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Regression and the Normal Distribution

Chapter Preview. Regression analysis is a statistical method that is widely used in many
fields of study, with actuarial science being no exception. This chapter provides an intro-
duction to the role of the normal distribution in regression, the use of logarithmic trans-
formations in specifying regression relationships, and the sampling basis that is critical
for inferring regression results to broad populations of interest.

1.1 What Is Regression Analysis?

Statistics is about data. As a discipline, it is about the collection, summarization,
and analysis of data to make statements about the real world. When analysts
collect data, they are really collecting information that is quantified, that is, trans-
formed to a numerical scale. There are easy, well-understood rules for reducing
the data, through either numerical or graphical summary measures. These sum-
mary measures can then be linked to a theoretical representation, or model, of
the data. With a model that is calibrated by data, statements about the world can
be made. Statistics is about

the collection,
summarization, and
analysis of data to
make statements
about the real world.

Statistical methods have had a major impact on several fields of study:

• In the area of data collection, the careful design of sample surveys is crucial
to market research groups and to the auditing procedures of accounting
firms.

• Experimental design is a subdiscipline devoted to data collection. The focus
of experimental design is on constructing methods of data collection that
will extract information in the most efficient way possible. This is espe-
cially important in fields such as agriculture and engineering where each
observation is expensive, possibly costing millions of dollars.

• Other applied statistical methods focus on managing and predicting data.
Process control deals with monitoring a process over time and deciding
when intervention is most fruitful. Process control helps manage the quality
of goods produced by manufacturers.

• Forecasting is about extrapolating a process into the future, whether it be
sales of a product or movements of an interest rate.

Regression analysis is a statistical method used to analyze data. As we will see,
the distinguishing feature of this method is the ability to make statements about
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2 Regression and the Normal Distribution

Table 1.1 Galton’s
1885 Regression Data Height of Parents’ Height

Adult Child
in Inches <64.0 64.5 65.5 66.5 67.5 68.5 69.5 70.5 71.5 72.5 >73.0 Total

>73.7 — — — — — — 5 3 2 4 — 14
73.2 — — — — — 3 4 3 2 2 3 17
72.2 — — 1 — 4 4 11 4 9 7 1 41
71.2 — — 2 — 11 18 20 7 4 2 — 64
70.2 — — 5 4 19 21 25 14 10 1 — 99
69.2 1 2 7 13 38 48 33 18 5 2 — 167
68.2 1 — 7 14 28 34 20 12 3 1 — 120
67.2 2 5 11 17 38 31 27 3 4 — — 138
66.2 2 5 11 17 36 25 17 1 3 — — 117
65.2 1 1 7 2 15 16 4 1 1 — — 48
64.2 4 4 5 5 14 11 16 — — — — 59
63.2 2 4 9 3 5 7 1 1 — — — 32
62.2 — 1 — 3 3 — — — — — — 7

<61.2 1 1 1 — — 1 — 1 — — — 5

Total 14 23 66 78 211 219 183 68 43 19 4 928

Source: Stigler (1986).

variables after having controlled for values of known explanatory variables. As
important as other methods are, it is regression analysis that has been the most
influential one. To illustrate, an index of business journals, ABI/INFORM, lists
more than 24,000 articles using regression techniques over the thirty-year period
1978–2007. And these are only the applications that were considered innovative
enough to be published in scholarly reviews!
Regression analysis of data is so pervasive in modern business that it is easy

to overlook the fact that the methodology is barely more than 120 years old.
Scholars attribute the birth of regression to the 1885 presidential address of Sir
Francis Galton to the anthropological section of the British Association of the
Advancement of Sciences. In that address, described in Stigler (1986), Galton
provided a description of regression and linked it to normal curve theory. His
discovery arose from his studies of properties of natural selection and inheritance.R© Empirical

Filename is
“Galton”

To illustrate a dataset that can be analyzed using regression methods, Table 1.1
displays some data included inGalton’s 1885 paper. The table displays the heights
of 928 adult children, classified by an index of their parents’ height. Here, all
female heights were multiplied by 1.08, and the index was created by taking the
average of the father’s height and rescaled mother’s height. Galton was aware that
the parents’ and the adult child’s height could each be adequately approximated
by a normal curve. In developing regression analysis, he provided a single modelRegression analysis is

a method to quantify
the relationship
between a variable of
interest and
explanatory variables.

