-range wireless product that works, this practical guide is a must-have. It explains and compares the major wireless standards – Bluetooth, Wi-Fi, 802.11abgn, ZigBee, 802.15.4 and Bluetooth low energy – enabling you to choose the best standard for your product.

Packed with practical insights based on the author’s 10 years’ design experience, and highlighting pitfalls and trade-offs in performance and cost, this book will ensure that you get the most out of your chosen standard by teaching you how to tailor it for your specific implementation.

With information on intellectual property rights and licensing, production tests and regulatory approvals, as well as analysis of the market for wireless products, this resource truly provides everything you need to design and implement a successful short-range wireless product.

NICK HUNN is an independent wireless design consultant with over 30 years’ experience in design and technical evangelisation within leading-edge technology companies. He has developed products using a range of technologies and wireless standards, including Bluetooth, 802.11, ZigBee and proprietary wireless products, which have achieved numerous awards, including a Queen’s Award for Technology. He is Vice Chairman and Executive Director of the Mobile Data Association and former CTO of TDK Systems Europe.
The Cambridge Wireless Essentials Series

Series Editors
WILLIAM WEBB, Ofcom, UK
SUDHIR DIXIT, HP Labs, India

A series of concise, practical guides for wireless industry professionals.

Christopher Haslett, Essentials of Radio Wave Propagation
Stephen Wood and Roberto Aiello, Essentials of UWB
Christopher Cox, Essentials of UMTS
Steve Methley, Essentials of Wireless Mesh Networking
Linda Doyle, Essentials of Cognitive Radio
Nick Hunn, Essentials of Short-Range Wireless

Forthcoming
Amitava Ghosh and Rapeepat Ratasuk,
Essentials of LTE and LTE-A
Barry G. Evans, Essentials of Satellite Communications

For further information on any of these titles, the series itself and ordering information see www.cambridge.org/wirelessessentials.
Essentials of Short-Range Wireless

Nick Hunn

WiFore Consulting
Contents

1 Introduction
1.1 The growth of standards 1
1.2 Markets 4
1.2.1 Games controllers 4
1.2.2 Voice 5
1.2.3 Internet access 5
1.2.4 Internet connected devices 5
1.3 What is a standard? 7
1.4 Choosing a wireless standard 10
1.5 Wireless application areas 11
1.5.1 Standard vs proprietary wireless 11
1.5.2 The importance of topology 12
1.5.3 The ‘Internet of things’ 13
1.6 Using this book 15
1.7 References 16

2 Fundamentals of short-range wireless 17
2.1 Basics 17
2.1.1 The connection model and topology 18
2.1.2 Latency, range and throughput 18
2.1.3 Security 18
2.2 Wireless architecture 19
2.2.1 The radio 19
2.2.2 Baseband: media access control (MAC) 20
2.2.3 Higher-layer stacks 22
2.2.4 Profiles 22
2.3 Wireless parameters 24
2.3.1 Range 25
2.3.2 Throughput 34
Contents

2.3.3 Interference and coexistence 36
2.3.4 Topology 42
2.3.5 Security – authentication and encryption 48
2.3.6 Power consumption 49
2.3.7 Profiles and interoperability 52
2.3.8 Voice and latency (quality of service and synchronous transmission) 53
2.3.9 Reliability 55
2.3.10 Audio and video 56
2.3.11 Usability and commissioning 57

2.4 Conclusion 58
2.5 References 59

3 Wireless security 60

3.1 Security attacks 62
3.1.1 Discovery 62
3.1.2 Eavesdropping (interception) 62
3.1.3 Denial of service 62
3.1.4 Man-in-the-middle attacks, spoofing and bluejacking 63
3.1.5 Address tracking 66

