Bryophyte Ecology and Climate Change

Bryophytes, especially mosses, represent a largely untapped resource for monitoring and indicating effects of climate change on the living environment. They are tied very closely to the external environment and have been likened to “canaries in the coal mine.” *Bryophyte Ecology and Climate Change* is the first book to bring together a diverse array of research in bryophyte ecology, including physiology, desiccation tolerance, photosynthesis, and temperature and UV responses, under the umbrella of climate change. It covers a great variety of ecosystems in which bryophytes are important, including aquatic, desert, tropical, boreal, alpine, Antarctic, and *Sphagnum*-dominated wetlands, and considers the effects of climate change on the distribution of common and rare species as well as the computer modeling of future changes. This book should be of particular value to individuals, libraries, and research institutions interested in global climate change.

ZOLTÁN TUBA (1951–2009) was an internationally known ecophysiologist based at Szent Istvan University, Gödöllö, Hungary. He established the first experimental Hungarian research station and field laboratory at Gödöllö for research on global climate change. His research covered a broad range of topics and he was one of the first to work on desiccation tolerance of bryophytes under elevated CO₂.

NANCY SLACK teaches Bryophyte Ecology at the Humboldt Field Research Institute (ME) and is Professor of Biology emerita at the Sage Colleges, Troy, NY. She has conducted research in bryology and plant ecology in the USA, Canada, and Sweden, especially on peatland and alpine ecosystems. She was recently President of the American Bryological and Lichenological Society (ABLS).

LLOYD STARK is a plant reproductive ecologist interested in explanations of unbalanced sex ratios in bryophytes, how mosses respond to abiotic stress and climate change, and the factors limiting sexual reproduction in mosses. Lloyd is currently an Associate Professor in the School of Life Sciences at the University of Nevada, Las Vegas, where he has recently been honored as the College of Sciences Teacher of the Year for his courses in ecology and general biology.
Bryophyte Ecology and Climate Change

Zoltán Tuba,
Nancy G. Slack,
and
Lloyd R. Stark
This book is dedicated to Zoltán Tuba (1951–2009)
Contents

List of contributors xi
Preface xvii

I Introductory Chapters

1 The Ecological Value of Bryophytes as Indicators of Climate Change 3
Nancy G. Slack

2 Bryophyte Physiological Processes in a Changing Climate: an Overview 13
Zoltán Tuba

II Ecophysiology

3 Climatic Responses and Limits of Bryophytes: Comparisons and Contrasts with Vascular Plants 35
Michael C. F. Proctor

4 Effects of Elevated Air CO₂ Concentration on Bryophytes: a Review 55
Zoltán Tuba, Edit Ötvös, and Ildikó Jócsák

5 Seasonal and Interannual Variability of Light and UV Acclimation in Mosses 71
Niina M. Lappalainen, Anna Hyryläinen, and Satu Huttunen

III Aquatic Bryophytes

6 Ecological and Physiological Effects of Changing Climate on Aquatic Bryophytes 93
Janice M. Glimé
viii Contents

7 Aquatic Bryophytes under Ultraviolet Radiation 115
 JAVIER MARTÍNEZ-ABAIGAR AND ENCARNACIÓN NÚÑEZ-OLIVERA

IV Desert and Tropical Ecosystems

8 Responses of a Biological Crust Moss to Increased Monsoon Precipitation and Nitrogen Deposition in the Mojave Desert 149
 LLOYD R. STARK, NICHOLAS MCLETCHIE, STANLEY D. SMITH, AND MELVIN J. OLIVER

9 Ecology of Bryophytes in Mojave Desert Biological Soil Crusts: Effects of Elevated CO₂ on Sex Expression, Stress Tolerance, and Productivity in the Moss Syntrichia caninervis Mitt. 169
 JOHN C. BRINDA, CATHERINE FERNANDO, AND LLOYD R. STARK

10 Responses of Epiphytic Bryophyte Communities to Simulated Climate Change in the Tropics 191
 JORGE JÁCOME, ROBERT GRADSTEIN, AND MICHAEL KESSLER

V Alpine, Arctic, and Antarctic Ecosystems

11 Effects of Climate Change on Tundra Bryophytes 211
 ANNIKA K. JÄGERBRAND, ROBERT G. BJÖRK, TERRY CALLAGHAN, AND RODNEY D. SEPPELT

