
COMPUTATIONAL SEMANTICS WITH
FUNCTIONAL PROGRAMMING

Computational semantics is the art and science of computing meaning in natural
language. The meaning of a sentence is derived from the meanings of the individual
words in it, and this process can be made so precise that it can be implemented
on a computer. Designed for students of linguistics, computer science, logic and
philosophy, this comprehensive text shows how to compute meaning using the
functional programming language Haskell. It deals with both denotational meaning
(where meaning comes from knowing the conditions of truth in situations), and
operational meaning (where meaning is an instruction for performing cognitive
action). Including a discussion of recent developments in logic, it will be invaluable
to linguistics students wanting to apply logic to their studies, logic students wishing
to learn how their subject can be applied to linguistics, and functional programmers
interested in natural language processing as a new application area.

jan van eijck is a Senior Researcher at CWI, the Centre for Mathematics and
Computer Science in Amsterdam, and Professor of Computational Linguistics at
Uil-OTS, the Research Institute for Language and Speech, Utrecht University.

christina unger is based in the Semantic Computing Group in the Cognitive
Interaction Technology Center of Excellence at the University of Bielefeld.

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-75760-7 - Computational Semantics with Functional Programming
Jan Van Eijck and Christina Unger
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521757607


COMPUTATIONAL SEMANTICS WITH
FUNCTIONAL PROGRAMMING

JAN VAN EIJCK AND CHRISTINA UNGER

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-75760-7 - Computational Semantics with Functional Programming
Jan Van Eijck and Christina Unger
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521757607


cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521757607

C© Jan van Eijck and Christina Unger 2010

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-76030-0 Hardback
ISBN 978-0-521-75760-7 Paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-75760-7 - Computational Semantics with Functional Programming
Jan Van Eijck and Christina Unger
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521757607


Contents

Foreword page ix
Preface xiii

1 Formal Study of Natural Language 1
1.1 The Study of Natural Language 1
1.2 Syntax, Semantics, and Pragmatics 3
1.3 The Purposes of Communication 5
1.4 Natural Languages and Formal Languages 8
1.5 What Formal Semantics is Not 10
1.6 Computational Semantics and Functional Programming 11
1.7 Overview of the Book 12
1.8 Further Reading 14

2 Lambda Calculus, Types, and Functional Programming 15
2.1 Sets and Set Notation 15
2.2 Relations 17
2.3 Functions 19
2.4 Lambda calculus 22
2.5 Types in Grammar and Computation 27
2.6 Functional Programming 30
2.7 Further reading 31

3 Functional Programming with Haskell 33
3.1 The Programming Language Haskell 33
3.2 Using the Book Code 34
3.3 First Experiments 35
3.4 Type Polymorphism 39
3.5 Recursion 40
3.6 List Types and List Comprehension 41
3.7 List processing with map and filter 43

v

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-75760-7 - Computational Semantics with Functional Programming
Jan Van Eijck and Christina Unger
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521757607


vi Contents

3.8 Function Composition, Conjunction, Disjunction, Quantification 44
3.9 Type Classes 45
3.10 Strings and Texts 47
3.11 Finnish Vowel Harmony 52
3.12 Identifiers in Haskell 55
3.13 User-defined Data Types and Pattern Matching 56
3.14 Application: Representing Phonemes 60
3.15 Further Reading 62

4 Formal Syntax for Fragments 63
4.1 Grammars for Games 63
4.2 A Fragment of English 68
4.3 A Language for Talking about Classes 71
4.4 Propositional Logic 72
4.5 Predicate Logic 75
4.6 Predicate Logical Formulas in Haskell 79
4.7 Adding Function Symbols 82
4.8 Further Reading 84

5 Formal Semantics for Fragments 87
5.1 Semantics of Sea Battle 87
5.2 Semantics of Propositional Logic 92
5.3 Propositional Reasoning in Haskell 94
5.4 Semantics of Mastermind 97
5.5 Semantics of Predicate Logic 100
5.6 Semantics of Natural Language Fragments 105
5.7 An Inference Engine with a Natural Language Interface 106
5.8 Further Reading 123

