Birds

Birds is the first book to examine bird remains in archaeology and anthropology. Providing a thorough review of the literature on this topic, it also serves as a guide to the methods of study of bird remains from the past. It covers a wide range of topics, including anatomy and osteology, taphonomy, eggs, feathers, and bone tools. It examines the myriad ways in which people have interacted with birds in the past. The volume also includes discussion on the consumption of wild birds, the domestication of birds, cockfighting and falconry, birds in ritual and religion, and the role of birds in ecological reconstruction, providing an up-to-date survey of current knowledge on these topics. *Birds* will be an invaluable resource for undergraduate and graduate students interested in zooarchaeology and human–animal relations, as well as professional zooarchaeologists, archaeologists, and anthropologists interested in birds and people of the past.

Dale Serjeantson is a Research Fellow in Archaeology in the School of Humanities, University of Southampton, UK. She is the co-author, with Alan Cohen, of *Manual for the Identification of Bird Bones from Archaeological Sites* and has contributed papers on birds and other zooarchaeological topics in journals and popular magazines. She is associate editor of the *International Journal of Osteoarchaeology* and a member of the Institute of Field Archaeologists, the Society of Antiquaries of Scotland, the Association for Environmental Archaeology, and L’Homme et l’Animal: Société de Recherche Interdisciplinaire.
Dedicated to Alistair Thomson, for his forbearance during the past four years
Cambridge Manuals in Archaeology

General Editor
Graeme Barker, University of Cambridge

Advisory Editors
Elizabeth Slater, University of Liverpool
Peter Bogucki, Princeton University

Cambridge Manuals in Archaeology is a series of reference handbooks designed for an international audience of upper-level undergraduate and graduate students and professional archaeologists and archaeological scientists in universities, museums, research laboratories, and field units. Each book includes a survey of current archaeological practice alongside essential reference material on contemporary techniques and methodology.

Books in the series
Pottery in Archaeology, CLIVE ORTON, PAUL TYERS, and ALAN VINCE
Vertebrate Taphonomy, R. LEE LYMAN
Photography in Archaeology and Conservation, 2nd edition, PETER G. DORRELL
Alluvial Geoarchaeology, A. G. BROWN
Shells, CHERYL CLAASEN
Sampling in Archaeology, CLIVE ORTON
Excavation, STEVE ROSKAMS
Teeth, 2nd edition, SIMON HILLSON
Lithics, 2nd edition, WILLIAM ANDREFSKY, JR.
Geographical Information Systems in Archaeology, JAMES CONOLLY and MARK LAKE
Demography in Archaeology, ANDREW CHAMBERLAIN
Analytical Chemistry in Archaeology, A. M. POLLARD, C. M. BATT, B. STERN, and S. M. M. YOUNG
Zooarchaeology, 2nd edition, ELIZABETH J. REITZ and ELIZABETH S. WING
Quantitative Paleozoology, R. LEE LYMAN
Birds

Dale Serjeantson University of Southampton
CONTENTS

Figures \hspace{1cm} page xi
Tables \hspace{1cm} xix
Preface \hspace{1cm} xxiii
Acknowledgments \hspace{1cm} xxv

1. **Introduction** \hspace{1cm} 1
 Aims and Scope \hspace{1cm} 2
 Zooarchaeology or Palaeontology \hspace{1cm} 3
 Taxonomy and Classification \hspace{1cm} 4
 History of the Study of Bird Remains \hspace{1cm} 5
 Bird Remains: The Questions \hspace{1cm} 7

2. **Biology, Behaviour, and Anatomy** \hspace{1cm} 8
 Bird Biology and Behaviour \hspace{1cm} 8
 Skeletal Anatomy \hspace{1cm} 15
 Individual Bones \hspace{1cm} 21
 Gizzard Stones \hspace{1cm} 32
 Conclusion \hspace{1cm} 34

3. **Ageing, Sexing, and Pathology** \hspace{1cm} 35
 Age at Death \hspace{1cm} 36
 Sexing \hspace{1cm} 47
 Pathology *by Tony Waldron* \hspace{1cm} 55
 Conclusion \hspace{1cm} 61

4. **Identification, Recording, and Quantification** \hspace{1cm} 63
 Identification \hspace{1cm} 63
 Recording \hspace{1cm} 78

