Index

AA index, 39
absorption, free–free, 103
absorption coefficient, 90
Advanced Composition Explorer (ACE), 373
Akasofu–Chapman sequence, 18
ALARA, 361
analyzer
 retarding potential, 62
 small-angle deflection, 62, 65
 spherical, cylindrical section, 62
 spherical section, 64
anomalous cosmic rays, 236
atmospheric solar heating, 29
aurora
 characteristic energy of precipitating particles, 328
 early drawing, 16
 heating, 327
 historical, 16
 planetary, 148
 precipitation, 326, 327
 relation to sunspot cycle, 16
 terrestrial, 148
auroral substorm, 265
ballooning instability, 286
β decay, 114
Birkeland current, 18, 271
blackbody radiation, 89
bow shock
 Earth, 224
 planetary, 196
breakout model, 187
bremsstrahlung, 83, 95, 106
brightness temperature, 88
Carrington–Hodgson flare, 17, 25, 37
Chapman profile, 350
chromospheric evaporation, 127
CIR, 237
classification
 flares, 125
 radio bursts, 83
 shocks and discontinuities, 200
climate, in space, 9
CME, 117
 association with filament eruptions, 160
 energy distribution, 167
 failed, 168
 flare association, 126
 kinetic energy, 167
 and quiet-Sun filaments, 131
 radio emission, 117
 shock wave, 204
 statistical properties, 165
 three-part structure, 160
 without major flare, 132
Compton scattering, 111
Constellation program, 368
ISS mission phases, 369
lunar base habitation, 371
lunar mission phases, 369
lunar sorties, 370
Mars exploration, 371
contact discontinuity, 200
convective energy transport, 10
corona
 characteristic energy density, 164
 hard X-ray sources, 140
 ion inertial length, 153
 thick target, 146
 coronal dimming, 137, 154
 coronal hole, transient, 154
 coronal mass ejection, see CME
 corotating interaction region, 237
cosmic rays
 22-year cycle, 260
 11-year cycle, 260
 anisotropies, 252
 anomalous, 43, 236
 differential intensity, 234
 discovery of, 233
 energy change, 251
 energy spectrum, 234
galactic, 235
knee in spectrum, 235
lifetime in heliosphere, 259
modulation, 259
origin of, 233
spectrum, 235
streaming flux, 253
Sun’s shadow, 235
suprathermal tail, 234
transport equation, 245, 252
current disruption region, 18
current sheet, 5
CME, 153
flare, 153
current-driven instability, 285
deep dielectric discharge, 294
definition of
baroclinic instability, 11
blackbody radiation, 89
brightness temperature, 89
coronal mass ejection, 7
corotating interaction region, 8
Dst index, 264
Dungey cell, 11
effective temperature, 91
emission measure, 149
Ferrel cell, 10
flare, 123
Hadley cell, 10
ionosphere, 323
Kp index, 19
magnetic storm, 7, 264
optical depth, 91
optically thick, thin, 91
phase space density, 46
plasma β, 131
polar cell, 10
Poynting flux, 171
reconnection, 12
shock wave, 7
solar cosmic rays, 7
solar energetic particles, 7
solar wind, 7
source function, 91
streamer belt, 7
thermosphere, 323
Vasyliunas cell, 11
delay line anode, 56
δ spot, 129
Department of Energy radiation regulations, 363
detectors
analyzer constant, 65
channeltron, 54
channel electron multiplier, 54
chevron configuration, 55
energy analyzer, 62
energy defect, 57
energetic-neutral atom composition, 74
energetic-particle composition, 72
Faraday cup, 62
gas-filled counters, 52
Geiger counter, 52, 43
geometrical factor, 47
ion feedback, 54
ionization chamber, 52
length to diameter ratio, 54
microchannel plate, 55
particles, 52
plasma composition, 67
proportional counter, 52
scintillation, 60
semiconductor, solid-state, 57
time of flight, 66
differential intensity, 246
diffusion
compound, 251
cross field, 248
quasi-linear theory, 253
super- and sub-, 250
tensor, 253
diffusion equation, phase space, 246
diffusive anisotropy, 252