12 Alpine Bryophytes as Indicators for Climate Change: a Case Study from the Austrian Alps 237
 DANIELA HOHENWALLNER, HAROLD GUSTAV ZECHMEISTER, DIETMAR MOSER, HARALD PAULI, MICHAEL GOTTFRIED, KARL REITER, AND GEORG GRABHERR

13 Bryophytes and Lichens in a Changing Climate: An Antarctic Perspective 251
 RODNEY D. SEPPELT

VI Sphagnum and Peatlands

14 Living on the Edge: The Effects of Drought on Canada’s Western Boreal Peatlands 277
 MELANIE A. VILE, KIMBERLI D. SCOTT, ERIN BRAULT, R. KELMAN WIEDER, AND DALE H. VITT

15 The Structure and Functional Features of Sphagnum Cover of the Northern West Siberian Mires in Connection with Forecasting Global Environmental and Climatic Changes 299
 ALEKSEI V. NAUMOV AND NATALIA P. KOSEKH
Contents ix

16 The Southernmost Sphagnum-dominated Mires on the Plains of Europe: Formation, Secondary Succession, Degradation, and Protection 317
JÁNOS NAGY

VII Changes in Bryophyte Distribution with Climate Change: Data and Models

17 The Role of Bryophyte Paleoecology in Quaternary Climate Reconstructions 335
GUSZTÁV JAKAB AND PÁL SÜMEGI

18 Signs of Climate Change in the Bryoflora of Hungary 359
TAMÁS PÓCS

19 Can the Effects of Climate Change on British Bryophytes be Distinguished from those Resulting from Other Environmental Changes? 371
JEFFREY W. BATES AND CHRISTOPHER D. PRESTON

20 Climate Change and Protected Areas: How well do British Rare Bryophytes Fare? 409
BARBARA J. ANDERSON AND RALF OHLEMÜLLER

21 Modeling the Distribution of Sematophyllum substrumulosum (Hampe) E. Britton as a Signal of Climatic Changes in Europe 427
CECÍLIA SÉRGIO, RUI FIGUEIRA, AND RUI MENEZES

22 Modeling Bryophyte Productivity Across Gradients of Water Availability Using Canopy Form–Function Relationships 441
STEVEN K. RICE, NATHALINEAL, JESSE MANGO, AND KELLY BLACK

VIII Conclusions

23 Bryophytes as Predictors of Climate Change 461
L. DENNIS GIGNAC

24 Conclusions and Future Research 483
NANCY G. SLACK AND LLOYD R. STARK

Index 491
Contributors

Anderson, Barbara J.
UKPopNet, Biology Department University of York, P.O. Box 373, York YO10 5YW, UK

Bates, Jeffrey W.
Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, Berkshire SL5 7PY, UK

Björk, Robert G.
Department of Plant and Environmental Sciences, Göteborg University, P.O. Box 461, SE 405 30 Gothenburg, Sweden

Black, Kelly
Department of Mathematics and Computer Science, Clarkson University, Potsdam, NY 13699, USA

Brault, Erin
Department of Biology, Villanova University, Villanova, PA 19085, USA

Brinda, John C.
School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, NV 89154–4004, USA

Callaghan, Terry
Abisko Scientific Research Station, 981 07 Abisko, Sweden

Fernando, Catherine
School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, NV 89154–4004, USA

Figueira, Rui
Instituto de Investigação Científica Tropical, Jardim Botânico Tropical, Trav. Conde da Ribeira, 9, 1300–142 Lisboa, Portugal
xii List of contributors

Gignac, L. Dennis
Campus Saint-Jean, University of Alberta, Edmonton, Alberta, Canada T6C4G9

Glime, Janice M.
Michigan Technological University, 219 Hubbell Street, Houghton, MI 49931, USA

Gottfried, Michael
University of Vienna, Department of Conservation Biology, Vegetation Ecology & Landscape Biology, Rennweg 14, 1030 Vienna, Austria

Grabherr, Georg
University of Vienna, Department of Conservation Biology, Vegetation Ecology & Landscape Biology, Rennweg 14, 1030 Vienna, Austria

Gradstein, S. Robbert
Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Goettingen, Germany

Hohenwallner, Daniela
Federal Environment Agency Austria, Spittelauer Lände 5, 1090 Wien, Austria

