
Cambridge University Press
978-0-521-76037-9 — Algebraic Methods in Unstable Homotopy Theory
Joseph Neisendorfer
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction to unstable homotopy theory

Computation of the homotopy groups πn (X) of a topological space X has played

a central role in homotopy theory. And knowledge of these homotopy groups has

inherent use and interest. Furthermore, the development of techniques to compute

these groups has proven useful in many other contexts.

The study of homotopy groups falls into three parts.

First, there is the computation of specific homotopy groups πn (X) of spaces. This

may be traced back to Poincaré [106] in the case n = 1:

Poincaré: π1(X)/[π1(X), π1(X)] is isomorphic to H1(X).

Hurewicz [62] showed that, in the simply connected case, the Hurewicz homo-

morphism provides an isomorphism of the first nonzero πn (X) with the homology

group Hn (X) with n ≥ 1:

Hurewicz: If X is an n − 1 connected space with n ≥ 2, then πn (X) is isomorphic

to Hn (X).

Hopf [58] discovered the remarkable fact that homotopy groups could be nonzero

in dimensions higher than those of nonvanishing homology groups. He did this by

using linking numbers but the modern way is to use the long exact sequence of

the Hopf fibration sequence S1 → S3 → S2 .

Hopf: π3(S
2) is isomorphic to the additive group of integers Z.

Computation enters the modern era with the work of Serre [116, 118] on the low

dimensional homotopy groups of spheres . To this end, he introduced a localization

technique which he called “classes of abelian groups.” A first application was:

Serre: If n ≥ 1 and p is an odd prime, then the group π2n+2p−2(S
2n+1) contains

a summand isomorphic to Z/pZ.

Second, there are results which relate the homotopy groups of some spaces to

those of others.

Examples are product decomposition theorems such as the result of Serre which

expresses the odd primary components of the homotopy groups of an even-

dimensional sphere in terms of those of odd-dimensional spheres, that is:
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2 Introduction to unstable homotopy theory

Serre: Localized away from 2, there is a homotopy equivalence

ΩS2n ≃ S2n−1 × ΩS4n−1 .

Localization is necessary for some results but not for all. A product decomposition

which requires no localization is the Hilton–Milnor theorem [54, 89, 134] which

expresses the homotopy groups of a bouquet of two suspension spaces πk (ΣX ∨
ΣY ) in terms of the homotopy groups of the constituents of the bouquet ΣX , ΣY ,

and of the homotopy groups of various smash products:

Hilton–Milnor: There is a homotopy equivalence

Ω(ΣX ∨ ΣY ) ≃ ΩΣX × ΩΣ(

∞
∨

j=0

X∧j ∧ Y ).

Third, Serre used his localization technique to study global properties of the

homotopy groups of various spaces. What is meant by this is best made clear by

giving various examples:

Serre: For a simply connected complex with finitely many cells in each dimension,

the homotopy groups are finitely generated.

Serre: Odd dimensional spheres have only one nonfinite homotopy group,

π2n+1(S
2n+1) = Z.

Serre: Simply connected finite complexes with nonzero reduced homology have

infinitely many nonzero homotopy groups.

Serre [117] proved the last result by using the cohomology of Eilenberg–MacLane

spaces. There is now a modern proof which uses Dror-Farjoun localization and

Miller’s Sullivan conjecture [83, 84].

The study of the global properties of homotopy groups was continued by James

[66, 67] who introduced what are called the James–Hopf invariant maps. Using

fibration sequences associated to these, James proved the following upper bound

on the exponent of the 2-primary components of the homotopy groups of

spheres:

James: 4n annihilates the 2-primary component of the homotopy groups of the

sphere S2n+1 .

James’ result is a consequence of a more geometric result which was first formu-

lated as a theorem about loop spaces by John Moore. For a homotopy associative

H-space X and a positive integer k, let k : X → X denote the k-th power map

defined by k(x) = xk .

James: Localized at 2, there is a factorization of the 4-th power map

4 : Ω3S2n+1 → ΩS2n−1 → Ω3S2n+1 .
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Introduction to unstable homotopy theory 3

Toda [130, 131] defined new “secondary” Hopf invariants and used these to extend

James’ result to odd primes p, that is:

Toda: For an odd prime p, p2n annihilates the p-primary component of the

homotopy groups of the sphere S2n+1 .

