Diagnostic Ultrasound
Physics and Equipment

Second Edition
Diagnostic Ultrasound

Physics and Equipment

Second edition

Edited by

Peter Hoskins BA, MSc, PhD, DSc, FIPEM, FInstP
Reader in Medical Physics
Edinburgh University
Edinburgh, UK

Kevin Martin BSc, PhD, FIPEM
Retired Consultant Medical Physicist
Leicester, UK

Abigail Thrush BSc, MSc, MIPEM
Principal Medical Physicist
Barts and the London NHS Trust
London, UK
Contents

List of Contributors vii
Preface to the second edition ix
Preface to the first edition xi

1 Introduction to B-mode imaging 1
 Kevin Martin

2 Physics 4
 Kevin Martin and Kumar Ramnarine

3 Transducers and beam-forming 23
 Tony Whittingham and Kevin Martin

4 B-mode instrumentation 47
 Kevin Martin

5 Properties, limitations and artefacts of B-mode images 64
 Kevin Martin

6 B-mode measurements 75
 Nick Dudley

7 Principles of Doppler ultrasound 84
 Peter Hoskins

8 Blood flow 96
 Abigail Thrush

9 Spectral Doppler ultrasound 105
 Abigail Thrush

10 Colour flow and tissue imaging 121
 Peter Hoskins and Aline Criton

11 Quality assurance 142
 Tony Evans and Peter Hoskins

12 Safety of diagnostic ultrasound 155
 Francis Duck and Adam Shaw

13 3D ultrasound 171
 Peter Hoskins and Tom MacGillivray

14 Contrast agents 181
 Carmel Moran and Mairéad Butler

15 Elastography 196
 Peter Hoskins

Appendices
A The decibel (dB) 215
B The binary system 216
C The British Medical Ultrasound Society. Guidelines for the safe use of diagnostic ultrasound equipment 217
D Useful contacts 226
E Acoustic output parameters and their measurement 227
Glossary of terms 230
Index 254
Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mairéad Butler MPhys, PhD, MInstP</td>
<td>Research Assistant in Medical Physics, University of Edinburgh, UK</td>
</tr>
<tr>
<td>Aline Criton PhD</td>
<td>Ultrasound Director, SuperSonic Imagine, France</td>
</tr>
<tr>
<td>Francis Duck PhD, DSc, FIPEM, MBE</td>
<td>Consultant Medical Physicist, Royal United Hospital Bath and Bath University, UK</td>
</tr>
<tr>
<td>Nick Dudley BSc, MSc, PhD, FIPEM</td>
<td>Consultant Medical Physicist, United Lincolnshire Hospitals, UK</td>
</tr>
<tr>
<td>Tony Evans BSc, MSc, PhD, CEng</td>
<td>Senior Lecturer in Medical Physics, University of Leeds, UK</td>
</tr>
<tr>
<td>Peter Hoskins BA, MSc, PhD, DSc, FIPEM, FinstP</td>
<td>Reader in Medical Physics, University of Edinburgh, UK</td>
</tr>
<tr>
<td>Tom MacGillivray BSc, MSc, PhD</td>
<td>Research Fellow in image processing, University of Edinburgh, UK</td>
</tr>
<tr>
<td>Kevin Martin BSc, PhD, FIPEM</td>
<td>Retired Consultant Medical Physicist, Leicester, UK</td>
</tr>
<tr>
<td>Carmel Moran BSc, MSc, PhD, FIPEM</td>
<td>Reader in Medical Physics, University of Edinburgh, UK</td>
</tr>
<tr>
<td>Kumar Ramnarine BSc, MSc, PhD, CSci, MIPEM</td>
<td>Principal Medical Physicist, University Hospitals of Leicester NHS Trust, UK</td>
</tr>
<tr>
<td>Adam Shaw BA, MA(Cantab)</td>
<td>Senior Research Scientist, National Physical Laboratory, Middlesex, UK</td>
</tr>
<tr>
<td>Abigail Thrush BSc, MSc, MIPEM</td>
<td>Principal Medical Physicist, Barts and the London NHS Trust, UK</td>
</tr>
<tr>
<td>Tony Whittingham BSc, MSc, PhD, FinstP, CPhys, FIPEM</td>
<td>Retired Consultant Medical Physicist, Newcastle-upon-Tyne, UK</td>
</tr>
</tbody>
</table>
Preface to the second edition

The aims and intended audience of this second edition remain unchanged from the first edition. The aim is to provide the underpinning knowledge of physics and instrumentation needed in order to practise ultrasound in a clinical setting. The book is primarily aimed at sonographers and clinical users in general, and will also serve as a first textbook for physicists and engineers. The text concentrates on explanations of principles which underpin the clinical use of ultrasound systems. The book contains relatively few equations and even fewer derivations. In the last 7 years a number of techniques which existed in embryo form in 2002 have become available on commercial ultrasound systems, and are used in a sufficient number of hospitals to justify inclusion in this book. There are additional chapters dedicated to 3D ultrasound, contrast agents and elastography. The other chapters have been updated to include developments in technology, quality assurance and safety. We hope that this second edition of ‘Diagnostic Ultrasound Physics and Equipment’ will meet the needs of sonographers, physicists and engineers in their training and practice.

Peter Hoskins
Kevin Martin
Abigail Thrush
Autumn 2009
Preface to the first edition

This book is an introductory text in the physics and instrumentation of medical ultrasound imaging. The level is appropriate for sonographers and clinical users in general. This will also serve as a first textbook for physicists and engineers. The text concentrates on explanations of principles which underpin the clinical use of ultrasound systems, with explanations following a ‘need to know’ philosophy. Consequently, complex techniques, such as Doppler frequency estimation using FFT and 2D autocorrelation, are described in terms of their function, but not in terms of their detailed signal processing. The book contains relatively few equations and even fewer derivations. The scope of the book reflects ultrasound instrumentation as it is used at the time of submission to the publishers. Techniques which are still emerging, such as tissue Doppler imaging (TDI) and contrast agents, are covered in a single chapter at the end of the book. Techniques which are even further from commercial implementation, such as vector Doppler, are not covered. We hope this book fills the gap in the market that we perceive from discussions with our clinical colleagues, that of a text which is up to date and at an appropriate level.

Peter Hoskins
Abigail Thrush
Kevin Martin
Tony Whittingham
Summer 2002