Huttunen, Satu
Department of Biology, University of Oulu, P.O. Box 3000, FIN-90014 University of Oulu, Finland

Hyryläinen, Anna
Department of Biology, University of Oulu, P.O. Box 3000, FIN-90014 University of Oulu, Finland

Jácome, Jorge
Departamento de Biología, Pontificia Universidad Javeriana, Carrera 7 No 43–82, Bogotá, Colombia

Jägerbrand, Annika K.
Swedish National Road and Transport Research Institute, SE-581 95 Linköping, Sweden

Jakab, Gusztáv
Institute of Environmental Sciences, Water and Environmental Management Faculty, Szent István University, 5540-Szarvas, Szabadság Str. 1–3, Hungary

Jócsák, Ildikó
Institute of Botany and Ecophysiology, (Biological PhD School, Ecological Programme), Szent István University, Páter K. u. 1., H-2103 Gödöllő, Hungary
Kessler, Michael
Institute of Systematic Botany, University of Zürich, Zollikerstraße 107, 8008 Zürich, Switzerland

Kosykh, N. P.
Institute of Soil Science and Agrochemistry SB RAS, Novosibirsk, Russia

Lappalainen, Niina M.
Department of Biology, University of Oulu, P.O. Box 3000, FIN-90014 University of Oulu, Finland

Mango, Jesse
Department of Biological Sciences, Union College, Schenectady, NY 12308, USA

Martínez-Abaigar, Javier
Universidad de La Rioja, Complejo Científico-Tecnológico, Avda. Madre de Dios 51, 26006 Logroño (La Rioja), Spain

McLetchie, D. Nicholas
Department of Biology, 101 Morgan Bld., University of Kentucky, Lexington, KY 40506-0225, USA

Menezes, Rui
CERENA – Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Av. Rovisco Pais, 1049–001 Lisboa, Portugal

Moser, Dietmar
Federal Environment Agency Austria, Spittelauer Lände 5, 1090 Wien, Austria

Nagy, János
Institute of Botany and Plant Ecophysiology, Szent István University, Gödöllő, 2103, Hungary

Naumov, Aleksei V.
Institute of Soil Science and Agrochemistry SB RAS, Novosibirsk, Russia

Neal, Nathali
Department of Biological Sciences, Union College, Schenectady, NY 12308, USA

Nuñez-Olivera, Encarnación
Universidad de La Rioja, Complejo Científico-Tecnológico, Avda. Madre de Dios 51, 26006 Logroño (La Rioja), Spain

Ohlemüller, Ralf
Institute of Hazard and Risk Research (IHRR) & School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
xiv List of contributors

Oliver, Melvin J.
Plant Genetics Research Group, USDA-ARS-MWA, University of Missouri, 204 Curtis Hall, Columbia, MO 65211, USA

Ótvoös, Edit
Institute of Botany and Ecophysiology, Szent István University, Páter K. u. 1., H-2103 Gödöllő, Hungary

Pauli, Harald
University of Vienna, Department of Conservation Biology, Vegetation Ecology & Landscape Biology, Rennweg 14, 1030 Vienna, Austria

Pócs, Tamás
Department of Botany, Eszterházy College, Eger, Pf. 43, H-3301, Hungary

Preston, Christopher D.
Biological Records Centre, CEH Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK

Proctor, Michael C. F.
School of Biosciences, University of Exeter, The Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK

Reiter, Karl
University of Vienna, Department of Conservation Biology, Vegetation Ecology & Landscape Biology, Rennweg 14, 1030 Vienna, Austria

Rice, Steven
Department of Biological Sciences, Union College, Schenectady, NY 12308, USA

Scott, Kimberli D.
Department of Biology, Villanova University, Villanova, PA 19085, USA

Seppelt, Rodney D.
Australian Antarctic Division, Channel Highway, Kingston 7050, Tasmania, Australia

Sérgio, Cecília
Universidade de Lisboa, Museu Nacional de História Natural, Jardim Botânico. CBA-Centro de Biologia Ambiental, Rua da Escola Politécnica 58, 1269–170 Lisboa, Portugal

Slack, Nancy G.
Department of Biology, The Sage Colleges, 45 Ferry Street, Troy, NY 12180, USA
List of contributors xv

Smith, Stanley D.
School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, NV 89154–4004, USA

Stark, Lloyd R.
School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, NV 89154–4004, USA

