
Brownian Motion

This eagerly awaited textbook offers a broad and deep exposition of Brownian motion. Extensively
class tested, it leads the reader from the basics to the latest research in the area.

Starting with the construction of Brownian motion, the book then proceeds to sample path
properties such as continuity and nowhere differentiability. Notions of fractal dimension are
introduced early and are used throughout the book to describe fine properties of Brownian paths.
The relation of Brownian motion and random walk is explored from several viewpoints, including a
development of the theory of Brownian local times from random walk embeddings. Stochastic
integration is introduced as a tool, and an accessible treatment of the potential theory of Brownian
motion clears the path for an extensive treatment of intersections of Brownian paths. An
investigation of exceptional points on the Brownian path and an appendix on SLE processes, by
Oded Schramm and Wendelin Werner, lead directly to recent research themes.

‘This splendid account of the modern theory of Brownian motion puts special emphasis on sample
path properties and connections with harmonic functions and potential theory, without omitting such
important topics as stochastic integration, local times or relations with random walk. The most
significant properties of Brownian motion are derived via powerful and elegant methods. This book,
which fills a gap in the existing literature, will be of interest both to the beginner, for the clarity of
exposition and the judicious choice of topics, and to the specialist, who will find neat approaches to
many classical results and to some more recent ones. This beautiful book will soon become a must
for anybody who is interested in Brownian motion and its applications.’

Jean-François Le Gall, Université Paris 11 (Paris-Sud, Orsay)

‘Brownian Motion by Mörters and Peres, a modern and attractive account of one of the central topics
of probability theory, will serve both as an accessible introduction at the level of a Master’s course
and as a work of reference for fine properties of Brownian paths. The unique focus of the book on
Brownian motion gives it a satisfying concreteness and allows a rapid approach to some deep results.

The introductory chapters, besides providing a careful account of the theory, offer some helpful
points of orientation towards an intuitive and mature grasp of the subject matter. The authors have
made many contributions to our understanding of path properties, fractal dimensions and potential
theory for Brownian motion, and this expertise is evident in the later chapters of the book. I
particularly liked the marking of the ‘leaves’ of the theory by stars, not only because this offers a
chance to skip on, but also because these are often the high points of our present knowledge.’

James Norris, University of Cambridge

‘This excellent book does a beautiful job of covering a good deal of the theory of Brownian motion
in a very user-friendly fashion. The approach is hands-on which makes it an attractive book for a
first course on the subject. It also contains topics not usually covered, such as the
‘intersection-equivalence’ approach to multiple points as well as the study of slow and fast points.
Other highlights include detailed connections with random fractals and a short overview of the
connections with SLE. I highly recommend it.’

Jeff Steif, Chalmers University of Technology
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Preface

The aim of this book is to introduce Brownian motion as central object of probability theory
and discuss its properties, putting particular emphasis on sample path properties. Our hope
is to capture as much as possible the spirit of Paul Lévy’s investigations on Brownian
motion, by moving quickly to the fascinating features of the Brownian motion process,
and filling in more and more details into the picture as we move along.

Inevitably, while exploring the nature of Brownian paths one encounters a great variety
of other subjects: Hausdorff dimension serves from early on in the book as a tool to quan-
tify subtle features of Brownian paths, stochastic integrals helps us to get to the core of the
invariance properties of Brownian motion, and potential theory is developed to enable us
to control the probability the Brownian motion hits a given set.

An important idea of this book is to make it as interactive as possible and therefore
we have included more than 100 exercises collected at the end of each of the ten chapters.
Exercises marked with the symbol S have either a hint, a reference to a solution, or a full
solution given at the end of the book. We have also marked some theorems with a star to
indicate that the results will not be used in the remainder of the book and may be skipped
on first reading. At the end of the book we have given a short list of selected open research
problems dealing with the material of the book.

This book grew out of lectures given by Yuval Peres at the Statistics Department, Uni-
versity of California, Berkeley in Spring 1998. We are grateful to the students who at-
tended the course and wrote the first draft of the notes: Diego Garcia, Yoram Gat, Diogo
A. Gomes, Charles Holton, Frédéric Latrémolière, Wei Li, Ben Morris, Jason Schweins-
berg, Bálint Virág, Ye Xia and Xiaowen Zhou. The first draft of these notes, about 80 pages
in volume, was edited by Bálint Virág and Elchanan Mossel and at this stage corrections
were made by Serban Nacu and Yimin Xiao. The notes were distributed via the internet
and turned out to be very popular — this demand motivated us to expand these notes to a
full book hopefully retaining the character of the original notes.