3.2 Security features 66
3.2.1 Authorisation 66
3.2.2 Authentication 67
3.2.3 Encryption 68
3.2.4 Other features 69

3.3 Generation and distribution of link keys 70

3.4 Comparison of security procedures 70
3.4.1 Susceptibility to attack 71
3.4.2 Security implementations 75

3.5 Testing security – in praise of hacking tools 79

3.6 References 80

4 Bluetooth 81
4.1 Background 81
4.2 The radio 84
4.3 Topologies 87
4.4 Connections 91
 4.4.1 Making connections 92
4.5 Transferring data 97
 4.5.1 Asynchronous links (ACL) 97
 4.5.2 Synchronous links (SCO and eSCO) 98
 4.5.3 Voice codecs 99
4.6 The lower-layer stack (the controller) 99
4.7 The higher-layer stack (the host) 100
 4.7.1 Logical link control and adaptation protocol (L2CAP) 101
 4.7.2 Service discovery protocol (SDP) 101
 4.7.3 Generic access profile (GAP) 102
 4.7.4 Bonding and pairing 102
4.8 Transport protocols 104
4.9 Profiles 104
 4.9.1 Serial port profile (SPP) 105
 4.9.2 Handsfree profile (HFP) 105
 4.9.3 Generic object-exchange profile (GOEP / OBEX) 106
 4.9.4 Personal area networking profile (PAN) 108
 4.9.5 Health device profile (HDP) 109
 4.9.6 Human interface device profile (HID) 109
 4.9.7 Advanced audio distribution profile (A2DP) 110
4.10 Power consumption 111
4.11 Bluetooth 3.0 112
4.12 References 114

5 IEEE 802.11abgn/Wi-Fi 115
 5.1 Introduction 115
 5.1.1 The difference between 802.11 and Wi-Fi 117
 5.1.2 Bluetooth 3.0 121
 5.1.3 Alphabet soup 121
 5.2 802.11 topology 121
5.2.1 Bridging with access points 125
5.2.2 802.11 services 127
5.3 The 802.11 radio 130
5.4 Framing 134
5.5 Modulation 137
5.6 5.1 GHz – 802.11a 140
5.7 MIMO – 802.11n 141
5.8 Making connections 143
5.9 Power management 144
5.9.1 Wireless multimedia power save 145
5.10 References 145

6 IEEE 802.15.4, ZigBee PRO, RF4CE, 6LoWPAN and Wireless HART 147
6.1 IEEE 802.15.4 148
6.1.1 The MAC 152
6.1.2 Topologies 153
6.1.3 Framing 154
6.1.4 802.15.4 security 156
6.2 ZigBee 156
6.2.1 ZigBee and ZigBee PRO 160
6.2.2 The ZigBee network 162
6.2.3 ZigBee profiles and applications 167
6.3 ZigBee RF4CE 171
6.4 6LoWPAN 172
6.5 WirelessHART 173
6.6 References 174

7 Bluetooth low energy (formerly Wibree) 176
7.1 Basic tenets 178
7.1.1 Small packet size 178
7.1.2 Autonomous controller 178
7.1.3 Duty cycle and latency 179
7.1.4 Asymmetry 179
7.1.5 Range 179
7.1.6 Ease of use 179
CONTENTS

7.2 RF 180
7.3 Topology 180
 7.3.1 Profile roles 181
 7.3.2 Unidirectional devices 181
 7.3.3 Bidirectional devices 182
7.4 Advertising and data channels 183
 7.4.1 Advertising packets 185
 7.4.2 Response packets 186
7.5 The Bluetooth low-energy state machine 188
 7.5.1 Advertising 189
 7.5.2 Connecting 191
 7.5.3 Discovery 193
 7.5.4 Bonding 195
7.6 The Bluetooth low-energy protocol stack 195
 7.6.1 Attributes – exposing state 197
 7.6.2 Attribute PDUs 198
 7.6.3 Notifications and indications 199
 7.6.4 Characteristics 200
 7.6.5 Aggregate characteristics and time stamping 200
 7.6.6 Services 201
 7.6.7 Configuring attribute servers 202
7.7 Profiles 202
 7.7.1 Proximity 203
 7.7.2 Gateways 203
7.8 Single-mode chips 205
7.9 Dual-mode chips 206
7.10 References 207