diffusive compression acceleration, 237
diffusive shock acceleration, 236
dipolarization, 134, 287
distribution function, 46, 245
Dst index, 288
definition, 264
relation to magnetosphere energy, 289
dynamic spectroscopy, 82
Earth bow shock, 224
Earth current, 19
effective temperature, 91
EIT wave, 162
electrojet, 18, 23, 265
electromagnetic spectrum, 79
electron beam, suprathermal, 104
electron distribution, power law, 109
electrostatic discharge, 30, 31
emerging flux, 129
emission coefficient, 90
emission measure, definition, 149
energetic particles, 8, 13
γ-rays, 106, 112
hard X-rays, 106
non-thermal bremsstrahlung, 106
radiation, 93
radio emission, 94
radio radiation pattern, 94
range in material, 51
shock acceleration, 214, 112
solar, 237
transport, 233
energetic storm particle event, 238
energy
flow in magnetosphere, 278
from bulk flow, 273
from planetary rotation, 274
Explorer, 43
extended events, 145
ultraviolet emission, 85
far-infrared radiation, 83
Faraday rotation, 92
Fermi acceleration, 237
field equations
 gravity, 3
 magnetic, 3
field lines, random walk, 249
filament cavity, 135
first invariant of particle motion, 299
flare
 analogs, 144
 association with CMEs, 131
 association with SEPs, 129
astrobiology, 157
 bolometric detection, 132
 breakout model, 187
 bulk energy, 132, 143
cartoons, 124
chromospheric lines, 125
 confined, 129
coronal hard X-ray sources, 140
current sheet model, 172
definitions, 123, 159
 effect on ionosphere, 351
 emerging flux, 129
 emission measure, 149
 emission modeling, 179
 emission temperature, 149
 energy distribution, 130
 energy partition, 143, 156
 energy requirements, 164
eruptive, 129
 evaporation, 143
 evolution, 162
 first recorded, 17
force-free field model, 173
global waves, 137
 GOES classes, 125
 gradual, 134
 impulsive, 132
Hα classes, 125
helioseismic signature, 138
 impulse response event, 147
 injection model, 170
magnetic field changes, 138
Masuda flare, 146
morphology, 159
multithread modeling, 144
nanoflare, 143
 phases, 126
power-law energy distribution, 130
radio emission, 117
reconnection rate, 168
 resemblance to substorm, 265
 ribbons, 164
 ribbon motions, 154
role of current, 189
shock waves, 146
 spectrum, 346
stellar, 149
stellar hard X-rays, 145
storage model, 169
 UV continuum, 131
 white light, 131
flare phases
 gradual, 134
 impulsive, 132
 precursor, 128
flux density, definition, 88, 246
 flux rope, 174
force-free field models, 173
 2d, 173
 3d, 181
frame of reference
dehoffman–Teller, 201
 normal incident, 201
free magnetic energy, 165
 frequency cutoff, 106
galactic cosmic rays, 235
 environment modeling, 398
 heliospheric life time, 259
gamma-ray burst, 38
 gamma-ray emission, 86
gamma-ray emission, variability, 16, 17
geomagnetically induced current, 19, 23
Geostationary Operational Environment Satellite (GOES), 373
global merged interaction region, 196, 261
global wave
 EIT, 137
 Moreton, 137
 seismic, 138
GMIR, 196
 gravity waves, 332
 guiding center motion, 298
 gyrofrequency, 96, 240
 gyromotion, 240
 gyroradius, 241
Halloween storm, 39, 295, 336, 340, 341
hard X-ray emission, 86
 hormesis, 360
ICME, 194
 index of refraction, 105
instability
 ballooning, 286
 current-driven, 285
 interchange, 286
 tearing mode, 285
Institute of Electrical and Electronics Engineers (IEEE), 362
interchange instability, 286
International Commission on Radiation Units and Measurements (ICRU), 361
International Commission on Radiological Protection (ICRP), 361
International Space Station (ISS), 367
interplanetary CME, 194
interplanetary shock, particle acceleration, 223, 226
Index