Sümegi, Pál
Department of Geology and Palaeontology, University of Szeged, 6722-Szeged, Egyetem Str. 2–6, Hungary

Tuba, Zoltán
Institute of Botany and Ecophysiology, Szent István University, Páter K. u. 1., H-2103 Gödöllő, Hungary

Vile, Melanie A.
Department of Biology, Villanova University, Villanova, PA 19085, USA

Vitt, Dale H.
Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901, USA

Wieder, R. Kelman
Department of Biology, Villanova University, Villanova, PA 19085, USA

Zechmeister, Harald Gustav
University of Vienna, Department of Conservation Biology, Vegetation Ecology & Landscape Biology, Rennweg 14, 1030 Vienna, Austria
Preface

This book is dedicated to Zoltán Tuba. Its origin was a symposium entitled *Ecological Responses of Bryophytes to Changing Climate*. It was presented at the American Bryological and Lichenological Society (ABLS) meeting with the Botanical Society of America (BSA) in Chico, California, in 2006. Nancy Slack, then president of ABLS, and Zoltán Tuba of Gödöllő University, Hungary, organized the symposium, which included speakers from many different countries. An editor at Cambridge University Press (England) saw the program on the Internet and asked the organizers to write a book on this subject. All the symposium speakers agreed to contribute chapters; subsequently, others doing important work in this field were asked to join them. Zoltán Tuba worked on the book with Nancy Slack from 2006 until shortly before his untimely death at 58 in July 2009. In the fall of 2009 Lloyd R. Stark, an active researcher in this field and co-author of two of the chapters, agreed to work with Nancy Slack to finish the book. Zoltán was a major contributor to research in ecophysiology of bryophytes in relation to climate change, as well as in other fields. He will be greatly missed as a scientist as well as a friend and co-worker.

A number of people have written to the present editors about Zoltán. In addition, part of an obituary by Zoltán’s mentor, Professor Gábor Fekete: In Memoriam Zoltán Tuba (1951–2009), in *Acta Botanica Hungarica* vol. 52/1–2 (2010), is quoted here:

> On July 4, 2009, Professor Zoltán Tuba, a leading expert in plant ecophysiology, left us forever. Even though his tolerance and desire for life had been as strong as the intensity with which he had lived his life, the horrifying illness won over him after one-and-a-half years of heroic battle.
Zoltán was born in 1951 in Sátoraljaújhely in northern Hungary, and received a degree from József Attila University in Szeged. In 1976, wrote Professor Fekete, A young college student showed up in my office at the Department of Botany of the Hungarian Natural History Museum. He was Zoltán Tuba. His eyes reflected intelligence and his words were full of ambition.

Later, in 1978 they became colleagues at the Botanical Research Institute of the Hungarian Academy of Sciences, where Fekete was the leader of a research team. Professor Fekete wrote:

Zoltán Tuba started his work at an extraordinary pace. He wanted to become a great researcher. It did not matter whether there was twilight, rain, summer or winter, he always completed his scheduled fieldwork. In 1985 he was invited to the University of Agriculture at Gödöllő where he was a full professor from 1992, and a department chair.

Zoltán Tuba received a Doctor of Science degree in 1998 and directed doctoral studies in biology at Szent István University. Fekete continued, His dreams came true one after another. The establishment of a great scientific school without any local tradition... is unprecedented. Foreign scientists were a daily sight in the internationally renowned plant physiological laboratory... He developed the only postgraduate doctoral program in ecophysiology in Hungary. His exceptional achievements were acknowledged by the Hungarian Academy of Sciences with the establishment of a research group in plant ecology within his department.

Tuba himself was a visiting professor at the University of Karlsruhe and at Edinburgh and Exeter. His research had an enormous range, including much work on the desiccation tolerance strategies of plants. In terms of this book, one of his most important accomplishments was, in Fekete’s words:

He was among the first in Central and Eastern Europe to launch an experimental research program to study the ecological effects of climate change (rising atmospheric CO₂ levels and temperature). He established in 1993 an experimental research station and a field laboratory with CO₂ fumigation equipment at Gödöllő, which was regarded as one of the core projects of the Global Change and Terrestrial Ecosystems international research program.
Zoltán was one of the first to work on poikilohydric and desiccation-tolerant cryptogams (mainly bryophytes) under elevated CO$_2$ concentrations, the subject of one of his chapters in this book.