for the joint distribution of heights.
Table 1.1 shows that much of the information concerning the height of an adult

child can be attributed to, or “explained,” in terms of the parents’ height. Thus,
we use the term explanatory variable for measurements that provide information
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1.2 Fitting Data to a Normal Distribution 3

Figure 1.1 Ten
deutsche mark –
German currency
featuring the scientist
Gauss and the normal
curve.

about a variable of interest. Regression analysis is a method to quantify the rela-
tionship between a variable of interest and explanatory variables. The methodol-
ogy used to study the data in Table 1.1 can also be used to study actuarial and
other risk management problems, the thesis of this book.

1.2 Fitting Data to a Normal Distribution

Historically, the normal distribution had a pivotal role in the development of
regression analysis. It continues to play an important role, although we will be
interested in extending regression ideas to highly “nonnormal” data.
Formally, the normal curve is defined by the function

f(y) = 1

σ
√
2π

exp

(
− 1

2σ 2
(y − µ)2

)
. (1.1)

This curve is a probability density function with the whole real line as its domain. Appendix A3.1
provides additional
details about the
normal curve,
including a graph and
distribution table.

From equation (1.1), we see that the curve is symmetric about µ (the mean and
median). The degree of peakedness is controlled by the parameter σ 2. These two
parameters, µ and σ 2, are known as the location and scale parameters, respec-
tively. Appendix A3.1 provides additional details about this curve, including a
graph and tables of its cumulative distribution that we will use throughout the
text.
The normal curve is also depicted in Figure 1.1, a display of an out-of-date

German currency note, the ten Deutsche Mark. This note contains the image
of the German Carl Gauss, an eminent mathematician whose name is often
linked with the normal curve (it is sometimes referred to as the Gaussian curve).
Gauss developed the normal curve in connection with the theory of least squares
for fitting curves to data in 1809, about the same time as related work by the
French scientist Pierre LaPlace. According to Stigler (1986), there was quite a
bit of acrimony between these two scientists about the priority of discovery! The
normal curve was first used as an approximation to histograms of data around
1835 by Adolph Quetelet, a Belgian mathematician and social scientist. As with
many good things, the normal curve had been around for some time, since about
1720, when Abraham de Moivre derived it for his work on modeling games of
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4 Regression and the Normal Distribution

Table 1.2 Summary
Statistics of
Massachusetts
Automobile Bodily
Injury Claims

Standard 25th 75th
Variable Number Mean Median Deviation Minimum Maximum Percentile Percentile

Claims 272 0.481 0.793 1.101 −3.101 3.912 −0.114 1.168

Note: Data are in logs of thousands of dollars.

chance. The normal curve is popular because it is easy to use and has proved
successful in many applications.

R© Empirical
Filename is
“MassBodilyInjury”

Example: Massachusetts Bodily Injury Claims. For our first look at fitting
the normal curve to a set of data, we consider data from Rempala and Derrig
(2005). They considered claims arising from automobile bodily injury insurance
coverages. These are amounts incurred for outpatient medical treatments that
arise from automobile accidents, typically sprains, broken collarbones, and the
like. The data consist of a sample of 272 claims from Massachusetts that were
closed in 2001 (by “closed,” we mean that the claim is settled and no additional
liabilities can arise from the same accident). Rempala and Derrig were interested
in developing procedures for handling mixtures of “typical” claims and others
from providers who reported claims fraudulently. For this sample, we consider
only those typical claims, ignoring the potentially fraudulent ones.
Table 1.2 provides several statistics that summarize different aspects of the

distribution. Claim amounts are in units of logarithms of thousands of dollars.
The average logarithmic claim is 0.481, corresponding to $1,617.77 (=1000
exp(0.481)). The smallest and largest claims are −3.101 ($45) and 3.912
($50,000), respectively.

For completeness, here are a few definitions. The sample is the set of data
available for analysis, denoted by y1, . . . , yn. Here, n is the number of observa-
tions, y1 represents the first observation, y2 the second, and so on up to yn for the
nth observation. Here are a few important summary statistics.