Or in Moore’s reformulation:

Toda: Localized at an odd prime p, there is a factorization of the p2-d power map

p2 : Ω3S2n+1 → ΩS2n−1 → Ω3S2n+1 .

No progress was made in the exponents of the primary components of homotopy

groups until Selick’s thesis [112].

Selick: For p an odd prime, p annihilates the p-primary component of the homotopy

groups of S3 .

Selick’s result is a consequence of the following geometric result. Let S3〈3〉 denote

the 3-connected cover of the 3-sphere S3 and let S2p+1{p} denote the homotopy

theoretic fibre of the degree p map p : S2p+1 → S2p+1 .

Selick: Localized at an odd prime p, Ω2(S3〈3〉) is a retract of Ω2S2p+1{p}.

Selick’s work was followed almost immediately by the work of Cohen–Moore–

Neisendorfer [27, 26]. They proved that, if p is a prime greater than 3, then pn

annihilates the p-primary component of the homotopy groups of S2n+1 . A little

later, Neisendorfer [100] overcame technical difficulties and extended this result

to all odd primes.

Cohen–Moore–Neisendorfer: Localized at an odd prime there is a factorization

of the p-th power map

p : Ω2S2n+1 → S2n−1 → Ω2S2n+1 .

Let C(n) be the homotopy theoretic fibre of the double suspension map Σ2 :
S2n−1 → Ω2S2n+1 .

Exponent corollary: If p is an odd prime, then p annihilates the p primary

components of the homotopy groups π∗(C(n)) and pn annihilates the p primary

components of the homotopy groups π∗(S
2n+1).

For odd primes, Brayton Gray [46] showed that the results of Selick and

Cohen–Moore–Neisendorfer are the best possible. At the prime 2, the result of

James is not the best possible but the definitive bound has not yet been found.

The main point of this book is to present the proof of the result of Cohen–Moore–

Neisendorfer. We present the necessary techniques from homotopy theory, graded

Lie algebras, and homological algebra. To this end, we need to develop homotopy

groups with coefficients and the differential homological algebra associated to
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4 Introduction to unstable homotopy theory

fibrations. These are applied to produce loop space decompositions which yield

the above theorems.

It is useful to consider two cases of homotopy groups with coefficients, the case

where the coefficients are a finitely generated abelian group and the case where

the coefficients are a subgroup of the additive group of the rational numbers.

For a space X and finitely generated abelian group G, πn (X;G) is defined as

the set of pointed homotopy classes of maps [P n (G), X]∗ from a space P n (G)
to X where P n (G) is a space with exactly one nonzero reduced cohomology

group isomorphic to G in dimension n. This definition first occurs in the thesis

of Peterson [104, 99]. These homotopy groups with coefficients are related to the

classical homotopy groups by a universal coefficient sequence.

Peterson: There is a short exact sequence

0 → πn (X) ⊗ G → πn (X;G) → Tor1
Z
(πn−1(X), G) → 0.

There is a Hurewicz homomorphism to homology with coefficients

φ : πn (X;G) → Hn (X;G),

the image of which lies in the primitive elements, and a Hurewicz theorem is true.

From this point of view, the usual or classical homotopy groups are those with

coefficients Z.

In the finitely generated case, nothing is lost by considering only the case of cyclic

coefficients. If 2-torsion is avoided, Samelson products were introduced into these

groups for a homotopy associative H-space X in the thesis of Neisendorfer [99]:

[ , ] : πn (X; Z/kZ) ⊗ πm (X; Z/kZ) → πm+n (X; Z/kZ).

To construct these Samelson products, it is necessary to produce decompositions

of smash products into bouquets:

P n (Z/pr
Z) ∧ Pm (Z/pr

Z) ≃ P n+m (Z/pr
Z) ∨ P n+m−1(Z/pr

Z)

when p is an odd prime. If p = 2, these decompositions do not always exist

and therefore there is no theory of Samelson products in homotopy groups with

coefficients Z/2Z. If p = 3, the decompositions exist but the decompositions are

not “associative” and this leads to the failure of the Jacobi identity for Samelson

products in homotopy with Z/3Z coefficients.