6 Model Checking with Predicate Logic 125
6.1 Linguistic Form and Translation Into Logic 125
6.2 Predicate Logic as Representation Language 127
6.3 Representing a Model for Predicate Logic 133
6.4 Evaluating Formulas in Models 139
6.5 Evaluating Formulas with Structured Terms 143
6.6 Further Reading 147

7 The Composition of Meaning in Natural Language 149
7.1 Rules of the Game 149
7.2 Quantification 150
7.3 The Language of Typed Logic and Its Semantics 164
7.4 Reducing Expressions of Typed Logic 168
7.5 Typed Meanings for Natural Language 173

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-75760-7 - Computational Semantics with Functional Programming
Jan Van Eijck and Christina Unger
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521757607


Contents vii

7.6 Implementing Semantic Interpretation 175
7.7 Handling Ambiguity 180
7.8 Further Reading 182

8 Extension and Intension 183
8.1 Sense and Reference, Intension and Extension 183
8.2 Intensional Interpretation 187
8.3 Intensional Constructs 192
8.4 Intensionalization 195
8.5 Intensional Models from Extensional Models 201
8.6 Further Reading 202

9 Parsing 205
9.1 Talking About Parse Trees 205
9.2 Recognizing and Parsing Context-Free Languages 211
9.3 Parsers and Parser Combinators 214
9.4 Features and Categories 223
9.5 Lexical Lookup and Scanning 226
9.6 Parsing Categories 235
9.7 Handling Extractions 239
9.8 Adding Semantics 251
9.9 Further Reading 260

10 Handling Relations and Scoping 261
10.1 Interpreting NP Lists 261
10.2 Generalized Relations 264
10.3 Boolean Algebras of Relations 269
10.4 Flexible Types for NP Interpretations 271
10.5 Scope Reversal of Quantifiers 272
10.6 Interpreting Verbs as Arbitrary Arity Relations 273
10.7 Relational Interpretation of NPs 276
10.8 Quantifier Scoping 278
10.9 Underspecified Logical Form 280
10.10 Further Reading 285

11 Continuation Passing Style Semantics 287
11.1 Continuation Passing Style Programming 287
11.2 Continuations as Abstractions over Context 289
11.3 Continuizing a Grammar 292
11.4 Implementing a Continuized Grammar 296
11.5 Scope Reversal by Means of Continuations 299
11.6 Further Reading 301

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-75760-7 - Computational Semantics with Functional Programming
Jan Van Eijck and Christina Unger
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521757607


viii Contents

12 Discourse Representation and Context 303
12.1 The Dynamics of Pronoun Linking 303
12.2 Abstraction over Context 308
12.3 Continuizing the Account 312
12.4 Implementing Discourse Representation 313
12.5 From Structure Trees to Dynamic Interpretation 322
12.6 Salience 329
12.7 Implementing Reference Resolution 333
12.8 Further Reading 349

13 Communication as Informative Action 351
13.1 Knowledge and Communication 351
13.2 Reasoning About Knowledge and Ignorance 355
13.3 A Language for Talking About (Common) Knowledge 357
13.4 Presuppositions and Common Knowledge 360
13.5 Adding Public Change 364
13.6 Yes/No Questions and Their Answers 366
13.7 Epistemic Model Checking 368
13.8 Further Reading 385

Afterword 387
Bibliography 389
Index 397

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-75760-7 - Computational Semantics with Functional Programming
Jan Van Eijck and Christina Unger
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521757607


Foreword

The view of computational semantics that informs and drives this book is one that
sees the computation of linguistic meaning as that of computing logically trans-
parent representations of meaning from “raw linguistic data”, linguistic input as it
reaches a recipient when he hears something or reads it, and to which he has to
attach a sense. The book abstracts away from the differences between hearing and
reading in that it assumes that the “raw data” have already been preprocessed as
strings of words. Such computations of meaning are generally assumed to involve
the computation of structure at several levels, minimally at a level of syntactic form
and then, via the syntactic structure obtained at that level, of the semantic repre-
sentation. This implies that in order to do computational semantics properly you
need proficiency in at least three things: (i) proficiency in computation (you need
to be proficient in the use of at least one suitable programming language), (ii) pro-
ficiency in syntax, and (iii) proficiency in semantics, in the more narrow sense in
which semantics is understood by many linguists, but also in a broader sense.