© Cambridge University Press \hspace{1cm} www.cambridge.org
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantification</td>
<td>85</td>
</tr>
<tr>
<td>Conclusion</td>
<td>97</td>
</tr>
<tr>
<td>5. Natural Taphonomy and Recovery</td>
<td></td>
</tr>
<tr>
<td>Recovery</td>
<td>99</td>
</tr>
<tr>
<td>Natural Accumulations</td>
<td>100</td>
</tr>
<tr>
<td>Natural Damage and Decay</td>
<td>104</td>
</tr>
<tr>
<td>Element Survival</td>
<td>109</td>
</tr>
<tr>
<td>Conclusions</td>
<td>124</td>
</tr>
<tr>
<td>6. Taphonomy: Human Modifications and Element Survival</td>
<td></td>
</tr>
<tr>
<td>Cut Marks</td>
<td>130</td>
</tr>
<tr>
<td>Chop Marks</td>
<td>131</td>
</tr>
<tr>
<td>Butchery without Tools</td>
<td>140</td>
</tr>
<tr>
<td>Human Chewing</td>
<td>144</td>
</tr>
<tr>
<td>Burning</td>
<td>146</td>
</tr>
<tr>
<td>Differential Disposal</td>
<td>149</td>
</tr>
<tr>
<td>Fragmentation</td>
<td>153</td>
</tr>
<tr>
<td>Recording Modifications</td>
<td>154</td>
</tr>
<tr>
<td>Element Presence or Absence and Bone Density</td>
<td>155</td>
</tr>
<tr>
<td>Conclusions</td>
<td>155</td>
</tr>
<tr>
<td>7. Eggs and Eggshell</td>
<td></td>
</tr>
<tr>
<td>Ethnography and History of Egg-Collecting and Production</td>
<td>165</td>
</tr>
<tr>
<td>Survival and Recovery of Eggshell</td>
<td>166</td>
</tr>
<tr>
<td>Eggshell Structure</td>
<td>169</td>
</tr>
<tr>
<td>Identification and Quantification of Eggshell</td>
<td>170</td>
</tr>
<tr>
<td>Eggshell from Archaeological Sites</td>
<td>171</td>
</tr>
<tr>
<td>Ostrich Eggshell</td>
<td>176</td>
</tr>
<tr>
<td>Discussion and Conclusions</td>
<td>179</td>
</tr>
<tr>
<td>8. Feathers, Skins, and Other Products</td>
<td></td>
</tr>
<tr>
<td>Feathers: Introductory Comments</td>
<td>184</td>
</tr>
<tr>
<td>Anthropological Feather Use</td>
<td>184</td>
</tr>
<tr>
<td>Feather Types and Structure</td>
<td>185</td>
</tr>
<tr>
<td>Feather Identification</td>
<td>189</td>
</tr>
<tr>
<td>Archaeological Finds</td>
<td>193</td>
</tr>
<tr>
<td>Taphonomy</td>
<td>193</td>
</tr>
<tr>
<td>Feathers as a Secondary Product</td>
<td>197</td>
</tr>
<tr>
<td>Proxy Evidence for Feather Use</td>
<td>197</td>
</tr>
<tr>
<td>Element Presence or Absence and Bone Density</td>
<td>199</td>
</tr>
<tr>
<td>Contents</td>
<td>ix</td>
</tr>
<tr>
<td>----------</td>
<td>----</td>
</tr>
<tr>
<td>Feathered Skins</td>
<td>203</td>
</tr>
<tr>
<td>Sinew and Oil</td>
<td>205</td>
</tr>
<tr>
<td>Discussion</td>
<td>206</td>
</tr>
<tr>
<td>9. Tools and Ornaments</td>
<td>209</td>
</tr>
<tr>
<td>Manufacture of Tools</td>
<td>209</td>
</tr>
<tr>
<td>Types of Tools, Flutes, and Beads</td>
<td>213</td>
</tr>
<tr>
<td>Decorative Objects</td>
<td>224</td>
</tr>
<tr>
<td>Conclusions</td>
<td>228</td>
</tr>
<tr>
<td>10. Wild Birds as Food</td>
<td>230</td>
</tr>
<tr>
<td>The Economics of Bird Capture</td>
<td>230</td>
</tr>
<tr>
<td>Technology and Fowling Methods</td>
<td>238</td>
</tr>
<tr>
<td>Birds: A Major or Minor Food Resource?</td>
<td>250</td>
</tr>
<tr>
<td>Major Resource</td>
<td>251</td>
</tr>
<tr>
<td>Minor Resource</td>
<td>255</td>
</tr>
<tr>
<td>Supplementary and Rare Resources</td>
<td>256</td>
</tr>
<tr>
<td>Birds as Indicators of Seasonal Occupation</td>
<td>256</td>
</tr>
<tr>
<td>Preservation of Wild Birds for Food</td>
<td>259</td>
</tr>
<tr>
<td>Prehistory of Bird Capture</td>
<td>260</td>
</tr>
<tr>
<td>Discussion</td>
<td>265</td>
</tr>
<tr>
<td>11. The Domestic Chicken</td>
<td>267</td>
</tr>
<tr>
<td>Wild Ancestor</td>
<td>268</td>
</tr>
<tr>
<td>History</td>
<td>269</td>
</tr>
<tr>
<td>Early Archaeological Records</td>
<td>270</td>
</tr>
<tr>
<td>Changes Following Domestication</td>
<td>273</td>
</tr>
<tr>
<td>Discussion</td>
<td>283</td>
</tr>
<tr>
<td>12. Other Domestic Birds</td>
<td>287</td>
</tr>
<tr>
<td>Turkey</td>
<td>287</td>
</tr>
<tr>
<td>Geese</td>
<td>292</td>
</tr>
<tr>
<td>Ducks</td>
<td>299</td>
</tr>
<tr>
<td>Pigeon</td>
<td>304</td>
</tr>
<tr>
<td>Minor Domestic Birds</td>
<td>310</td>
</tr>
<tr>
<td>General Discussion</td>
<td>314</td>
</tr>
<tr>
<td>13. Sport and Pleasure</td>
<td>316</td>
</tr>
<tr>
<td>Hawking</td>
<td>316</td>
</tr>
<tr>
<td>Cockfighting</td>
<td>325</td>
</tr>
<tr>
<td>Hunting and Other Sports</td>
<td>331</td>
</tr>
</tbody>
</table>
Birds for Pleasure
Conclusion

