
CHAPTER ONE

The Five Platonic Solids

a regular polygon is a plane figure bounded by straight lines, with
equal sides and equal interior angles. There is of course an infinite
number of such figures. In three dimensions the analog of the reg-
ular polygon is the regular polyhedron: a solid bounded by regular
polygons, with congruent faces and congruent interior angles at its
corners. One might suppose that these forms are also infinite, but in
fact they are, as Lewis Carroll once expressed it, “provokingly few in
number.” There are only five regular convex solids: the regular tetra-
hedron, hexahedron (cube), octahedron, dodecahedron, and icosa-
hedron (see Figure 1).

The first systematic study of the five regular solids appears to
have been made by the ancient Pythagoreans. They believed that
the tetrahedron, cube, octahedron, and icosahedron respectively
underlay the structure of the traditional four elements: fire, earth,
air, and water. The dodecahedron was obscurely identified with the
entire universe. Because these notions were elaborated in Plato’s
Timaeus, the regular polyhedrons came to be known as the Platonic
solids. The beauty and fascinating mathematical properties of these
five forms haunted scholars from the time of Plato through the
Renaissance. The analysis of the Platonic solids provides the cli-
mactic final book of Euclid’s Elements. Johannes Kepler believed
throughout his life that the orbits of the six planets known in his
day could be obtained by nesting the five solids in a certain order
within the orbit of Saturn. Today the mathematician no longer views
the Platonic solids with mystical reverence, but their rotations are
studied in connection with group theory, and they continue to play
a colorful role in recreational mathematics. Here we shall quickly
examine a few diversions in which they are involved.
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2 Origami, Eleusis, and the Soma Cube

Figure 1. The five Platonic solids. The cube and octahedron are “duals” in the
sense that if the centers of all pairs of adjacent faces on one are connected by
straight lines, the lines form the edges of the other. The dodecahedron and icosa-
hedron are dually related in the same way. The tetrahedron is its own dual. (Artist:
Bunji Tagawa)
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The Five Platonic Solids 3

Figure 2. How a sealed envelope can be cut for folding into a tetrahedron. (Artist:
Bunji Tagawa)

There are four different ways in which a sealed envelope can
be cut and folded into a tetrahedron. The following is perhaps
the simplest. Draw an equilateral triangle on both sides of one
end of an envelope (see Figure 2). Then cut through both layers
of the envelope as indicated by the broken line and discard the
right-hand piece. By creasing the paper along the sides of the front
and back triangles, points A and B are brought together to form the
tetrahedron.Figure 3 shows the pattern for a tantalizing little puzzle currently
marketed in plastic. You can make the puzzle yourself by cutting two
such patterns out of heavy paper. (All the line segments except the
longer one have the same length.) Fold each pattern along the lines
and tape the edges to make the solid shown. Now try to fit the two
solids together to make a tetrahedron. A mathematician I know likes
to annoy his friends with a practical joke based on this puzzle. He
bought two sets of the plastic pieces so that he could keep a third
piece concealed in his hand. He displays a tetrahedron on the table,
then knocks it over with his hand and at the same time releases the
concealed piece. Naturally his friends do not succeed in forming the
tetrahedron out of the three pieces.

Concerning the cube, I shall mention only an electrical puzzle
and the surprising fact that a cube can be passed through a hole
in a smaller cube. If you will hold a cube so that one corner points
directly toward you, the edges outlining a hexagon, you will see at
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4 Origami, Eleusis, and the Soma Cube

Figure 3. A pattern (left) that can be folded into a solid (right), two of which make
a tetrahedron. (Artist: Bunji Tagawa)

once that there is ample space for a square hole that can be slightly
larger than the face of the cube itself. The electrical puzzle involves
the network depicted in Figure 4. If each edge of the cube has a resis-
tance of one ohm, what is the resistance of the entire structure when
current flows from A to B? Electrical engineers have been known to
produce pages of computations on this problem, though it yields
easily to the proper insight.