Basic Summary Statistics

(i) Themean is the average of observations, that is, the sum of the observations
divided by the number of units. Using algebraic notation, the mean is

y = 1

n
(y1 + · · · + yn) = 1

n

n∑
i=1

yi.

(ii) The median is the middle observation when the observations are ordered
by size. That is, it is the observation at which 50% are below it (and 50%
are above it).
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1.2 Fitting Data to a Normal Distribution 5
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(iii) The standard deviation is a measure of the spread, or scale, of the
distribution. It is computed as

sy =
√√√√ 1

n − 1

n∑
i=1

(yi − y)2.

(iv) A percentile is a number at which a specified fraction of the observations
is below it, when the observations are ordered by size. For example, the
25th percentile is the number so that 25% of observations are below it.

To help visualize the distribution, Figure 1.2 displays a histogram of the
data. Here, the height of the each rectangle shows the relative frequency of
observations that fall within the range given by its base. The histogram provides
a quick visual impression of the distribution; it shows that the range of the data is
approximately (−4,4), that the central tendency is slightly greater than zero, and
that the distribution is roughly symmetric.

Normal Curve Approximation

Figure 1.2 also shows a normal curve superimposed, using y for µ and s2y for σ
2.

With the normal curve, only two quantities (µ and σ 2) are required to summarize
the entire distribution. For example, Table 1.2 shows that 1.168 is the 75th
percentile, which is approximately the 204th (= .75× 272) largest observation
from the entire sample. From the equation (1.1) normal distribution, we see that
z = (y − µ)/σ is a standard normal, of which 0.675 is the 75th percentile. Thus,
y + 0.675sy = 0.481+ 0.675× 1.101 = 1.224 is the 75th percentile using the
normal curve approximation.

Box Plot

A quick visual inspection of a variable’s distribution can reveal some surprising
features that are hidden by statistics: numerical summary measures. The box plot,
also known as a box-and-whiskers plot, is one such graphical device. Figure 1.3
illustrates a box plot for the bodily injury claims. Here, the box captures the
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6 Regression and the Normal Distribution

LOGCLAIMS
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Figure 1.4 Redraw-
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Figure 1.5 A qq plot
of bodily injury
claims, using a normal
reference distribution.

middle 50% of the data, with the three horizontal lines corresponding to the
75th, 50th, and 25th percentiles, reading from top to bottom. The horizontal lines
above and below the box are the “whiskers.” The upper whisker is 1.5 times
the interquartile range (the difference between the 75th and 25th percentiles)
above the 75th percentile. Similarly, the lower whisker is 1.5 times the interquar-
tile range below the 25th percentile. Individual observations outside the whiskers
are denoted by small circular plotting symbols and are referred to as “outliers.”
Graphs are powerful tools; they allow analysts to readily visualize nonlin-

ear relationships that are hard to comprehend when expressed verbally or by
mathematical formula. However, by their very flexibility, graphs can also readily
deceive the analyst. Chapter 21 will underscore this point. For example, Fig-
ure 1.4 is a redrawing of Figure 1.2; the difference is that Figure 1.4 uses more,
and finer, rectangles. This finer analysis reveals the asymmetric nature of the
sample distribution that was not evident in Figure 1.2.

Quantile-Quantile Plots

Increasing the number of rectangles can unmask features that were not previ-
ously apparent; however, there are, in general, fewer observations per rectangle,
meaning that the uncertainty of the relative frequency estimate increases. This
represents a trade-off. Instead of forcing the analyst to make an arbitrary decision
about the number of rectangles, an alternative is to use a graphical device for
comparing a distribution to another known as a quantile-quantile, or qq, plot.

Points in a qq plot
close to a straight line
suggest agreement
between the sample
and the reference
distributions.

Figure 1.5 illustrates a qq plot for the bodily injury data using the normal curve
as a reference distribution. For each point, the vertical axis gives the quantile using
the sample distribution. The horizontal axis gives the corresponding quantity
using the normal curve. For example, earlier we considered the 75th percentile
point. This point appears as (1.168, 0.675) on the graph. To interpret a qq plot, if
the quantile points lie along the superimposed line, then the sample and the normal
reference distribution have the same shape. (This line is defined by connecting
the 75th and 25th percentiles.)
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1.3 Power Transforms 7
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In Figure 1.5, the small sample percentiles are consistently smaller than the
corresponding values from the standard normal, indicating that the distribution is
skewed to the left. The difference in values at the ends of the distribution are due
to the outliers noted earlier that can also be interpreted as the sample distribution
having larger tails than the normal reference distribution.