| ion-sound waves, 103 |
| ionization, energy loss, 49, 327 |
| ionization chamber, 52 |
| ionization potential, 50 |
| ionizing radiation |
| ALARA, 361 |
| constellation program, 368 |
| effects on spacecraft, 391 |
| extra-vehicular activity (EVA), 366 |
| galactic cosmic rays, 364 |
| hormesis, 360 |
| relation to cancer, 360 |
| Shuttle and ISS, 367 |
| solar energetic particles, 365 |
| solar particle events, 365 |
| trapped radiation, 364 |
| total dose effects, 391 |

| ionosphere |
| Blanc–Richmond scenario, 344 |
| collisional heating, 270 |
| composition effect on ionization, 336 |
| definition, 323 |
| D, E, F regions, 351 |
| energy injection, 324 |
| equatorial ionization anomaly (EIA), 343 |
| flare response, 351 |
| flywheel effect, 331 |
| high-latitude storm response, 329 |
| Joule heating, 270 |
| particle precipitation, 271 |
| photo-chemical equilibrium, 328 |
| positive, negative storm phases, 338 |
| solar-wind dynamo, 342 |
| storm-time neutral-wind dynamo, 342 |
| TEC bulge, 339 |
| total electron content (TEC), 339 |

| jet, 134 |
| polar, 135 |
| soft X-ray, 134 |

| kinetic process, description, 212 |
| Langmuir waves, 98, 102, 105 |
| frequency drift, 104 |
| Larmor formula, 94 |
| laws of heliophysics, 1 |
| line-tying, 169 |
| linear no-threshold model, 360 |
| Liouville’s theorem, 301 |
| Living With a Star (LWS) program, ix |
| long-duration event, 163 |
| loop prominence system, 125 |
| Lorentz factor, 94 |
| Lorentz force, 239 |

| Mach number, 197 |
| magnetar, 150 |
| magnetic compass, 17 |
| magnetic crochet, 26 |
| magnetic field |

| energy storage, 142 |
| extrapolation, 139 |
| flare effects, 138 |
| reconnection, 151 |
| Masuda flare, 151 |
| supra-arcade downflows, 151 |
| magnetic reconnection, 6, 146, 149, 153 |
| magnetic storm, 18, 264 |
| definition, 264 |
| Earth, 288 |
| magnetosphere |
| EM radiation, 271 |
| energy budget, 273 |
| energy conversion sequence, 278 |
| energy from planetary rotation, 270 |
| energy flow, 278 |
| explosive energy release, 283 |
| magnetic topology change, 283 |
| neutral particle escape, 271 |
| particle motion, 296 |
| planetary, 263 |
| rotation dominated, 282 |
| solar-wind dominated, 281 |
| sources of energy, 269 |
| magnetospheric substorm, 264 |
| Maxwell–Boltzmann distribution, 89 |
| merged interaction region, 196 |
| meson decay, 113 |
| microflare, 130 |
| micrometeoroid environment, 385 |
| MIR, 196 |
| mode conversion, 103 |
| mode coupling, 92 |
| model atmosphere, VAL-C151 |
| modes of activity, 144 |
| Moreton wave, 162, 194 |
| multiple-bit upset (MBU), 396 |
| nanoflare, 130, 143 |
| National Council on Radiation Protection and Measurements (NCRP), 361 |
| National Space Sciences Data Center (NSSDC), 394 |
| National Space Weather Program (NSWP), 379 |
| near-infrared radiation, 83 |
| Neupert effect, 127, 144 |
| stellar flare, 145, 149 |
| neutral environment |
| effects, 383 |
| modeling, 384 |
| Nuclear Regulatory Commission (NRC), 362 |
| Occupational Safety and Health Administration, 363 |
| optical depth, definition, 91 |
| optical radiation, 83 |
| optically thick, thin, 91 |
| orbital-debris environment, 385 |
| orthopositronium, 114 |
| parapositronium, 114 |
| Parker transport equation, 252 |
Index