8 Application development – configuration 208
 8.1 Topology 209
 8.1.1 Cable replacement 209
 8.1.2 Reconnection 214
 8.1.3 Multipoint 215
 8.1.4 Infrastructure (network connectivity) 218
CONTENTS

8.1.5 Cluster tree 220
8.1.6 Mesh 220
8.2 Data protocols 221
 8.2.1 Profile or proprietary 221
 8.2.2 Interfacing with external protocols 222
 8.2.3 Voice, audio and codecs 223
 8.2.4 Latency and time synchronisation 226
8.3 Set-up and commissioning 227
 8.3.1 Pairing, bonding, association 227
 8.3.2 Promiscuity 228
 8.3.3 The initial connection 229
 8.3.4 Out-of-band techniques 230
 8.3.5 Disconnecting 231
 8.3.6 Limiting broadcasts 232
8.4 Feature creep 232
8.5 Security 233
8.6 Upgrading 233
 8.6.1 Upgrading mesh and cluster-tree networks 237
8.7 References 238
9 Application development – performance 239
 9.1 Range and throughput 239
 9.1.1 Power amplifiers and low noise amplifiers 239
 9.1.2 Power control 243
 9.1.3 Filtering 244
 9.1.4 RF matching, tuning and PCB design 244
 9.2 Choice of antenna 246
 9.2.1 Gain 246
 9.2.2 Directionality 246
 9.2.3 Construction (technology) and size 247
 9.2.4 Detuning 247
 9.2.5 Polarisation and antenna radiation characteristics 248
 9.2.6 Ground planes 249
 9.2.7 Antenna types 250
CONTENTS

9.2.8 Diversity and multiple antennae 252
9.2.9 One last point on antennae 253

9.3 Coexistence 253
 9.3.1 Interference mitigation 253
 9.3.2 Colocation 255

9.4 Power consumption 256
 9.4.1 Duty cycle 257
 9.4.2 Sleep modes 259
 9.4.3 Functional circuitry 259

9.5 Topology effects 260

9.6 Ultra-low power and energy harvesting 261

9.7 Temperature 261
 9.7.1 Working below 0 °C 262
 9.7.2 Working above 50 °C 263

9.8 References 263

10 Practical considerations – production, certification and IP 264
 10.1 Regulatory approval 264
 10.1.1 Modular approval 266
 10.1.2 Other considerations 267
 10.1.3 The Radio and Telecommunications Terminal Equipment directive (R&TTE) 267

 10.2 Specific absorption rate – SAR 268
 10.3 Medical, automotive and aviation 268
 10.4 Export controls 269
 10.5 Standards-based approvals and IP licences 270
 10.5.1 Standards approval hierarchies 274
 10.5.2 Specific requirements 275

 10.6 Open-source protocol stacks 279
 10.7 OUI – the device address 280
 10.8 Production test 281
 10.9 References 282

11 Implementation choices 284
 11.1 Assessing the options 284
11.2 The design architecture
 11.2.1 Chip-based designs
 11.2.2 Reference designs
 11.2.3 Modules
11.3 Development tools
11.4 Stack integration tools
11.5 Deciding on an implementation strategy
 11.5.1 Bill of material cost
 11.5.2 Development cost
 11.5.3 Integration cost
 11.5.4 RF design
 11.5.5 Approvals
 11.5.6 Time to market
 11.5.7 Production test
 11.5.8 Size
11.6 Comparison of costs
11.7 Longevity
12 Markets and applications
 12.1 Growing the market
 12.2 Healthcare, wellness, sports and fitness
 12.2.1 The Continua Health Alliance
 12.2.2 Health 2.0
 12.2.3 Clinical asset management
 and lone workers
 12.2.4 Assisted living
 12.2.5 Sports and fitness
 12.3 The telematics and automotive markets
 12.3.1 Vehicle-to-vehicle communications
 12.3.2 Vehicle and driver monitoring
 12.4 Smart energy
 12.4.1 The key opportunities
 12.5 Home automation
 12.6 Consumer electronics
 12.6.1 Internet connected devices