1.3 Power Transforms

In the Section 1.2 example, we considered claims without justifying the use
of the logarithmic scaling. When analyzing variables such as assets of firms,
wages of individuals, and housing prices of households in business and economic
applications, it is common to consider logarithmic units instead of the original
units. A log transform retains the original ordering (e.g., large wages remain large
on the log wage scale) but serves to pull in extreme values of the distribution.
To illustrate, Figure 1.6 shows the bodily injury claims distribution in (thou-

sands of) dollars. To graph the data meaningfully, the largest observation
($50,000) was removed prior to making this plot. Even with this observation
removed, Figure 1.6 shows that the distribution is heavily lopsided to the right,
with several large values of claims appearing. A right-skewed

distribution has long
tails on the right and
a concentration of
mass on the left. Many
insurance claims
distributions are right
skewed.

Distributions that are lopsided in one direction or the other are known as
skewed. Figure 1.6 is an example of a distribution skewed to the right, or positively
skewed.Here, the tail of the distribution on the right is longer, and there is a greater
concentration of mass to the left. In contrast, a left-skewed, or negatively skewed,
distribution has a longer tail on the left and a greater concentration of mass to
the right. Many insurance claims distributions are right skewed (see Klugman,
Panjer, and Willmot, 2008, for extensive discussions). As we saw in Figures 1.4
and 1.5, a logarithmic transformation yields a distribution that is only mildly
skewed to the left.
Logarithmic transformations are used extensively in applied statistics work.

One advantage is that they serve to symmetrize distributions that are skewed.More
generally, we consider power transforms, also known as the Box-Cox family of
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8 Regression and the Normal Distribution
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transforms. In this family of transforms, in lieu of using the response y, we use
a transformed, or rescaled version, yλ. Here, the power λ (lambda, a Greek letter
“el”) is a number that may be user specified. Typical values of λ that are used
in practice are λ = 1, 1/2, 0, or −1. When we use λ = 0, we mean ln(y), that
is, the natural logarithmic transform. More formally, the Box-Cox family can be
expressed as

y(λ) =
{

yλ−1
λ

λ �= 0

ln(y) λ = 0
.

Aswewill see, because regression estimates are not affected by location and scale
shifts, in practice, we do not need to subtract 1 or divide by λ when rescaling the
response. The advantage of the foregoing expression is that, if we let λ approach
0, then y(λ) approaches ln(y), from some straightforward calculus arguments.
To illustrate the usefulness of transformations, we simulated 500 observations

from a chi-square distribution with two degrees of freedom. Appendix A3.2 intro-
duces this distribution (which we will encounter again in studying the behavior
of test statistics). The upper-left panel of Figure 1.7 shows that the original dis-
tribution is heavily skewed to the right. The other panels in Figure 1.7 show the
data rescaled using the square root, logarithmic, and negative reciprocal trans-
formations. The logarithmic transformation, in the lower-left panel, provides the
best approximation to symmetry for this example. The negative reciprocal trans-
formation is based on λ = −1, and then multiplying the rescaled observations by
−1, so that large observations remain large.

1.4 Sampling and the Role of Normality

A statistic is a summary measure of data, such as a mean, median, or per-
centile. Collections of statistics are very useful for analysts, decision makers, and
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1.4 Sampling and the Role of Normality 9

everyday consumers for understanding massive amounts of data that represent
complex situations. To this point, our focus has been on introducing sensible tech-
niques to summarize variables; techniques that will be used repeatedly thought
this text. However, the true usefulness of the discipline of statistics is its ability to
say something about the unknown, not merely to summarize information already
available. To this end, we need to make some fairly formal assumptions about
the manner in which the data are observed. As a science, a strong feature of
the discipline of statistics is the ability to critique these assumptions and offer
improved alternatives in specific situations.
It is customary to assume that the data are drawn from a larger population that A statistic is a

summary measure of a
sample. Statistics, as
a discipline, can be
used to infer behavior
about a larger
population from a
sample.