particle acceleration
 chromospheric, 156
diffusive shock, 220
 first-order Fermi, 220
 in reconnection shocks, 156
 interplanetary shocks, 223, 226
 kinematic versus kinetic, 216
 magnetic reconnection, 155
 modeling in shocks, 228
 shocks, 216
 shock drift, 217
 particle detectors, 52
 particle diffusion, energy dependence, 249
 particle drift, 240
 electric field, 240
 particle energization, equation, 297
 particle invariants, 299
 particle motion, 239, 296
 artificial aspects in 1D and 2D, 243
 bounce motion, 297
 first invariant, 299
 general force drift, 299
 guiding center, 298
 gyration, 297
 invariants, 299
 L parameter, 300
 mirror point, 297
 second invariant, 300
 third invariant, 300
 particle precipitation, 271
 particle scattering, 241
 resonance condition, 242
 particle–wave interaction, 310
 phase space density, 46, 245, 301
 pickup ions, 44
 pion decay, 113
 pitch angle, 240
 Planck function, 89
 planetary magnetosphere, 263
 plasma β, 131
 definition, 131
 plasma environment modeling, 390
 plasma frequency, 97
 plasma oscillation, 98
 plasma radiation, 98
 polar airline routes, 28
 polar cap absorption, 27
 polarization, 91
 degree of circular, 92
 degree of linear, 92
 hard X-rays, 111, 122
 Stokes parameters, 92
 power law
 CME energy distribution, 167
 first-order Fermi acceleration, 220
 flare energies, 130
 superthermal tail, 70
 Poynting flux, 134, 155, 171, 270, 327
 Alfvén waves, 156
 preflare activity, 128
 proportional counter, 52

quasi-linear theory, 253
quasi-periodic oscillations, 120
Quebec blackout, 23

radiation
 annihilation, 122
 bremsstrahlung, 95
 cancer, 360
 cyclotron, 96
 free–bound, 125
 free–free, 95, 125
 from energetic particles, 93
 gyroresonance, 96
 gyrosynchrotron, 96
 incoherent, coherent, 93
 non-thermal gyrosynchrotron, 98
 plasma, 102, 105
 polarization, 91
 synchrotron, 97
 thermal, non-thermal, 90
 radiation belt, 43, 293
 acceleration mechanism, 305
 Earth, 302
 electrons, 302
 electron losses at Earth, 315
 inner belt, 302
 Jupiter, 304
 losses, 315
 losses at Jupiter and Saturn, 319
 modeling, 394
 outer belt, 302
 particle acceleration at Jupiter and Saturn, 315
 particle diffusion, 307
 proton acceleration, 314
 proton losses at Earth, 319
 protons, 302
 Saturn, 304
 slot region, 293
 synchrotron radiation at Jupiter, 304

radiation effects
 DOE regulations, 363
 environmental monitoring, 372
 IEEE, 362
 OSHA, 363
 sources of exposure, 363
 radiation environment effects, single-event upset, 394
 radiation protection, 359
 radiation units, 359
 gray, 359, 391
 rad, 359
 sievert, 360
 radiative diffusion, 10
 radiative transfer, 90
 equation, 91
 radio burst
 ejecta, 146
 meter wave, 140
 type II, 105, 118, 137, 140, 146, 194, 205
 type III, 104, 134, 137
 type III, shock-associated, 117
 type IV, 145
radio bursts, types of, 83
radio emission, 81
radio waves, refraction and scattering, 106
random walk of field lines, 249
Rankine–Hugoniot jump conditions, 198, 202, 215
Rayleigh–Jeans law, 89
Razin suppression, 100, 106
reactive power, 25
reconnection, 6, 12
magnetic topology, 285
rate measured in flare, 168
topology in magnetosphere, 283
refraction, index of, 105
relativistic electron acceleration mechanism, 305
external, 306
internal, 310
relativistic electrons, 294
relaxation oscillator, 129
resistive anode, 56
satellite anomaly, 30
statistics, 30
satellite re-entries, 29
satellites, de-orbiting, 29
scintillator
inorganic, 61
organic, 61
second invariant of particle motion, 300
secondary electrons, 49
shielding current, 5
shock
corona, 206, 211
cosmic-ray modified, 215, 226
Earth bow shock compared to IP shocks, 229
fast mode, 211
heating versus acceleration, 214
jump conditions, 199
maximum compression, 212
MHD, 211
particle acceleration, 216
slow mode, 211
supercritical, 211
shock wave, 193, 197, 201
classification, 200
CME driven, 204
oblique, 202
parallel, 202
perpendicular, 202
planetary bow shock, 196
SEP production, 194
strength, 197
termination shock, 196
shock-drift acceleration, 217
shock-induced acceleration, 306
single-event upset (SEU), 32, 294, 395
soft X-ray emission, 85
Solar and Heliospheric Observatory (SOHO), 374
solar energetic particles, 237
impulsive-event problem, 256
point-source evolution, 256
time–intensity profile, 238

