
Motivation

Much of probability theory is devoted to describing the macroscopic picture emerging
in random systems defined by a host of microscopic random effects. Brownian motion
is the macroscopic picture emerging from a particle moving randomly in d-dimensional
space without making very big jumps. On the microscopic level, at any time step, the
particle receives a random displacement, caused for example by other particles hitting it
or by an external force, so that, if its position at time zero is S0 , its position at time n is
given as Sn = S0 +

∑n
i=1 Xi, where the displacements X1 ,X2 ,X3 , . . . are assumed to

be independent, identically distributed random variables with values in R
d . The process

{Sn : n � 0} is a random walk, the displacements represent the microscopic inputs. When
we think about the macroscopic picture, what we mean is questions such as:

• Does Sn drift to infinity?

• Does Sn return to the neighbourhood of the origin infinitely often?

• What is the speed of growth of max{|S1 |, . . . , |Sn |} as n → ∞?

• What is the asymptotic number of windings of {Sn : n � 0} around the origin?

It turns out that not all the features of the microscopic inputs contribute to the macro-
scopic picture. Indeed, if they exist, only the mean and covariance of the displacements
are shaping the picture. In other words, all random walks whose displacements have the
same mean and covariance matrix give rise to the same macroscopic process, and even the
assumption that the displacements have to be independent and identically distributed can
be substantially relaxed. This effect is called universality, and the macroscopic process is
often called a universal object. It is a common approach in probability to study various
phenomena through the associated universal objects.

If the jumps of a random walk are sufficiently tame to become negligible in the macro-
scopic picture, in particular if it has finite mean and variance, any continuous time stochas-
tic process {B(t) : t � 0} describing the macroscopic features of this random walk should
have the following properties:

(1) for all times 0 � t1 � t2 � . . . � tn the random variables

B(tn ) − B(tn−1), B(tn−1) − B(tn−2), . . . , B(t2) − B(t1)

are independent; we say that the process has independent increments,
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Fig. 0.1. The range of a planar Brownian motion {B(t) : 0 � t � 1}.

2 Motivation

(2) the distribution of the increment B(t+h)−B(t) does not depend on t; we say that
the process has stationary increments,

(3) the process {B(t) : t � 0} has almost surely continuous paths.

It follows (with some work) from the central limit theorem that these features imply that
there exists a vector µ ∈ R

d and a matrix Σ ∈ R
d×d such that

(4) for every t � 0 and h � 0 the increment B(t + h) − B(t) is multivariate normally
distributed with mean hµ and covariance matrix hΣΣT .

Hence any process with the features (1)-(3) above is characterised by just three parameters,

• the initial distribution, i.e. the law of B(0),
• the drift vector µ,

• the diffusion matrix Σ.

The process {B(t) : t � 0} is called a Brownian motion with drift µ and diffusion matrix Σ.
If the drift vector is zero, and the diffusion matrix is the identity we simply say the process
is a Brownian motion. If B(0) = 0, i.e. the motion is started at the origin, we use the term
standard Brownian motion.

Suppose we have a standard Brownian motion {B(t) : t � 0}. If X is a random
variable with values in R

d , µ a vector in R
d and Σ a d × d matrix, then it is easy to check

that {B̃(t) : t � 0} given by

B̃(t) = B̃(0) + µt + ΣB(t), for t � 0,

is a process with the properties (1)-(4) with initial distribution X , drift vector µ and diffu-
sion matrix Σ. Hence the macroscopic picture emerging from a random walk with finite
variance can be fully described by a standard Brownian motion.
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Motivation 3

In Chapter 1 we start exploring Brownian motion by looking at dimension d = 1. Here
Brownian motion is a random continuous function and we ask about its regularity, for
example: For which parameters α is the random function B : [0, 1] → R α-Hölder con-
tinuous? Is the random function B : [0, 1] → R differentiable? The surprising answer to
the second question was given by Paley, Wiener and Zygmund in 1933: Almost surely, the
random function B : [0, 1] → R is nowhere differentiable! This is particularly interesting,
as it is not easy to construct a continuous, nowhere differentiable function without the help
of randomness. We give a modern proof of the Paley, Wiener and Zygmund theorem, see
Theorem 1.30.