we are interested in describing. The process of drawing the data is known as the
sampling, or data generating, process. We denote this sample as {y1, . . . , yn}. So
that we may critique, and modify, these sampling assumptions, we list them here
in detail:

Basic Sampling Assumptions

1. E yi = µ.
2. Var yi = σ 2.
3. {yi} are independent.
4. {yi} are normally distributed.

In this basic setup,µ and σ 2 serve as parameters that describe the location and Assumption 4 is not
required for many
statistical inference
procedures because
central limit theorems
provide approximate
normality for many
statistics of interest.

scale of the parent population. The goal is to infer something sensible about them
on the basis of statistics such as y and s2y . For the third assumption, we assume
independence among the draws. In a sampling scheme, this may be guaranteed
by taking a simple random sample from a population. The fourth assumption
is not required for many statistical inference procedures because central limit
theorems provide approximate normality for many statistics of interest. However,
a formal justification of some statistics, such as t-statistics, requires this additional
assumption.
Section 1.9 provides an explicit statement of one version of the central limit

theorem, giving conditions inwhich y is approximately normally distributed. This
section also discusses a related result, known as an Edgeworth approximation,
that shows that the quality of the normal approximation is better for symmetric
parent populations when compared to skewed distributions. Linear regression is

the study of weighted
averages.

Howdoes this discussion apply to the study of regression analysis? After all, so
far we have focused only on the simple arithmetic average y. In subsequent chap-
ters, we will emphasize that linear regression is the study of weighted averages;
specifically, many regression coefficients can be expressed as weighted averages
with appropriately chosen weights. Central limit and Edgeworth approximation
theorems are available for weighted averages – these results will ensure approx-
imate normality of regression coefficients. To use normal curve approximations
in a regression context, we will often transform variables to achieve approximate
symmetry.
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10 Regression and the Normal Distribution

Table 1.3
Terminology for
Regression Variables

y-Variable x-Variable

Outcome of interest Explanatory variable
Dependent variable Independent variable
Endogenous variable Exogenous variable
Response Treatment
Regressand Regressor
Left-hand-side variable Right-hand-side variable
Explained variable Predictor variable
Output Input

1.5 Regression and Sampling Designs

Approximating normality is an important issue in practical applications of linearWe often transform
variables to achieve
approximate
symmetry to use
normal curve
approximations in a
regression context.

regression. Parts I and II of this book focus on linear regression, where we
will learn basic regression concepts and sampling design. Part III will focus on
nonlinear regression, involving binary, count, and fat-tailed responses, where
the normal is not the most helpful reference distribution. Ideas concerning basic
concepts and design are also used in the nonlinear setting.
In regression analysis, we focus on onemeasurement of interest: the dependent

variable. Other measurements are used as explanatory variables. A goal is to
compare differences in the dependent variable in terms of differences in the
explanatory variables. As noted in Section 1.1, regression is used extensively in
many scientific fields. Table 1.3 lists alternative terms that you may encounter as
you read regression applications.
In the latter part of the nineteenth century and early part of the twentieth cen-

tury, statistics was beginning to make an important impact on the development of
experimental science. Experimental sciences often use designed studies, where
the data are under the control of an analyst. Designed studies are performed in
laboratory settings, where there are tight physical restrictions on every variable
that a researcher thinks may be important. Designed studies also occur in larger
field experiments, where the mechanisms for control are different than in lab-
oratory settings. Agriculture and medicine use designed studies. Data from a
designed study are said to be experimental data.In designed studies,

the data are under the
control of an analyst.
Data from a designed
study are said to be
experimental data.

To illustrate, a classic example is to consider the yield of a crop such as corn,
where each of several parcels of land (the observations) are assigned various
levels of fertilizer. The goal is ascertain the effect of fertilizer (the explanatory
variable) on the corn yield (the response variable). Although researchers attempt
to make parcels of land as much alike as possible, differences inevitably arise.
Agricultural researchers use randomization techniques to assign different levels
of fertilizer to each parcel of land. In this way, analysts can explain the variation
in corn yields in terms of the variation of fertilizer levels. Through the use of
randomization techniques, researchers using designed studies can infer that the
treatment has a causal effect on the response. Chapter 6 discusses causality
further.
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