two-class paradigm, 237
solar flare classification, 375
solar flare effects, 376
solar particle event (SPE), 32, 365
modeling, 398
solar proton event, 32
solar wind termination shock, 204
source function, definition, 91
sources of radiation exposure in space, 363
South Atlantic Anomaly, 367
space environment climatology, 377
space environment effects, 381
micrometeoroid and orbital debris, 385
neutral environment, 383
solar UV degradation, 382
vacuum, 382
space environment monitoring, 372
space physics, 43
Space Radiation Analysis Group (SRAG), 366
space weather
aircraft operations, 27
awareness, 38
economic impact, 35
electrical power grids, 22
ESD, SEU, 33
first recorded impact on technology, 19
forecast, 33
forecasting, 40, 376
human health, 14
human impact, 17
media coverage, 38
satellite de-orbiting, 29
satellite re-entries, 29
solar panels, 34
Space Weather Prediction Center (SWPC), 367
spacecraft charging, 385
floating potential, 386
geosynchronous orbit, 389
low-Earth orbit, 386
spacecraft, ionizing radiation, 391
specific intensity, definition, 88
Sputnik, 43
stars
II Pegasi, 144
Vega (α Lyrae), 132
T Tauri, 151
stellar flare
binary star, 150
energy, 149
magnetic reconnection, 149
Neupert effect, 149
Stokes parameters, 92, 93
stopping power, 13, 50
sub-diffusion, 250
submillimeter radiation, 83
substorm, 148, 264
auroral, 265
auroral breakup, 265
current-disruption model, 287
dipolarization, 265
Earth, 286
electric field, 306
expansion phase, 265, 286, 287
growth phase, 266, 286, 287
Mercury, 289
NEXL model, 287
recovery phase, 265
resemblance to flare, 265
Saturn, 290
triggering, 267
Uranus, 290
sudden ionospheric disturbance, 26, 38
sudden storm commencement, 18
sunspot cycle, discovery, 16
super-diffusion, 250
supra-arcade downflows, 153
suprathermal tail, 234
surface charging, 294
T Tauri star, 151
TAD, 11
tangential discontinuity, 200
tearing mode instability, 285
telegraphy, 19
thermodynamic equilibrium, definition, 89
thermosphere, 29
composition bulge, 334
composition response to geomagnetic storm, 334
definition, 323
flare response, 354
geomagnetic storm response, 331
thermal change by geomagnetic storm, 334
thick-target emission, 108
thin-target emission, 108
third invariant of particle motion, 300
Thomson scattering, 103
total electron content (TEC) unit, 340
transport equation, Parker’s, 252
trapped particles, 293
traveling atmospheric disturbances (TAD), 11
two-stream instability, 103
ultraviolet emission, 83
universal processes, 12, 291
vacuum environment effects, 382
Voyager, 45, 196
wave steepening, 196
wave–particle interaction, Chorus-EMIC, 312
weather, in space, 9, see also space weather
wedge and strip anode, 56
Wien’s displacement law, 89