Peter Mörters lectured on the topics of this book in the Graduate School in Mathemat-
ical Sciences at the University of Bath in Autumn 2003, thanks are due to the audience,
and in particular to Alex Cox and Pascal Vogt, for their contributions. Yuval Peres thanks

viii
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Preface ix

Pertti Mattila for the invitation to lecture on this material at the joint summer school in
Jyväskyla, August 1999, and Peter Mörters thanks Michael Scheutzow for the invitation to
lecture at the Berlin graduate school in probability in Stralsund, April 2003.

When it became clear that the new developments around the stochastic Loewner evolu-
tion would open a new chapter in the story of Brownian motion we discussed the inclusion
of a chapter on this topic. Realising that doing this rigorously in detail would go beyond
the scope of this book, we asked Oded Schramm to provide an appendix describing the new
developments in a less formal manner. Oded agreed and immediately started designing the
appendix, but his work was cut short by his tragic and premature death in 2008. We are
very grateful that Wendelin Werner accepted the task of completing this appendix at very
short notice.

Several people read drafts of the book at various stages, supplied us with helpful lists
of corrections, and suggested or tested exercises and references. We thank Anselm Adel-
mann, Tonci Antunovic, Christian Bartsch, Noam Berger, Jian Ding, Uta Freiberg, Nina
Gantert, Subhroshekhar Gosh, Ben Hough, Davar Khoshnevisan, Richard Kiefer, Achim
Klenke, Michael Kochler, Manjunath Krishnapur, David Levin, Nathan Levy, Arjun Mal-
hotra, Jason Miller, Asaf Nachmias, Weiyang Ning, Marcel Ortgiese, Ron Peled, Jim Pit-
man, Michael Scheutzow, Perla Sousi, Jeff Steif, Kamil Szczegot, Ran Tessler, Hermann
Thorisson, and Brigitta Vermesi.

We also thank several people who have contributed pictures, namely Ben Hough, Mar-
cel Ortgiese, Yelena Shvets and David Wilson. The cover shows a planar Brownian motion
with points coloured according to the occupation measure of a small neighbourhood, we
thank Raissa d’Souza for providing the picture.

Peter Mörters
Yuval Peres
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Frequently used notation

Numbers:

�x� the smallest integer bigger or equal to x

�x� the largest integer smaller or equal to x

Re(z),Im(z) the real, resp. imaginary, part of the complex number z

i the imaginary unit

Topology of Euclidean space R
d :

R
d Euclidean space consisting of all column vectors x = (x1 , . . . , xd)T

| · | Euclidean norm |x| =

√√√√ d∑
i=1

x2
i

B(x, r) the open ball of radius r > 0 centred in x ∈ R
d ,

i.e. B(x, r) = {y ∈ R
d : |x − y| < r}

U closure of the set U ⊂ R
d

∂U boundary of the set U ⊂ R
d

B(A) the collection of all Borel subsets of A ⊂ R
d

Binary relations:

a ∧ b the minimum of a and b

a ∨ b the maximum of a and b

X
d= Y the random variables X and Y have the same distribution

Xn
d→ X the random variables Xn converge to X in distribution,

see Section 12.1 in the appendix

a(n) 
 b(n) the ratio of the two sides is bounded from above and below
by positive constants that do not depend on n

a(n) ∼ b(n) the ratio of the two sides converges to one

Vectors, functions, and measures:

Id d × d identity matrix

1A indicator function with 1A (x) = 1 if x ∈ A and 0 otherwise

x
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Frequently used notation xi

δx Dirac measure with mass concentrated on x,
i.e. δx(A) = 1 if x ∈ A and 0 otherwise

f+ the positive part of the function f , i.e. f+(x) = f(x) ∨ 0

f− the negative part of the function f , i.e. f−(x) = −(f(x) ∧ 0)

Ld or L Lebesgue measure on R
d

σx,r (d − 1)-dimensional surface measure on ∂B(x, r) ⊂ R
d

if x = 0, r = 1 we also write σ = σ0,1

�x,r uniform distribution on ∂B(x, r), �x,r = σx , r

σx , r (∂B(x,r)) ,

if x = 0, r = 1 we also write � = �0,1

Function spaces:

C(K) the topological space of all continuous functions on the compact K ⊂ R
d ,

equipped with the supremum norm ‖f‖ = supx∈K |f(x)|

Lp(µ) the Banach space of equivalence classes of functions f with finite Lp -norm

‖f‖p =
( ∫

fp dµ
)1/p

. If µ = L|K we write Lp(K).