14. Birds in Symbol and Ritual
Divine and Totem Animals
Beliefs about Birds
Birds in Graves
Bird Burials
Temple Sacrifices, Feasting, and Rites
Medicine Bundles and Talismans
Sky Burial
Special Deposits and Ritual Refuse
Pre-Eminent Species
Discussion and Conclusion

15. Birds in the Environment
Birds as Environmental Indicators
Pleistocene and Holocene Climate Change
Introductions and Range Increases
Diminished Ranges
Extinctions
Discussion and Conclusions

16. Conclusions and Outstanding Questions
Why Are Bird Remains Scarce?
Ancient Bird Bones and Environmental Conservation
Unresolved Questions of Methodology
Outstanding Questions about Bird Domestication
Birds in Human Prehistory

Appendix 1. List of Scientific and English Names of Species Referred to in the Text

Appendix 2. Illustrations and Definitions of Bone Zones
Definitions of Zones

Appendix 3. Organisations and Internet Resources

Bibliography
Index
FIGURES

1.1. Tarsometatarsi of various species of moa, Dinornithiformes. page 6
2.1. Relationship of the incubation period to the fledging period in seabirds. 10
2.2. Relationship between body and egg weight in raptors. 13
2.3. Microstructure of chicken bone, showing Haversian canals and absence of osteons. 17
2.4. Cross section of an avian long bone. 17
2.5. Splinter of a long bone of one of the moa, showing the thickness of the bone wall and the interior structure. 18
2.6. Longitudinal section and exterior view through the proximal end of a chicken humerus. 19
2.7. Examples of pneumatised bones: coracoid, humerus, and femur. 20
2.8. Skull bones: cranium, mandible, tongue skeleton, and quadrate. 22
2.9. Vertebrae of mute swan. 23
2.10. Axial skeleton: notarium, synsacrum, pelvis, and ribs. 24
2.11. Sterna of various birds. 25
2.12. Pectoral girdle: furcula, scapula, and coracoid. 26
2.13. Proximal wing: humerus, radius, ulna, and radial and ulnar carpal. 27
2.14. Distal wing: carpometacarpus and distal phalanx of major wing digit. 28
2.15. Proximal leg: femur and tibiotarsus. 30
2.16. Distal leg: tarsometatarsus and foot phalanges. 31
2.17. Gizzard stones of a domestic chicken. 33
3.1. Humerus, scapula, and coracoid of adult and newly fledged gannet. 37
3.2. Unfused bones of a crane from Haddenham. 41
3.3. Transverse sections of the mandibles of house martin showing lines of arrested growth. 42
3.4. Cortical cross section of a femur of a moa, *Euryapteryx geranoides*,
showing lines of arrested growth. 42
3.5. Size of adult and immature chicken femora from the Romano-British
temple at Uley. 44
3.6. Humeri of immature gulls from Nipisat I, Greenland. 45
3.7. Stages in the development of the spur in the Galliformes. 48
3.8. Tarsometatarsi of a modern hen with spurs and an unfused spur
from Kalaureia. 49
3.9. Medullary bone: cross section of a long bone; cross sections through
femora; and a longitudinally sectioned femora. 50
3.10. Percentage of chicken elements with medullary bone at Roman port
of Berenike. 52
3.11. Size of long bones of whooper swan and coracoid of the extinct
California turkey showing sexual dimorphism. 54
3.12. Fractured humerus of a goose healed with angulation from medieval
York. 57
3.13. Humerus of a chicken with avian osteopetrosis from medieval
Lincoln. 61
4.1. ‘Science is Measurement’, 1878, by Henry Stacy Marks. 70
4.2. Distinctions in the humerus and ulna of the domestic chicken,
willow grouse, and black grouse. 71
4.3. Size of tarsometatarsi of willow grouse and ptarmigan from
Brillenhöhle. 72
4.4. Sterna of wild turkey and domestic turkey. 73
4.5. Size of humerus of ducks from Tell Mureybet compared with ranges
for recent ducks. 75
4.6. Identification of pigeon species: proximal ulna and proximal
tarsometatarsus. 76
4.7. Furcula and sternum of swans, *Cygns olor* and *C. cygnus*. 77
4.8. Scatter diagram of femur measurements of carrion crow and rook. 78
4.9. Scale of usefulness for identification, most diagnostic elements, and
most frequent elements in Spanish assemblages. 80
4.10. Birds from Mesolithic site of Ølby Ling: rank order × log abundance
of species. 86
4.11. Birds from Mesolithic site of Ertebølle: rank order × log abundance
of species. 87
4.12. Number of identified specimens and minimum number of elements of chickens from Carisbrooke Castle. 90
4.13. Numbers and bone weight of the bird remains from Schipluiden. 91
4.14. Biomass of birds at Túnel VII. 92
4.15. Comparison of kilocalories and meat weight of mammals, birds, fish, and molluscs at Túnel VII. 96