In Chapter 2 we move to general dimension d. We prove and explore the strong Markov
property, which roughly says that at suitable random times Brownian motion starts afresh,
see Theorem 2.16. Among the facts we derive from this property are that the set of all
points visited by a Brownian motion in d � 2 has area zero, but the set of times when
Brownian motion in d = 1 revisits the origin is uncountable. Besides these sample path
properties, the strong Markov property is also the key to some fascinating distributional
identities. It enables us to understand, for example, the process {M(t) : t � 0} of the
running maxima M(t) = max0�s�t B(s) of Brownian motion in d = 1, the process
{Ta : a � 0} of the first hitting times Ta = inf{t � 0: B(t) = a} of level a of a
Brownian motion in d = 1, and the process of the vertical first hitting positions of the lines
{(x, y) ∈ R

2 : x = a} by a Brownian motion in d = 2, as a function of a.

In Chapter 3 we explore the rich relations of Brownian motion to harmonic analysis.
In particular we learn how Brownian motion helps solving the classical Dirichlet problem.

Fig. 0.2. Brownian motion and the Dirichlet problem

For its formulation in the planar case, fix a connected open set U ⊂ R
2 with nice boundary,

and let ϕ : ∂U → R be continuous. The harmonic functions f : U → R on the domain U

are characterised by the differential equation

∂2f

∂x2
1
(x) +

∂2f

∂x2
2
(x) = 0 for all x ∈ U.
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4 Motivation

The Dirichlet problem is to find, for a given domain U and boundary data ϕ, a continu-
ous function f : U ∪ ∂U → R, which is harmonic on U and agrees with ϕ on ∂U . In
Theorem 3.12 we show that the unique solution of this problem is given as

f(x) = E
[
ϕ(B(T ))

∣∣ B(0) = x
]
, for x ∈ U,

where {B(t) : t � 0} is a Brownian motion and T = inf{t � 0: B(t) �∈ U} is the first
exit time from U . We exploit this result, for example, to show exactly in which dimensions
a particle following a Brownian motion drifts to infinity, see Theorem 3.20.

In Chapter 4 we provide one of the major tools in our study of Brownian motion, the
concept of Hausdorff dimension, and show how it can be applied in the context of Brownian
motion. Indeed, when describing the sample paths of a Brownian motion one frequently
encounters questions of the size of a given set: How big is the set of all points visited by a
Brownian motion in the plane? How big is the set of double-points of a planar Brownian
motion? How big is the set of times where Brownian motion visits a given set, say a
point? For an example, let {B(t) : t � 0} be Brownian motion on the real line and look
at Zeros = {t � 0: B(t) = 0}, the set of its zeros. Although t �→ B(t) is a continuous
function, Zeros is an infinite set. This set is big, as it is an uncountable set without isolated
points. However, it is also small in the sense that its Lebesgue measure is zero. Indeed,
Zeros is a fractal set and we show in Theorem 4.24 that its Hausdorff dimension is 1/2.

In Chapter 5 we explore the relationship of random walk and Brownian motion. We
prove a theorem which justifies our initial point of view that Brownian motion is the macro-
scopic picture emerging from a large class of random walks: By Donsker’s invariance
principle one can obtain Brownian motion by taking scaled copies of a random walk and
taking a limit in distribution. This result is called an invariance principle because all ran-
dom walks whose increments have mean zero and finite variance essentially produce the
same limit, a Brownian motion. Donsker’s invariance principle is also a major tool in
deriving results for random walks from those of Brownian motion, and vice versa. Both
directions can be useful: In some cases the fact that Brownian motion is a continuous time
process is an advantage over discrete time random walks. For example, as we discuss be-
low, Brownian motion has scaling invariance properties, which can be a powerful tool in
the study of its path properties. In other cases it is a major advantage that (simple) ran-
dom walk is a discrete object and combinatorial arguments can be the right tool to derive
important features. Chapter 5 offers a number of case studies for the mutually beneficial
relationship between Brownian motion and random walks. Beyond Donsker’s invariance
principle, there is a second fascinating aspect of the relationship between random walk and
Brownian motion: Given a Brownian motion in d = 1, we can sample from its path at
certain carefully chosen times, and thus construct every random walk with mean zero and
finite variance. Finding these times is called the Skorokhod embedding problem and we
shall give two different solutions to it. The embedding problem is also the main tool in our
proof of Donsker’s invariance principle.

In Chapter 6 we look again at Brownian motion in dimension d = 1. For a random
walk on the integers running for a finite amount of time, we can define a ‘local time’ at a
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Motivation 5

point z ∈ Z by simply counting how many times the walk visits z. Can we define an anal-
ogous quantity for Brownian motion? In Chapter 6 we show that this is possible, and offer
an elegant construction of Brownian local time based on a random walk approximation. A
first highlight of this chapter arises when we aim to describe the local times: If a Brownian
path is started at some positive level a > 0 and stopped upon hitting zero, we can describe
the process of local times in x as a function of x, for 0 � x � a. The resulting process is
distributed like the square of the modulus of a planar Brownian motion. This is the famous
Ray–Knight theorem. The second highlight of this chapter is related to the nature of local
time at a fixed point. The Brownian local time in x is no longer the number of visits to the
point x by a Brownian motion – if x is visited at all, this number would be infinite – but
we shall see that it can be described as the Hausdorff measure of the set of times at which
the motion visits x.