The Hurewicz homomorphism carries these Samelson products into graded com-

mutators in the Pontrjagin ring,

φ[α, β] = [φα, φβ] = (φα)(φβ) − (−1)nm (φβ)(φα)

where n = deg(α) and m = deg(β).
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Introduction to unstable homotopy theory 5

Neisendorfer also introduced a homotopy Bockstein spectral sequence to study

the order of torsion elements in the classical homotopy groups.

With few exceptions, the first applications of homotopy groups with coefficients

will be to the simple situation where the the Hurewicz homomorphism is an

isomorphism through a range. In a few cases, we will need to consider situations

where the Hurewicz map is merely an epimorphism but with a kernel consisting

only of Whitehead products in a range. This is all we will need to develop the

theory of Samelson products in homotopy groups with coefficients, where we

avoid the prime 2 and sometimes the prime 3.

For a space X and a subgroup G of the rationals, πn (X;G) is defined as the tensor

product πn (X) ⊗ G. where , if n = 1, we require πn (X) to be abelian. Once again,

these homotopy groups with coefficients are related to the classical homotopy

groups by a universal coefficient sequence, there is a Hurewicz homomorphism

to homology with coefficients, and a Hurewicz theorem is true. Futhermore, there

are Samelson products for a homotopy associative H-space X and the Hurewicz

map carries these Samelson products into graded commutators in the Pontrjagin

ring.

In the special case of rational coefficients Q, the Hurewicz homomorphism satisfies

a strong result of Milnor–Moore [90]:

Milnor–Moore: If X is a connected homotopy associative H-space, then the

Hurewicz map ϕ : π∗(X;Q) → H∗(X;Q) is an isomorphism onto the primitives

of the Pontrjagin ring and there is an isomorphism

H∗(X;Q) ∼= U(π∗(X;Q))

where UL denotes the universal enveloping algebra of a Lie algebra L.

In practice this means that the rational homotopy groups can often be completely

determined and this is one of things that makes rational homotopy groups useful.

In contrast, homotopy groups with cyclic coefficients have not been much used

since they are usually as difficult to completely determine as the usual homo-

topy groups are. Nonetheless, some applications exist. The Hurewicz map still

transforms the Samelson product into graded commutators of primitive elements

in the Pontrjagin ring. This representation is far from faithful but is still non-

trivial. The homotopy Bockstein spectral sequence combines with the above to

give information on the order of torsion homotopy elements related to Samelson

products.

Many theorems in homotopy theory depend on the computation of homology. For

example, in order to prove that two spaces X and Y are homotopy equivalent,

one constructs a map f : X → Y and checks that the induced map in homology

is an isomorphism. If X and Y are simply connected and the isomorphism is in
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6 Introduction to unstable homotopy theory

homology with integral coefficients, then the map f is a homotopy equivalence.

In general, when the isomorphism is in homology with coefficients, then the map

f is some sort of local equivalence. For example, with rational coefficients, we

get rational equivalences, with coefficients integers Z(p) localized at a prime p,

we get equivalences localized at p, and with Z/pZ coeffients, we get equivalences

of completions at p. The theorem of Serre, ΩS2n ≃ S2n−1 × ΩS4n−1 localized

away from 2, and the Hilton–Milnor theorem,

Ω(ΣX ∨ ΣY ) ≃ ΩΣX × ΩΣ

⎛

⎝

∞
∨

j=0

X∧j ∧ Y

⎞

⎠,

are proved in this way. A central theme of this book will be such decompositions

of loop spaces.

For us, the most basic homological computation is the homology of the loops on

the suspension of a connected space:

Bott–Samelson [13]: If X is connected and the reduced homology of H∗(X;R)
is free over a coefficient ring R, then there is an isomorphism of algebras

T (H∗(X;R)) → H∗(ΩΣX;R)

where T (V ) denotes the tensor algebra generated by a module V .

Let L(V ) be the free graded Lie algebra generated by V . The observation that

T (V ) is isomorphic to the universal enveloping algebra UL(V ) has topological

consequences based on the following simple fact:

Tensor decomposition: If 0 → L1 → L2 → L3 → 0 is a short exact sequence of

graded Lie algebras which are free as R modules, then there is an isomorphism

UL2
∼= UL1 ⊗ UL3 .