5.1. Percentage of bird bones from sieved and unsieved deposits at Haddenham. 103
5.2. Bones on the floor of Moa Cave, Honeycomb Hill Cave system. 105
5.3. Carcass of a manx shearwater killed by a great black-backed gull. 107
5.4. Element survival in American coots in bird- and mammal-scavenged carcasses. 108
5.5. Element survival in manx shearwaters killed by gulls on Skomer Island. 108
5.6. Weathering on the proximal femur of a pigeon after ten months on a cave floor. 112
5.7. Schematic drawings of tunnels made by bioeroding organisms on the bone surface. 114
5.8. Pellets of a bald eagle showing bone fragments in the feather matrix. 117
5.9. Beak impact of an eagle owl on the humeri of pigeons. 118
5.10. Humeri of pigeons, showing the beak impact of a peregrine falcon. 118
5.11. Furcula and sternum of a manx shearwater, showing beak damage from a great black-backed gull. 119
5.12. Pelvis of a moa, showing a notch made by the beak of a Haast’s eagle. 119
5.13. Bones of grouse from the pellets of a gyrfalcon, showing evidence of digestion. 120
5.14. Marks of gnawing of bird bones by mammals. 123
5.15. Sequence of gnawing damage, probably by dogs, on tarsometatarsi of domestic geese from medieval Dublin. 124
5.16. Proportion of wing to leg bones in pellets and in uneaten food remains. 126
5.17. Proportion of core to limb bones in pellets and in uneaten food remains. 127