Because Brownian motion arises as the scaling limit of a great variety of different
random walks, it naturally has a number of invariance properties. One of the most im-
portant invariance properties of Brownian motion is conformal invariance, which we dis-
cuss in Chapter 7. To make this plausible think of an angle-preserving linear mapping
L : R

d → R
d , like a rotation followed by multiplication by a. Take a random walk started

in zero with increments of mean zero and covariance matrix the identity, and look at its
image under L. This image is again a random walk and its increments are distributed
like LX . Appropriately rescaled as in Donsker’s invariance principle, both random walks
converge to a Brownian motion, the second one with a slightly different covariance matrix.
This process can be identified as a time-changed Brownian motion {B(a2t) : t � 0}. This
easy observation has a deeper, local counterpart for planar Brownian motion: Suppose that
φ : U → V is a conformal mapping of a simply connected domain U ⊂ R

2 onto a domain
V ⊂ R

2 . Conformal mappings are locally angle-preserving and the Riemann mapping
theorem of complex analysis tells us that a lot of such domains and mappings exist.

Fig. 0.3. A conformal mapping of Brownian paths

Suppose that {B(t) : t � 0} is a standard Brownian motion started in some point x ∈ U

and τ = inf{t > 0: B(t) /∈ U} is the first exit time of the path from the domain U . Then
it turns out that the image process {φ(B(t)) : 0 � t � τ} is a time-changed Brownian
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6 Motivation

motion in the domain V , stopped when it leaves V , see Theorem 7.20. In order to prove
this we have to develop a little bit of the theory of stochastic integration with respect to a
Brownian motion, and we give a lot of further applications of this tool in Chapter 7.

In Chapter 8 we develop the potential theory of Brownian motion. The problem which
is the motivation behind this is, given a compact set A ⊂ R

d , to find the probability that a
Brownian motion {B(t) : t � 0} hits the set A, i.e. that there exists t > 0 with B(t) ∈ A.
This problem is answered in the best possible way by Theorem 8.24, which is a modern
extension of a classical result of Kakutani: The hitting probability can be approximated by
the capacity of A with respect to the Martin kernel up to a factor of two.

With a wide range of tools at our hand, in Chapter 9 we study the self-intersections of
Brownian motion: For example, a point x ∈ R

d is called a double point of {B(t) : t � 0}
if there exist times 0 < t1 < t2 such that B(t1) = B(t2) = x. In which dimensions
does Brownian motion have double points? How big is the set of double points? We show
that in dimensions d � 4 no double points exist, in dimension d = 3 double points exist
and the set of double points has Hausdorff dimension one, and in dimension d = 2 double
points exist and the set of double points has Hausdorff dimension two. In dimension d = 2
we find a surprisingly complex situation: While every point x ∈ R

2 is almost surely not
visited by a Brownian motion, there exist (random) points in the plane, which are visited
infinitely often, even uncountably often. This result, Theorem 9.24, is one of the highlights
of this book.

Chapter 10 deals with exceptional points for Brownian motion and Hausdorff dimen-
sion spectra of families of exceptional points. To explain an example, we look at a Brow-
nian motion in the plane run for one time unit, which is a continuous curve {B(t) : t ∈
[0, 1]}. In Chapter 7 we see that, for any point on the curve, almost surely, the Brow-
nian motion performs an infinite number of full windings in both directions around this
point. Still, there exist random points on the curve, which are exceptional in the sense
that Brownian motion performs no windings around them at all. This follows from an
easy geometric argument: Take a point in R

2 with coordinates (x1 , x2) such that x1 =
min{x : (x, x2) ∈ B[0, 1]}, i.e. a point which is the leftmost on the intersection of the
Brownian curve and the line {(z, y) : z ∈ R}, for some x2 ∈ R. Then Brownian motion
does not perform any full windings around (x1 , x2), as this would necessarily imply that it
crosses the half-line {(x, x2) : x < x2}, contradicting the minimality of x1 . One can ask
for a more extreme deviation from typical behaviour: A point x = B(t) is an α-cone point
if the Brownian curve is contained in an open cone with tip in x = (x1 , x2), central axis
{(x1 , x) : x > x2} and opening angle α. Note that the points described in the previous
paragraph are 2π-cone points in this sense. In Theorem 10.38 we show that α-cone points
exist exactly if α ∈ [π, 2π], and prove that for every such α, almost surely,

dim
{
x ∈ R

2 : x is an α-cone point
}

= 2 − 2π

α
.