Fekete continued:

Zoltán was not an easygoing man. He did want to accomplish his far-reaching goals and ideas... He always focused on scientific goals and not on personal success. He was aware of the importance of teamwork... He generously supported his young colleagues, helped to build their careers, and introduced them into the international community.

Michael C. F. Proctor of Exeter University, who was Zoltán’s friend and colleague and the author of one of the chapters in this book, wrote:

I first met Zoltán Tuba at the meeting of the International Association of Bryologists in Budapest in 1985. He was an outgoing, energetic and enthusiastic young bryological physiologist who worked tirelessly to make sure we all had a good meeting and enjoyed Budapest. I met him again... when he was visiting the Department of Ecology and Natural Resources in Edinburgh. During the 1990s he and his colleagues spent time in my laboratory in Exeter and I made a number of visits to his department in Gödöllő. His department was small but enthusiastic and productive. Its interest ranged widely across ecophysiology, including bioindication of heavy metal and sulphur pollution, plant responses to elevated CO$_2$, aquatic vegetation, effects of drought in Hungarian calcareous and steppe grasslands, and desiccation tolerance. The department had an open-top chamber and later a free-air carbon-enrichment facility. The lab was like a family, with stresses and strains like all families, but close-knit nevertheless. Zoltán Tuba was the Professor, tireless in working for his department and its place in the world, ambitious for it, sometimes exasperating, quick to spot and try new opportunities, techniques or ideas, a driving force, an enabler, a catalyst. He got things done. He had the good fortune (or good judgment) to be supported by a strong, diverse and loyal team, whose aptitudes were complementary to one another and to his own.

Zoltán was a larger-than life person, sometimes impulsive, but kind, warm and very human. He was very much a family man. I look back with pleasure at time spent with Zoltán, Ildiko and their two boys... and on expeditions into the Hungarian countryside, and no less on their
visits to England. One of my abiding memories is of the four of them standing in the evening sunshine above the cliffs at Land’s End, looking out over the Atlantic. Zoltán will be sorely missed.

Zoltán’s close friend from Budapest and author of another chapter in this book, Tamás Pócs, wrote:

I knew Zoltán for more than 30 years, as we worked together at the Vacratot Ecological and Botanical Research Institute and even after he left to head the Gödöllő department, we kept close contact and were good friends until his death. He was a very straightforward man, who did not keep his opinion in secret... He supported all good ideas and involved in his research many talented young students and colleagues. It is typical for him, when he received the highest Hungarian award, the Szechenyi Prize for his scientific results, he did not use it for himself nor for his own research but started a foundation to support the higher education of talented secondary school students at his home school... He was a many-sided man, fond of geography, ethnography, history, literature, especially in his homeland from which he edited a monograph of 1800 pages, entitled “Bodrogkoz.” He was a man with a good sense of humour, always keeping up the mood of his company. He liked to live, liked good food and was a connoisseur of good wines... Before his death he was proposed to be a member of the Hungarian Academy of Sciences. To our greatest sorrow he could not live to see this honour.

Zoltán Tuba was fond of fieldwork, and continued to participate in field research until almost the end of his life. In recent years he traveled to India, Madagascar, and Brazil. In 1997, after the International Congress of Bryology near Beijing, many field trips were provided by the organizers. Zoltán Tuba and I (Nancy Slack) together with two other westerners and a larger number of Chinese scientists, chose to go to the far reaches of Sichuan Province. We traveled by mini-bus from Chengdu over the mountains to Jiuzhaigou, a national reserve with magnificent forests full of bryophytes. On our way, we came to an area of loess hills (loess is a deposit formed from wind-blown silt). Zoltán, a large man, hurried out of the mini-bus and scrambled up a loess hill, followed by myself. He was very excited because the vegetation was so similar to the loess vegetation he had studied in Hungary.

Even though much of his professional life took place in the laboratory and as an administrator, he was very much in touch with plant ecology and phytosociology in the field, in Hungary and elsewhere.
Zoltán Tuba was a man of great energy and enthusiasm. For Nancy Slack it was a pleasure to work on this book with him, and so sad that his life was cut short. As you can read in his introductory chapter, many of the aspects of bryophyte ecology with which he was concerned in his laboratory are presented by the authors of this book.

Michael Proctor,
Tamás Pócs, and
Nancy Slack