6.1. Cut marks on humeri from Grotta Romanelli and zones where cut marks were recorded. 132
6.2. Location of disarticulation and filleting cuts on the skeleton of grouse from La Vache. 134
6.3. Location and number of cut marks on humeri at Tài 2. 135
6.4. Location of cut marks on bones of snowy owl from Bois-Ragot. 137
6.5. Location of cut marks on phalanges of snowy owl from Bois-Ragot. 140
6.6. Distal tibiotarsus of a great auk with a cut mark on the condyle. 141
6.7. Peacock tarsometatarsus from Carisbrooke Castle with cut marks round the distal condyles. 141
6.8. Butchered coracoid of a great auk from Hornish, showing surface marks and final chop. 142
6.9. Butchered synsacra of domestic geese from medieval Dublin, chopped transversely. 144
6.10. Notches and perforations in the olecranon fossa of humeri of grouse, made by overextending the joint. 145
6.11. ‘Peeling’ marks on the proximal and distal articulations of a left ulna of a snowy owl. 145
6.12. Snapped-off wing bones of thrushes from the house of Amarantus, Pompeii. 146
6.13. Oval holes, probably human bite marks, on humeri of grouse from La Vache. 147
6.14. Humeri and ulnae of gulls from Greenland sites, apparently chewed by humans. 148
6.15. Location of traces of charring on bird bones from La Vache. 151
6.16. Charring on distal humeri of male and female great bustards from Klisoura Cave. 152
6.17. Elements of thrushes and other passerines from the refectory and kitchen of St Gregory’s Priory. 153
6.18. Percentages of dry and fresh fractures on the bird bones from Ajvide. 154
6.19. Frequency of wing elements of aquatic birds from British Camp, San Juan Islands. 158
6.20. Regression of bulk density to cortical wall thickness for 65 ducks and grebes. 160
6.21. Relationship between number of elements and bone density of duck remains from the Yerba Buena shellmound. 161
7.1. Gathering eggs from the sea cliffs in Orkney, nineteenth century. 166
7.2. Scanning electron micrographs of a cross section through eggshell of a turkey and greater flamingo. 171
7.3. Diagrammatic radial cross section through eggshell of Cygninae, Anserinae, and Anatinae. 172
7.4. Scanning electron micrograph of a cross section through eggshell of a guillemot, penetrated by a pore canal. 173
7.5. Thickness of eggshell fragments from Roman and medieval deposits at Causeway Lane, Leicester. 175
7.6. Reconstructed moa egg, from Shag Mouth, and fetal bones. 180
7.7. Manufacture of beads of ostrich eggshell from archaeological sites in the Western Cape. 182
8.1. Nuchanulth cloak decorated with appliquéd feathers of the bald eagle. 187
8.2. Wing feathers of the domestic Poitou goose, showing the different names given to the feathers and their specialised uses. 190
8.3. Topography of a contour feather, showing calamus, rachis, vane, barbs, and barbules. 191
8.4. Wing showing the primary and secondary flight feathers and the skeletal elements to which they are attached. 192
8.5. Bunch of feathers, probably of chicken, from the Roman quarry camp at Mons Claudianus. 194
8.6. Types of damage to feathers by avian and mammalian predators. 197
8.7. Cut or notched feather of a white-tailed ptarmigan from the Yukon. 198
8.8. Elements present of geese, crane, partridges, and griffon vulture at Jerf el Ahmar. 201
8.9. Bones from the left wing of a white-tailed sea eagle from The Farm Beneath the Sand, probably collected for feathers or used as a brush. 202
8.10. Preparation and sewing of clothes from feathered skins of eider ducks. 205
9.1. Neolithic bird bone tools from Aartswoud, the Netherlands. 211
9.2. Bird bone awls from New Zealand. 214
9.3. Neolithic bird bone point from De Bruin, the Netherlands. 215
9.4. Needle manufacture and bird bone needles from Amaknak, Aleutian Islands. 216
9.5. Pipes (flutes) from Isturitz Cave, made on the ulnae of black vultures. 219
9.6. Flute with worn fingerholes from Visegrad, made on the ulna of an eagle. 220
9.7. Five pieces of Islamic bird bone musical instruments from Mértola, Portugal. 220
9.8. Method of manufacture of annular beads at Qumran Cave using the ulna of a corvid. 222
9.9. Maxilla cut from the skull of a spoonbill from a Hungarian Iron Age site. 223
xvi figures