This is an example of a Hausdorff dimension spectrum, a topic which has been at the centre
of some research activity at the beginning of the current millennium.
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1

Brownian motion as a random function

In this chapter we focus on one-dimensional, or linear, Brownian motion. We start with
Paul Lévy’s construction of Brownian motion and discuss two fundamental sample path
properties, continuity and differentiability. We then discuss the Cameron–Martin theorem,
which shows that sample path properties for Brownian motion with drift can be obtained
from the corresponding results for driftless Brownian motion.

1.1 Paul Lévy’s construction of Brownian motion

1.1.1 Definition of Brownian motion

Brownian motion is closely linked to the normal distribution. Recall that a random variable
X is normally distributed with mean µ and variance σ2 if

P{X > x} =
1√

2πσ2

∫ ∞

x

e−
(u −µ ) 2

2 σ 2 du, for all x ∈ R.

Definition 1.1. A real-valued stochastic process {B(t) : t � 0} is called a (linear)
Brownian motion with start in x ∈ R if the following holds:
• B(0) = x,
• the process has independent increments, i.e. for all times 0 � t1 � t2 � . . . � tn the

increments B(tn )−B(tn−1), B(tn−1)−B(tn−2), . . . , B(t2)−B(t1) are independent
random variables,

• for all t � 0 and h > 0, the increments B(t + h) − B(t) are normally distributed with
expectation zero and variance h,

• almost surely, the function t �→ B(t) is continuous.

We say that {B(t) : t � 0} is a standard Brownian motion if x = 0. �

We will address the nontrivial question of the existence of a Brownian motion in Sec-
tion 1.1.2. For the moment let us step back and look at some technical points. We have
defined Brownian motion as a stochastic process {B(t) : t � 0} which is just a family
of (uncountably many) random variables ω �→ B(t, ω) defined on a single probability
space (Ω,A, P). At the same time, a stochastic process can also be interpreted as a random
function with the sample functions defined by t �→ B(t, ω). The sample path properties of
a stochastic process are the properties of these random functions, and it is these properties
we will be most interested in in this book.

7
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8 Brownian motion as a random function
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Fig. 1.1. Graphs of five sampled Brownian motions

By the finite-dimensional distributions of a stochastic process {B(t) : t � 0} we mean
the laws of all the finite dimensional random vectors

(
B(t1), B(t2), . . . , B(tn )

)
, for all 0 � t1 � t2 � . . . � tn .

To describe these joint laws it suffices to describe the joint law of B(0) and the increments

(
B(t1) − B(0), B(t2) − B(t1), . . . , B(tn ) − B(tn−1)

)
, for all 0 � t1 � t2 � . . . � tn .

This is what we have done in the first three items of the definition, which specify the
finite-dimensional distributions of Brownian motion. However, the last item, almost sure
continuity, is also crucial, and this is information which goes beyond the finite-dimensional
distributions of the process in the sense above, technically because the set {ω ∈ Ω: t �→
B(t, ω) continuous} is in general not in the σ-algebra generated by the random vectors
(B(t1), B(t2), . . . , B(tn )), n ∈ N.

Example 1.2 Suppose that {B(t) : t � 0} is a Brownian motion and U is an independent
random variable, which is uniformly distributed on [0, 1]. Then the process {B̃(t) : t � 0}
defined by

B̃(t) =
{

B(t) if t �= U,

0 if t = U,

has the same finite-dimensional distributions as a Brownian motion, but is discontinuous if
B(U) �= 0, i.e. with probability one, and hence this process is not a Brownian motion. �

We see that, if we are interested in the sample path properties of a stochastic process, we
may need to specify more than just its finite-dimensional distributions. Suppose X is a
property a function might or might not have, like continuity, differentiability, etc. We say
that a process {X(t) : t � 0} has property X almost surely if there exists A ∈ A such
that P(A) = 1 and A ⊂

{
ω ∈ Ω: t �→ X(t, ω) has property X

}
. Note that the set on the

right need not lie in A.
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1.1 Paul Lévy’s construction of Brownian motion 9

1.1.2 Paul Lévy’s construction of Brownian motion

It is a substantial issue whether the conditions imposed on the finite-dimensional distribu-
tions in the definition of Brownian motion allow the process to have continuous sample
paths, or whether there is a contradiction. In this section we show that there is no contra-
diction and, fortunately, Brownian motion exists.