The message this book drives home is that computing semantic representations
from “raw data” isn’t all there is to computational semantics. Computing semantic
representations wouldn’t be of much use to us if, once we have constructed them,
there wouldn’t be anything we could do with them. But of course there is. One
thing we do with the semantic representations we construct from linguistic input
is to employ them as premises, usually in conjunction with representations we
already have, and that often come from other sources (e.g. from what we have
seen with our own eyes). In this way the new representation may yield additional
information, information that follows neither from the information we already had,
nor from the new representation when taken by itself. Or the new representation
may be instrumental in practical reasoning, help us to develop a better idea of how
we should proceed in order to get what we want. It is because we use semantic
representations in these inferential ways that they must be “logically transparent”:

ix

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-75760-7 - Computational Semantics with Functional Programming
Jan Van Eijck and Christina Unger
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521757607


x Foreword

they must be in a form on which the inference mechanisms of formal logic must
have a purchase.

There is also something else that we can do with the semantic representations
we get from what we hear or read: we evaluate them against models of the world.
These can be models that we have put together on the basis of, say, what we learn
by seeing, hearing, or touching. “Model checking”, i.e., checking whether what
a semantic representation says about a given model or data structure obtained in
some such way is true or false, is no less important than drawing inferences from
it. Model checking is implicit in what speakers do when they choose sentences to
describe the models or data structures about which they want to say something, and
it is what the recipient of an utterance does when he has independent access to the
model or data structure that he assumes the speaker is talking about, for instance
in situations where the speaker is making a comment on something which they are
both looking at.

The importance of model checking and of the inferential uses we make of lan-
guage may be plain enough in any case. But how important they really are comes
even more dramatically into focus in connection with developing language skills
for robots, which can tell us about things that they can see but we cannot, or that
must be able to communicate with us when we are jointly working on a common
task. Such uses of semantic representations are what makes them worth having
in the first place. A computational semantics that tells us how representations get
built, but has nothing to say about what is done with them would hardly be worth
having.

This book adds accounting for the uses of semantic representations to the Com-
putational Semantics task list, thus making the agenda more ambitious than it
would have been in any case by a good stretch. As far as I know no one has so
far made an attempt to address this amplified agenda within the scope of a sin-
gle text. This is one respect in which the present book breaks new ground, both
conceptually, as a presentation of what computational semantics, defined by this
agenda, is actually like, and pedagogically, by introducing the readers to the vari-
ous different items on this agenda and showing them how each of those items can
be tackled and what is needed for that.

The book’s third novelty is that it starts without any presuppositions. Nothing
is assumed beyond common sense: no programming skills, no knowledge of syn-
tax, no knowledge of semantics, no knowledge of natural language processing of
any sort. The book begins by introducing the basics of Haskell, the programming
language that is used throughout. Haskell is a member of the family of functional
programming languages and suitable for the theoretical purposes of this book be-
cause of its exceptional transparency. The use of Haskell in an introduction to
computational semantics is a departure from the widespread use of Prolog in intro-

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-75760-7 - Computational Semantics with Functional Programming
Jan Van Eijck and Christina Unger
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521757607


Foreword xi

ductions to symbolic natural language processing. The authors motivate this choice
by pointing out that much of symbolic computational linguistics consists, like so
many other types of computational problems, in defining the right data structures
and the right functions that map one data structure (the one that presents the prob-
lem) into another (the one that presents its solution).

Indeed, the first applications that are shown in the book are non-linguistic, and
chosen solely for the purpose of giving the reader a good grasp of how Haskell
works and what can be done with it. From these first applications there is a gradual
progress, via applications that involve elementary forms of language processing
(such as word counts in texts), to applications that belong to computational se-
mantics proper. One important benefit of this way of easing into the subject is
that it makes the reader aware of how much language processing has in common
with problem solving and data processing tasks that do not involve language. On
the face of it such an awareness might sit awkwardly with the cherished view of
many linguists that our ability to acquire and use language is unique among the
cognitive capacities we have; but I do not think that there is likely to be any real
conflict here. As demonstrated amply by the diversities of the actual algorithms
and programs presented in this book, what similarities between linguistic and non-
linguistic processing there are still leaves plenty of room for the cognitive distinct-
ness and uniqueness of those algorithms that characterise the computational aspects
of the human language capacity.