Suppose we want to construct a homotopy equivalence of H-spaces X × Y → Z

and suppose that we compute

H∗(X;R) = UL1 , H∗(Y ;R) = UL3 , and H∗(Z;R) = UL2 .

Suppose also that we can construct maps g : X → Z and h : Y → Z such

that the product f = µ ◦ (g × h) : X × Y → Z × Z → Z induces a homology

isomorphism (where µ : Z × Z → Z is the multiplication of Z). Then we have an

equivalence localized in the sense that is appropriate to the coefficients.

Here is an example. Let L(xα ) denote the free graded Lie algebra generated by the

set {xα}). Let 〈xα 〉 denote the abelianization, that is, the free module generated

by the set with all Lie brackets zero. If we localize away from 2 and x is an odd

degree element, then we have a short exact sequence

0 → 〈[x, x]〉 → L(x) → 〈x〉 → 0
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Introduction to unstable homotopy theory 7

and isomorphisms

H∗(ΩS4n−1) ∼= U(〈[x, x]〉), H∗(S
2n−1) ∼= U(〈x〉),

H∗(ΩS2n ) ∼= U(L(x))).

This leads to the result of Serre: ΩS2n ≃ S2n−1 × ΩS4n−1 localized away from

2. Thus, Serre’s result is essentially a consequence of just the Bott–Samelson

theorem and the tensor decomposition of universal enveloping algebras.

Consider the following additional facts concerning Lie algebras [27]:

Free subalgebras: If L is a free graded Lie algebra and K is a subalgebra which

is a split summand as an R-module, then K is a free graded Lie algebra.

Kernel theorem: If K is the kernel of the natural map L(V ⊕ W ) → L(V ) of

free graded Lie algebras, then K is isomorphic to the free graded Lie algebra

L

⎛

⎝

∞
⊕

j=0

V ⊗j ⊗ W

⎞

⎠

where V ⊗j = V ⊗ V ⊗ · · · ⊗ V , with j factors.

A direct consequence is the Hilton–Milnor theorem,

Ω(ΣX ∨ ΣY ) ≃ ΩΣX × ΩΣ

⎛

⎝

∞
∨

j=0

X∧j ∧ Y

⎞

⎠.

In order to study torsion at a prime p, it is useful to consider the Bockstein

differentials in homology with mod p coefficients. This leads to consideration of

differential graded Lie algebras.

For example, let P n (pr ) = Sn−1 ∪pr en be the space obtained by attaching an n-

cell to an n − 1-sphere by a map of degree pr . Then H∗(P
n (pr ); Z/pZ) = 〈u, v〉

with deg(v) = n and deg(u) = n − 1. The r-th Bockstein differential is given by

βr (v) = u, βr (u) = 0. Thus, the Bott–Samelson theorem gives isomorphisms of

differential Hopf algebras

H∗(ΩΣP n (pr ); Z/pZ) ∼= T (u, v) ∼= UL(u, v)

where L = L(u, v) is a differential Lie algebra which is a free Lie algebra. Any

algebraic constructions with topological implications must be compatible with

these Bockstein differentials. For example, the abelianization of L is 〈u, v〉.

This is compatible with differentials, leads to the short exact sequence of differ-

ential Lie algebras

0 → [L,L] → L → 〈u, v〉 → 0,
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8 Introduction to unstable homotopy theory

and the tensor decomposition of universal enveloping algebras

H∗(ΩΣP n (pr ); Z/pZ) ∼= UL ∼= U(〈u, v〉) ⊗ U([L,L]).

But this tensor decomposition can only be realized by a product decomposition of

ΩΣP n (pr ) when p and n are odd. If we set n − 1 = 2m, then we can prove [27]:

Cohen–Moore–Neisendorfer: If p is an odd prime and m ≥ 1, then there is a

homotopy equivalence

ΩP 2m+2(pr ) ≃ S2m+1{pr} × Ω

⎛

⎝

∞
∨

j=0

P 2m+2mj+1(pr )

⎞

⎠

where S2m+1{pr} is the homotopy theoretic fibre of the degree pr map pr :
S2m+1 → S2m+1 .

The restriction to odd primes in the above is the result of the nonexistence

of a suitable theory of Samelson products in homotopy groups with 2-primary

coefficients.