D[0, 1] the Dirichlet space consisting of functions F ∈ C[0, 1] such that
for some f ∈ L2 [0, 1] and all t ∈ [0, 1] we have F (t) =

∫ t

0 f(s) ds.

Probability measures and σ-algebras:

Px a probability measure on a measure space (Ω,A) such that
the process {B(t) : t � 0} is a Brownian motion started in x

Ex the expectation associated with Px

p(t, x, y) the transition density of Brownian motion
Px{B(t) ∈ A} =

∫
A

p(t, x, y) dy

F0(t) the smallest σ-algebra that makes {B(s) : 0 � s � t} measurable

F+(t) the right-continuous augmentation F+(t) =
⋂

s>t F0(s).

Stopping times:

For any Borel sets A1 , A2 , . . . ⊂ R
d and a Brownian motion B : [0,∞) → R

d ,

τ(A1) := inf{t � 0: B(t) ∈ A1}, the entry time into A1 ,

τ(A1 , . . . , An ) :=

{
inf{t � τ(A1 , . . . , An−1) : B(t) ∈ An}, if τ(A1 , . . . , An−1) < ∞,

∞, otherwise.

the time to enter A1 and then A2 and so on until An .
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xii Frequently used notation

Systems of subsets in R
d :

For any fixed d-dimensional unit cube Cube = x + [0, 1]d we denote:
Dk family of all half-open dyadic subcubes D = x +

∏d
i=1

[
ki2−k , (ki + 1)2−k

)
⊂ R

d ,
ki ∈ {0, . . . , 2k − 1}, of side length 2−k

D all half-open dyadic cubes D =
⋃∞

k=0 Dk in Cube

Ck family of all compact dyadic subcubes D = x +
∏d

i=1

[
ki2−k , (ki + 1)2−k

]
⊂ R

d ,
ki ∈ {0, . . . , 2k − 1}, of side length 2−k

C all compact dyadic cubes C =
⋃∞

k=0 Ck in Cube.

Potential theory:

For a metric space (E, ρ) and mass distribution µ on E:

φα (x) the α-potential of a point x ∈ E defined as φα (x) =
∫ dµ(y )

ρ(x,y )α ,

Iα (µ) the α-energy of the measure µ defined as Iα (µ) =
∫∫ dµ(x) dµ(y )

ρ(x,y )α ,

Capα (E) the α-capacity of E defined as Capα (E) = sup{Iα (µ)−1 : µ(E) = 1}.

For a general kernel K : E × E → [0,∞]:

Uµ(x) the potential of µ at x defined as Uµ(x) =
∫

K(x, y) dµ(y),

IK (µ) K-energy of µ defined as IK (µ) =
∫∫

K(x, y) dµ(x) dµ(y),

CapK (E) K-capacity of E defined as CapK (E) = sup{IK (µ)−1 : µ(E) = 1}.

If K(x, y) = f(ρ(x, y)) we also write:

If (µ) instead of IK (µ),

Capf (E) instead of CapK (E).

Sets and processes associated with Brownian motion:

For a linear Brownian motion {B(t) : t � 0}:

{M(t) : t � 0} the maximum process defined by M(t) = sups�t B(s),

Rec the set of record points {t � 0: B(t) = M(t)},

Zeros the set of zeros {t � 0: B(t) = 0}.

For a Brownian motion {B(t) : t � 0} in R
d for d � 1:

Graph(A) the graph {(t, B(t)) : t ∈ A} ⊂ R
d+1 ,

Range(A) the range {B(t) : t ∈ A} ⊂ R
d .

Occasionally these notions are used for functions f : [0,∞) → R
d which are not necessar-

ily Brownian sample paths, which we indicate by appending a subindex f to the notion.
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