9.10. Fishhooks and offcuts of moa bone from Archaic sites in New Zealand showing method of manufacture. 224
9.11. Perforated claw of an eagle owl from Palaeolithic Tibocoia Cave. 225
9.12. Engraved proximal phalanges of a snowy owl from Bois-Ragot. 228
10.1. Birds from Tell Mureybet shown in aggregation classes. 236
10.2. Magellanic penguins at the breeding site by the Skyring Sea, Patagonia. 238
10.3. Mesolithic bone arrowheads from the Upper Volga region, probably used for hunting birds. 242
10.4. Snare with 21 loops, used by the Ona of Patagonia for catching ducks. 244
10.5. Underwater net for catching ducks and coots, recently in use in Perpignan. 245
10.6. Implements for catching puffins on the Faroe Islands, early twentieth century. 246
10.7. Late nineteenth-century wildfowlers on Orkney with puffins and guillemots. 247
10.8. Fixed decoy for capturing ducks in Borough Fen, Lincolnshire. 249
10.9. Relative intensity of Mesolithic and Neolithic wildfowling in northern Europe and the Baltic region. 251
10.10. Numbers (NISP) of mammal, bird, and fish remains from High Arctic sites. 254
10.11. Numbers (NISP) of marine mammals, terrestrial mammals, birds, and fish from Ponsonby. 255
10.12. Season of occupation of Nipisat I, based on the presence of medullary bone and immature birds. 259
10.13. Remains of preserved songthrushes in a pottery vessel from a Roman settlement at Nijmegen. 260
10.14. Relative frequencies of slow or sessile prey versus birds and lagomorphs in Palaeolithic assemblages. 262
11.1. Examples of chicken tarsometatarsi from the Roman castellum at Velsen. 275
11.2. Distribution of length of spurred and unspurred chicken tarsometatarsi from Roman sites in northern France. 277
11.3. Distribution of length of chicken tarsometatarsi from Sagalassos, showing the presence of two types or breeds. 278
11.4. Size of tarsometatarsi of chickens from the Roman castellum at Velsen, suggesting a single type or breed. 278
11.5. Size change in chickens from northern France over time, in relation to reference chickens.
11.6. Seasonal consumption of capons, chickens, and eggs in the medieval Suffolk household of Alice de Bryene.
11.7. Comparison of the percentage of juvenile domestic chickens and geese from medieval Norwich.
12.1. Relative numbers of artiodactyl, lagomorph, and turkey at two Pueblo sites.
12.2. Goose bones from Tell el-Maskhuta compared with modern geese.
12.3. Relative percentages of goose and duck from Saxon sites in southern England.
12.4. Length and means of carpometacarpi of domestic geese from medieval Winchester.
12.5. Seasonal consumption of domestic geese and pigeons in the medieval household of Alice de Bryene.
12.6. Feral Muscovy ducks with mixed plumage from Ecuador.
12.7. Dovecot from the sixteenth century AD at the Château de Puyguilhem.
12.8. Skull of a guineafowl from medieval Genoa.
13.1. Method of capturing hawks in the Netherlands in the nineteenth century AD.
13.2. Hittite engravings of the first millennium BC, showing hawking equipment.
13.3. Tail feather of a Korean hawk with identity tag and bell.
13.4. Relative numbers of wild birds from the Slavonic stronghold at Oldenburg.
13.5. Circular brick cockpit in the Welsh National History Museum, St Fagans.
13.6. Modified spurs: cock with artificial metal spurs, and tarsometatarsus with spur sawn off.
13.7. Carpometacarpus and coracoid of a parrot, from Norwich, seventeenth century AD.
14.1. Bas relief on a pillar at Göbekli Tepe, showing two cranes, lines depicting snakes, and pictograms.
14.2. Rock engraving of a 'Bird-Man', a human figure with the head of a bird, from Rapa Nui or Easter Island.
14.3. Frequency of mammals and domestic chicken in Roman-period settlements and cemeteries compared with references in cookery books. 341
14.4. Grave gifts on dishes from a cemetery in Nijmegen, fourth century AD. 341
14.5. Grave of a Roman soldier from Aquincum-Testverhegy buried with a chicken and a young pig. 342
14.6. Map of Sweden, showing graves with raptor burials, sixth to eleventh century AD. 346
14.7. Burnt chicken bones from domestic sacrifices at the house and bar of Amarantus at Pompeii. 350
14.8. Mummified saker falcon from Saqqara, Egypt: external view and X-ray view. 353
14.9. Cut marks on the radius and ulna of a crane from Catal Höyük, suggesting the wing had been worn or suspended. 355
14.10. Temporal bone of the skull of a griffon vulture from Jerf el Ahmar, with cut marks from scalping. 359
15.1. Map showing records of grouse in Europe from Isotope Stages 5a–5d. 370
15.2. Environmental conditions at Ain Mallaha in the eleventh to ninth millennia BC, inferred from breeding, resident, and migratory species. 372
15.3. Flightless cormorant on the Galapagos Islands. 383
15.4. Decline in numbers of great auk as a percentage of all birds at two sites on the island of Sanday, Orkney. 385
15.5. Hypothesised decline to extinction in New Zealand of Finsch’s duck. 386
15.6. Decline in numbers of bones and species of native landbirds on Mangaia, Cook Islands. 389
15.7. Hypothetical example of how cultural factors affected the number of avian extinctions on Pacific oceanic islands. 390
15.8. Size of carpometacarpus of crane from Late Pleistocene and Holocene Europe. 391
16.1. Pathways by which bird and other animal remains become incorporated into settlement refuse. 394
Appendix figure 1. Bone zones: humerus, coracoid, scapula, ulna, radius, carpometacarpus, furcula, and sternum. 417
Appendix figure 2. Bone zones: pelvis, synsacrum, femur, tibiotarsus, and tarsometatarsus. 418
TABLES