Although the book starts from scratch, and presupposes nothing beyond com-
mon sense, it nevertheless manages to penetrate into some of the more advanced
areas of computational semantics: the final chapters present continuation seman-
tics, discourse representation theory, and a system of dynamic epistemic logic that
serves as a first step in the direction of a full-fledged computational theory of verbal
communication. And yet, this wide span notwithstanding, the book complies with
current demands on texts in computational linguistics in that it presents for every
bit of theory that it introduces a Haskell implementation, which the reader can run
herself and play with, if she downloads the relevant, freely available supporting
software. The same goes for the numerous implementation-related exercises. This
means that the diligent student of this book will, by the time she gets to the end
of it, have not only learned a good deal about syntax and semantics, but have also
acquired much of that which distinguishes the computational from the theoretical
linguist.

All this goes to make this book into the important and innovative contribution
to the field of computational semantics that I think it is. Most important of all is
the influence that I believe and hope it will have on coming generations of compu-
tational linguists, by instilling in them the elements of sophisticated programming
expertise at the same time as introducing them to many aspects of theoretical lin-

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-75760-7 - Computational Semantics with Functional Programming
Jan Van Eijck and Christina Unger
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521757607


xii Foreword

guistics, and conveying some of that passion for the structural aspects of language
that makes theoretical linguistics a must and (sometimes) a source of satisfaction
for the true linguist. It has been pointed out again and again that the practical po-
tential of computational linguistics, and of computational semantics as an essential
part of it, is immense. Still, it is fair to say that the practical achievements of com-
putational semantics have so far been quite limited. The reasons for that, I think,
are two-fold. Automated symbolic processing of natural language is notoriously
brittle: even where it is clear what the system should compute, it often lacks the
necessary resources, in particular wide coverage lexicons with substantive seman-
tic information and world knowledge in accessible form. But in many cases the
problem goes deeper. We still haven’t even properly understood yet what it is that
should be computed. These are hard problems, which will be solved – to the extent
that they can be solved at all – only by people who have the combination of skills
that are presented and taught here as parts that naturally fit into a coherent whole.

HANS KAMP

Professor of Formal Logic
and Philosophy of Language,
University of Stuttgart

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-75760-7 - Computational Semantics with Functional Programming
Jan Van Eijck and Christina Unger
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521757607


Preface

This book on applications of logic in the semantic analysis of language pays the
reader the compliment of not assuming anything about what he or she knows (in
particular, no specific logical knowledge or experience with programming is pre-
supposed), while making very flattering assumptions about his or her intelligence
and interest in the subject matter.

The method used throughout in the book is the pursuit of logical questions and
implementation issues occasioned by concrete examples of formally defined lan-
guage fragments. At first, no distinction is made between formal and natural lan-
guage; in the first chapter it is explained why. At the end of the text the reader
should have acquired enough knowledge and skills for the development of (at least
the semantic part of) fairly serious Natural Language Processing applications. The
reader who makes it to the end of the book will also find that he or she has acquired
considerable programming skills, and will have learned how to put a wide variety
of logical systems to use for natural language analysis.

Throughout the text, abstract concepts are linked to concrete representations in
the functional programming language Haskell. Haskell is a language that is well
suited for our purposes because it comes with a variety of very easy to use inter-
preters: Hugs, GHCi, and Helium. Haskell interpreters, compilers, and documen-
tation are freely available from the Internet.† Everything one has to know about
programming in Haskell to understand the programs in the book is explained as
we go along, but we do not cover every aspect of the language. Further on we will
mention various good introductions to Haskell. The only thing we do assume is that
the reader is able to retrieve the appropriate software from the Internet, and that he
or she is acquainted with the use of a text editor for the creation and modification
of programming code.