One reason for the above parity restriction is as follows: Suppose the coefficient

ring is Z/pZ with p an odd prime. Only when n is odd (so that µ has even

dimension and ν has odd dimension) can we write that

[L,L] = L(adj (u)([v, v], adj (u)([u, v]))j≥0 =

the free Lie algebra on infinitely many generators with r-th Bockstein differential

given by βr (adj (u)([v, v])) = 2adj (u)([u, v] for j ≥ 0. In this case, the module

of generators of [L,L] is acylic with respect to the Bockstein differential and it is

possible that the universal enveloping algebra U([L,L]) represents the homology

of the loop space on a bouquet of Moore spaces. In fact, the isomorphisms of

differential algebras

H∗(S
2m+1{pr}; Z/pZ) ∼= U(〈u, v〉),

H∗(Ω

⎛

⎝

∞
∨

j=0

P 2m+2mj+1(pr )

⎞

⎠ ; Z/pZ) ∼= U([L,L]),

H∗(ΩP 2m+2(pr ); Z/pZ) ∼= UL

then lead to the above product decomposition for ΩP 2m+2(pr ).

There is no analogous product decomposition for ΩP 2m+1(pr ). The situation is

much more complicated because of the fact that [L,L] does not have an acyclic

module of generators when L = L(u, v) with deg(u) odd and deg(v) even. To go

further we need to study the homology H(L, βr ).
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Let x be an even degree element in a differential graded Lie algebra over the ring

Z/pZ with p an odd prime, let d denote the differential, and for k ≥ 1 define new

elements

τk (x) = adpk −1

(x)(dx)

σk (x) =
1

2

pk −1
∑

j=1

p−1(j, pk − j)[adj−1(x)(dx), adpk −j−1(x)(dx)]

where (a, b) = (a+b)!
(a !)(b!) is the binomial coefficient. These elements are cycles,

d(τk (x)) = 0, d(σk (x)) = 0, and they determine the homology of the above L via

the following proposition.

Homology of free Lie algebras with acyclic generators: Let L(V ) be a free

graded Lie algebra over the ring Z/pZ with p an odd prime and with a differential

d such that d(V ) ⊆ V and H(V, d) = 0. Write

L(V ) = H(L(V ), d) ⊕ K

where K is acyclic. If K has a basis xα , dxα , yβ , dyβ with deg(xα ) even and

deg(yβ ) odd, then H(L(V ), d) has a basis represented by the cycles τk (xα ),
σk (xα ) with k ≥ 1.

This proposition has two main applications. The first application is to a decompo-

sition theorem which leads to the determination of the odd primary exponents of

the homotopy groups of spheres.

Decomposition theorem: Let p be an odd prime and let F 2n+1{pr} be the

homotopy theoretic fibre of the natural map P 2n+1(pr ) → S2n+1 which pinches

the bottom 2n-cell to a point. Localized at p, there is a homotopy equivalence

ΩF 2n+1{pr} ≃ S2n−1 ×
∞
∏

k=1

S2pk n−1{pr+1} × ΩΣ
∨

α

P nα (pr )

where
∨

α

P nα (pr )

is an infinite bouquet of mod pr Moore spaces.

The second application is to the existence of higher order torsion in the homotopy

groups of odd primary Moore spaces:

Higher order torsion: If p is an odd prime and n ≥ 1, then for all k ≥ 1 the

homotopy groups π2pk n−1(P
2n+1) contain a summand isomorphic to Z/pr+1

Z.

The following decomposition theorem is valid:
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10 Introduction to unstable homotopy theory

Cohen–Moore–Neisendorfer: If p is an odd prime and m ≥ 1, then there is a

homotopy equivalence

ΩP 2m+1(pr ) ≃ T 2m+1{pr} × ΩΣ
∨

α

P nα (pr )

where there is a fibration sequence

C(n) ×
∞
∏

k=1

S2pk n−1{pr+1} → T 2m+1{pr} → S2n+1{pr}.

A corollary of these decomposition theorems is [28]:

Cohen–Moore–Neisendorfer: If p is an odd prime and n ≥ 3, then p2r+1 anni-

hilates the homotopy groups π∗(P
n (pr )).

In fact the best possible result is [102]:

Neisendorfer: If p is an odd prime and n ≥ 3, then pr+1 annihilates the homotopy

groups π∗(P
n (pr )).
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