2.1. Developmental states at hatching
2.2. Scientific and anglicised names of bird bones
2.3. Phalanges of the foot
3.1. Bones which fuse after hatching
3.2. Age of fusion in bones of domestic chicken
3.3. Evidence of age in skeletons of four immature domestic geese
3.4. Spur lengths in domestic chicken and turkey at different ages
3.5. Age classes and bone length of the sacred ibis, from Tuna el-Gebel
3.6. Four age categories for recording excavated bird bones
3.7. Presence of medullary bone in the different elements of chicken from sites in England
4.1. Bone length range of male and female wild turkeys
4.2. Definitions of zones on avian limb bones
4.3. Size categories used for recording bird bones
4.4. Identified and unidentified bird remains from Eynsham Abbey by size class
4.5. Database for chicken tibiotarsi from Carisbrooke Castle, showing bone zones
4.6. Percentage NISP of domestic fowl compared with sheep/goat on Romano-British sites
4.7. Percentage bone in the carcass weight of seven mammals and ten birds
4.8. Weight and number of bones of food animals, horses, and dogs from the Mithraic temple at Deggendorf
4.9. Ranking of elements to be recorded 98
5.1. Disarticulation sequence in ice-trapped American coots, birds of various species in a field, and manx shearwaters 106
5.2. Dispersal sequences for bones of rock dove in a flume 111
5.3. Weathering categories for bird bones, correlated with stages for large mammals and microfauna 113
5.4. Survival of pigeon long bones in pellets of eagle owl and in food remains of peregrine falcon 125
6.1. Criteria to consider when identifying whether an assemblage is natural or anthropogenic 131
6.2. Location of disarticulation and filleting cuts produced in experimental butchering of grey partridge 133
6.3. Percentage of major elements with cut marks from eight Late Upper Palaeolithic sites 136
6.4. Number and per cent of cut marks on remains of snowy owl from Bois-Ragot 139
6.5. Number and location of chop marks observed on bird bones from St Gregory’s Priory 143
6.6. Incidence of damaged articular ends of radii and ulnae of gulls from Tofts Ness 149
6.7. Ratio of anterior to posterior elements from Lovelock Cave and Humboldt Lakebed Site 157
6.8. Average bulk density for five skeletal elements of weak and strong flyers 159
7.1. Thickness range and other characteristics of eggshell of some common families 172
7.2. Eggshell thickness of selected domestic and wild species 174
7.3. Criteria to be taken into account in identifying flasks of ostrich eggshell at archaeological sites 181
8.1. Identification, description, and date of ancient feathers associated with artefacts recovered from ice patches in the Yukon 196
9.1. Bird species represented in artefacts and food remains at Dutch Neolithic sites 210
9.2. Element distribution of griffon vulture, *Gyps fulvus*, from Jerf el Ahmar, Syria 227
10.1. Weights of selected birds in approximate size classes 232
10.2. Nutritional value (kilocalories, protein, and fat) of some domestic and wild birds 234
10.3. Number of identified specimens of birds and mammals from Skyring Sea sites in Patagonia 235
10.4. Species and age classes of birds from the Paternoster site 240
10.5. Species with more than 500 identified bones from Upper Palaeolithic levels at Grotta Romanelli, Italy 262
10.6. Birds and mammals from Magdalenian and Azilian levels at Taï 2 264
11.1. Some of the names given to chickens of different ages and sexes 268
11.2. Condition of tarsometatarsus and spur in domestic chickens, showing interpretations of the presence and absence of a spur or spur scar 274
11.3. Incidence of medullary bone in chicken femora from Roman and medieval sites in southern Britain 284
12.1. Domesticated and possible domesticated birds 288
12.2. Plumage characteristics of some subspecies of turkey, Meleagris gallopavo 291
12.3. Biometric and molecular identification of ancient goose bones from sites in England 297
12.4. Archaeological finds of domestic pigeon from Central Europe and Scandinavia in the Late Iron Age and Roman period 307
13.1. Raptors used for hawking in Europe and main prey species 318
14.1. Burials of scarlet macaw, military macaw, and thick-billed parrot from Mimbres sites in New Mexico 347
14.2. Element distribution of red-tailed hawks from a pit in the settlement of La Playa, Sonora, Mexico 357
14.3. Ritual refuse: wild birds from a D-shaped structure at Sand Canyon Pueblo 361
14.4. Worldwide beliefs about the raven, Corvus corax 363
15.1. Bird species from four Late Pleistocene cave deposits on Gibraltar with positive evidence of breeding 368
15.2. Birds from an Early to Mid Holocene lakebed in the Erg of Murzuk 373
15.3. Some Holocene records of the house sparrow in Europe 377
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.4</td>
<td>Numbers of extinct Holocene birds by family</td>
<td>382</td>
</tr>
<tr>
<td>15.5</td>
<td>Summary of the vertebrate fauna from Tangatatau Rockshelter</td>
<td>388</td>
</tr>
<tr>
<td>16.1</td>
<td>Summary of the anatomical elements which give the best information on identification, ageing, sex distinctions, butchery, and other uses</td>
<td>398</td>
</tr>
</tbody>
</table>
When I started studying bird remains from archaeological sites in Scotland and England in the 1980s, I would have been very grateful for a book which contained guidance on how to set about it and some ideas on how the bones might be interpreted. Later, when teaching the zooarchaeology of bird remains, I would also have found such a book very useful, so eventually I decided to write it myself. The literature on birds in archaeology has expanded greatly in the past 25 years, but it is not easily available except to specialists, as it is scattered in journals and collections of papers which have been published all over the world. This is my attempt to bring the scattered material together. It is intended as a guide to the subject, a synthesis of current research, and a basis for research in the future.