The book is intended for linguists who want to know more about logic, including

† See http://www.haskell.org

xiii

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-75760-7 - Computational Semantics with Functional Programming
Jan Van Eijck and Christina Unger
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521757607


xiv Preface

recent developments in dynamic logic and epistemic logic, and its applicability
to their subject matter, for logicians with a curiosity about applications of their
subject to linguistics, and for functional programmers who are interested in a new
application domain for their programming skills.

This text has quite a long prehistory. The prefinal version of this book grew out
of a series of lectures the first author gave at UiL OTS in the fall of 2000, for a
mixed audience of linguists and formal semanticists. This was extended with ma-
terial from a tutorial at the LOLA7 Pecs Summer School of 2002, with the results
of an implementation project for Theta Theory at UiL OTS, Utrecht, in the fall of
2002 (follow-up to a course on Theta Theory that the first author co-taught with
Tanya Reinhart), and with examples from a natural language technology course
developed in collaboration with Michael Moortgat.

This manuscript would have remained only an Internet resource if Helen Barton,
CUP editor in charge of linguistics and humanities, had not made a Spring visit to
UiL OTS in 2008, in enthousiastic pursuit of suitable textbook manuscripts. And
it would not have turned into the book you are now reading if it weren’t for an
intellectual support group, the reading group, which met up with the authors once
every two weeks, September through December 2008, for feedback. We really owe
its members a lot. The rock solid core of the group consisted of Arno Bastenhof,
Gianluca Giorgolo, Jeroen Goudsmit and Andres Löh, who were always there.
They kept us on track with their support and with their keen eye for failings of the
draft chapters under discussion. The members of the outer shell of the group, who
also made important contributions, were Marta Castella, Anna Chernilovskaya,
Stefan Holdermans, Matthijs Melissen, and Hanna de Vries. An early version of
the manuscript also had two anonymous Cambridge University Press readers, who
encouraged us to carry on with the project and gave valuable feedback.

There is a web page devoted to this book, at address

http://www.computational-semantics.eu,

where the full code given in the various chapters can be found. Suggestions and
comments on the text can be sent to the first author, at email address jve@cwi.nl,
and will be very much appreciated.

Acknowledgements Many thanks to the reading group; the names of the members
were mentioned above. Helen Barton, commissioning editor at CUP, was support-
ive and encouraging throughout, and CUP production editor Rosina Di Marzo gave
us generous help in the final stage of production. Thanks also to Herman Hendriks
for acting as an oracle on references, to Michael Moortgat for pleasant cooperation
with the first author in teaching various natural language technology courses, to
Rick Nouwen for joint work with the first author on implementations of pronomi-

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-75760-7 - Computational Semantics with Functional Programming
Jan Van Eijck and Christina Unger
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521757607


Preface xv

nal reference algorithms, to Albert Visser for illuminating discussions on dynamic
semantics, life and everything, to Krzysztof Apt and Willemijn Vermaat for advice
on LATEX matters, to the course participants of the first author’s UiL OTS courses, to
the participants in the 2002 Pecs Summer School Tutorial, and to Nicole Gregoire
and Rianne Schippers, members of the 2002 Theta Theory implementation group
for pleasant discussions. Theo Janssen made a number of useful suggestions con-
cerning presentation. Aarne Ranta gave valuable advice, as did Doaitse Swierstra.
Harm Brouwer, Matteo Capelletti, Daniël de Kok, Nickolay Kolev, Greg Matheson,
Stefan Minica, Patrick O’Neill, Jim Royer, and Ken Shirriff sent us corrections via
email. Yoad Winter, Makoto Kanazawa, and Reinhard Muskens corresponded with
us about issues of intensionalization. Shalom Lappin tried out a version of the book
in a course, which resulted in numerous update requests, inspiring editorial sugges-
tions and bug reports. Finally, we thank Hans Kamp for having graced the book
with a foreword.

JAN VAN EIJCK, Amsterdam
CHRISTINA UNGER, Bielefeld

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-75760-7 - Computational Semantics with Functional Programming
Jan Van Eijck and Christina Unger
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521757607