Theorem 1.3 (Wiener 1923) Standard Brownian motion exists.

We construct Brownian motion as a uniform limit of continuous functions, to ensure that it
automatically has continuous paths. Recall that we need only construct a standard Brow-
nian motion {B(t) : t � 0}, as X(t) = x + B(t) is a Brownian motion with starting
point x. The proof exploits properties of Gaussian random vectors, which are the higher-
dimensional analogue of the normal distribution.

Definition 1.4. A random vector X = (X1 , . . . , Xn ) is called a Gaussian random vector
if there exists an n×m matrix A, and an n-dimensional vector b such that XT = AY + b,
where Y is an m-dimensional vector with independent standard normal entries. �

Basic facts about Gaussian random variables are collected in Appendix 12.2.

Proof of Wiener’s theorem. We first construct Brownian motion on the interval [0, 1]
as a random element on the space C[0, 1] of continuous functions on [0, 1]. The idea is to
construct the right joint distribution of Brownian motion step by step on the finite sets

Dn =
{

k
2n : 0 � k � 2n

}
of dyadic points. We then interpolate the values on Dn linearly and check that the uniform
limit of these continuous functions exists and is a Brownian motion.

To do this let D =
⋃∞

n=0 Dn and let (Ω,A, P) be a probability space on which a collec-
tion {Zt : t ∈ D} of independent, standard normally distributed random variables can be
defined. Let B(0) := 0 and B(1) := Z1 . For each n ∈ N we define the random variables
B(d), d ∈ Dn such that

(1) for all r < s < t in Dn the random variable B(t) − B(s) is normally distributed
with mean zero and variance t − s, and is independent of B(s) − B(r),

(2) the vectors (B(d) : d ∈ Dn ) and (Zt : t ∈ D \ Dn ) are independent.

Note that we have already done this for D0 = {0, 1}. Proceeding inductively we may
assume that we have succeeded in doing it for some n − 1. We then define B(d) for
d ∈ Dn \ Dn−1 by

B(d) =
B(d − 2−n ) + B(d + 2−n )

2
+

Zd

2(n+1)/2 .

Note that the first summand is the linear interpolation of the values of B at the neighbouring
points of d in Dn−1 . Therefore B(d) is independent of (Zt : t ∈ D \ Dn ) and the second
property is fulfilled.
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10 Brownian motion as a random function

Moreover, as 1
2 [B(d+2−n )−B(d−2−n )] depends only on (Zt : t ∈ Dn−1), it is indepen-

dent of Zd/2(n+1)/2 . By our induction assumptions both terms are normally distributed
with mean zero and variance 2−(n+1) . Hence their sum B(d) − B(d − 2−n ) and their
difference B(d + 2−n ) − B(d) are independent and normally distributed with mean zero
and variance 2−n by Corollary 12.12.

Indeed, all increments B(d) − B(d − 2−n ), for d ∈ Dn \ {0}, are independent. To see
this it suffices to show that they are pairwise independent, as the vector of these increments
is Gaussian. We have seen in the previous paragraph that pairs B(d) − B(d − 2−n ),
B(d + 2−n ) − B(d) with d ∈ Dn \ Dn−1 are independent. The other possibility is
that the increments are over intervals separated by some d ∈ Dn−1 . Choose d ∈ Dj

with this property and minimal j, so that the two intervals are contained in [d − 2−j , d],
respectively [d, d + 2−j ]. By induction the increments over these two intervals of length
2−j are independent, and the increments over the intervals of length 2−n are constructed
from the independent increments B(d) − B(d − 2−j ), respectively B(d + 2−j ) − B(d),
using a disjoint set of variables (Zt : t ∈ Dn ). Hence they are independent and this implies
the first property, and completes the induction step.

t

F0(t)
F0(t) + F1(t) + F2(t)

Z1

F0(t) + F1(t)

1
2Z 1

2

0 1 0 0

1√
8
Z 3

4

1 1
t t

1√
8
Z 1

4

Fig. 1.2. The first three steps in the construction of Brownian motion

Having thus chosen the values of the process on all dyadic points, we interpolate between
them. Formally, define

F0(t) =

⎧⎨
⎩

Z1 for t = 1,

0 for t = 0,

linear in between,

and, for each n � 1,

Fn (t) =

⎧⎨
⎩

2−(n+1)/2Zt for t ∈ Dn \ Dn−1

0 for t ∈ Dn−1

linear between consecutive points in Dn .

These functions are continuous on [0, 1] and, for all n and d ∈ Dn ,

B(d) =
n∑

i=0

Fi(d) =
∞∑

i=0

Fi(d), (1.1)
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