The early chapters are the practical ones. The later chapters contain surveys of the literature on capturing wild birds and their place in diet, the history and process of domestication, and the role of birds in religion, ritual, sport, and pleasure. One chapter is concerned with the role of bird remains in reconstructing past environments: the ways in which birds have been affected by human predation and environmental and climate change. The non-specialist reader who is more interested in birds and people in the past than in the minutiae of analysis may prefer to read the later chapters first. Conscious of the fact that the general reader will be interested in the history of the interactions between people and birds, I have included a very brief summary of the role of birds in early human history in Chapter 10. Otherwise, topics rather than geography and time have dictated the organisation of chapters.

The names of the birds provided the first challenge. In the end, I settled on using the vernacular English name and on using the lower case rather than the upper case in bird names, to conform to common and archaeological usage rather than to scientific ornithological usage. Where a species is found on both sides of the Atlantic, I have used the American or English vernacular name as appropriate. A list of the
English and scientific names used in the text is given in Appendix 1. So far as the domestic chicken is concerned, although it is historically correct to refer to it as ‘domestic fowl’ in scientific writing, I have used ‘chicken’, as in colloquial English usage.

Measurements quoted are metric, but imperial measurements are quoted and the conversion to metric added when research by scholars from the United States is discussed. I have used BC and AD (rather than BCE) and BP (Before Present) according to which is relevant for the area and date in question. Radiocarbon dates, if calibrated, follow the calibration of the original authors.
ACKNOWLEDGMENTS

Many colleagues have contributed to this book, and I am very grateful to them all. I particularly thank Tony Waldron, who wrote the section on pathology in Chapter 3 and commented on some other chapters. I owe a great debt to the long-suffering colleagues who read and commented on various chapters: Umberto Albarella, Zbigniew Bochenski, Jo Cooper, Carla Dove, Erica Gál, Véronique Laroulandie, Roel Lauwerier, Christine Lefèvre, Adrienne Powell, Wietske Prummel, Alice Storey, Naomi Sykes, and Derek Yalden.

I also heartily thank those colleagues and friends who have supplied offprints, suggestions, and photographs. As well as the people already mentioned, this group includes Atholl Anderson, Don Brothwell, Alan Cohen, Janet Davidson, Francesco D’Errico, Angela von den Driesch, Jonathan Driver, Inge Bodker Enghoff, Jordi Estevez, Marta Moreno Garcia, Gitte Gottfredsen, Lionel Gourichon, Yannis Hamilakis, Sheila Hamilton-Dyer, Rachel Hutton-MacDonald, Andrew Kandel, Foss Leach, Alison Locker, Kevin MacDonald, Kristin Mannermaa, Tom McGovern, Konstantin Mikhailov, Arturo Morales, Natalie Munro, Dimitra Mylona, Jill Oakes, Terry O’Connor, Joris Peters, Adrienne Powell, Rick Riewe, Peter Rowley-Conwy, Nerissa Russell, Jane Sidell, Alessandra Spinetti, David Stone, Antonio Tagliocozzo, Samuel Turvey, Tommy Tyrberg, Wim Van Neer, Barbara West, Becky Wigen, Loes van Wijngaarden-Bakker, Trevor Worthy, Andrew Yeoman, and Jorn Zeiler.

I also warmly thank Humphrey Serjeantson and Deirdre Serjeantson for editorial help and Hella Oliver for assistance with German translation. Finally, my most grateful thanks go to Penny Copeland, who drew or redrew many of the illustrations, including all those not otherwise acknowledged.

The following institutions have kindly given permission for the reproduction of photographs and illustrations: the University of California Press, Cambridge University Press, the Canterbury Archaeological Trust, Chicago University Press, the
Deutsches Archäologisches Institut of Berlin, the Institute of Systematics and Evolution of Animals of the Polish Academy of Sciences, the Orkney Library and Archive, the Natural History Museum, London, the Staatssammlung für Anthropologie und Paläoanatomie, Munich, and Winchester Museums.