All five Platonic solids have been used as dice. Next to the cube
the octahedron seems to have been the most popular. The pattern
shown in Figure 5, its faces numbered as indicated, will fold into a
neat octahedron whose open edges can be closed with transparent

Figure 4. An electrical-network puzzle. (Artist: Bunji Tagawa)
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The Five Platonic Solids 5

Figure 5. A strip to make an octahedral die. (Artist: Bunji Tagawa)

tape. The opposite sides of this die, as in the familiar cubical dice,
total seven. Moreover, a pleasant little mind-reading stunt is made
possible by this arrangement of digits. Ask someone to think of a
number from 0 to 7 inclusive. Hold up the octahedron so that he
sees only the faces 1, 3, 5, and 7, and ask him if he sees his chosen
number. If he says “Yes,” this answer has a key value of 1. Turn the
solid so that he sees faces 2, 3, 6, and 7, and ask the question again.
This time “Yes” has the value of 2. The final question is asked with
the solid turned so that he sees 4, 5, 6, and 7. Here a “Yes” answer
has the value of 4. If you now total the values of his three answers
you obtain the chosen number, a fact that should be easily explained
by anyone familiar with the binary system. To facilitate finding the
three positions in which you must hold the solid, simply mark in
some way the three corners that must be pointed toward you as you
face the spectator.

There are other interesting ways of numbering the faces of an
octahedral die. It is possible, for example, to arrange the digits 1
through 8 in such a manner that the total of the four faces around
each corner is a constant. The constant must be 18, but there are
three distinct ways (not counting rotations and reflections) in which
the faces can be numbered in this fashion.

An elegant way to construct a dodecahedron is explained in
Hugo Steinhaus’s book Mathematical Snapshots. Cut from heavy
cardboard two patterns like the one pictured at left in Figure 6.
The pentagons should be about an inch on a side. Score the out-
line of each center pentagon with the point of a knife so that the
pentagon flaps fold easily in one direction. Place the patterns
together as shown at right in the illustration so that the flaps of each
pattern fold toward the others. Weave a rubber band alternately over
and under the projecting ends, keeping the patterns pressed flat.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-75610-5 - Origami, Eleusis, and the Soma Cube: Martin Gardner’s
Mathematical Diversions
Martin Gardner
Excerpt
More information

http://www.cambridge.org/9780521756105
http://www.cambridge.org
http://www.cambridge.org


6 Origami, Eleusis, and the Soma Cube

Figure 6. Two identical patterns are fastened together with a rubber band to
make a pop-up dodecahedron. (Artist: Bunji Tagawa)

When you release the pressure, the dodecahedron will spring magi-
cally into shape.

If the faces of this model are colored, a single color to each face,
what is the minimum number of colors needed to make sure that
no edge has the same color on both sides? The answer is four, and
it is not difficult to discover the four different ways that the col-
ors can be arranged (two are mirror images of the other two). The
tetrahedron also requires four colors, there being two arrangements,
one a reflection of the other. The cube needs three colors and the
octahedron two, each having only one possible arrangement. The
icosahedron calls for three colors; here there are no less than 144
different patterns, only six of which are identical with their mirror
images.

If a fly were to walk along the 12 edges of an icosahedron, travers-
ing each edge at least once, what is the shortest distance it could
travel? The fly need not return to its starting point, and it would be
necessary for it to go over some edges twice. (Only the octahedron’s
edges can be traversed without retracing.) A plane projection of the
icosahedron (Figure 7) may be used in working on this problem, but
one must remember that each edge is one unit in length. (I have
been unable to resist concealing a laconic Christmas greeting in the
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The Five Platonic Solids 7

Figure 7. A plane projection of an icosahedron. (Artist: Bunji Tagawa)

way the corners of this diagram are labeled. It is not necessary to
solve the problem in order to find it.)

In view of the fact that cranks persist in trying to trisect the angle
and square the circle long after these feats have been proved impos-
sible, why has there been no comparable effort to find more than
five regular polyhedrons? One reason is that it is quite easy to “see”
that no more are possible. The following simple proof goes back to
Euclid.

A corner of a polyhedron must have at least three faces. Con-
sider the simplest face: an equilateral triangle. We can form a cor-
ner by putting together three, four, or five such triangles. Beyond
five, the angles total 360 degrees or more and therefore cannot form
a corner. We thus have three possible ways to construct a regular
convex solid with triangular faces. Three and only three squares
will similarly form a corner, indicating the possibility of a regular
solid with square faces. The same reasoning yields one possibility
with three pentagons at each corner. We cannot go beyond the pen-
tagon, because when we put three hexagons together at a corner,
they equal 360 degrees.

This argument does not prove that five regular solids can be
constructed, but it does show clearly that no more than five are
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8 Origami, Eleusis, and the Soma Cube

possible. More sophisticated arguments establish that there are six
regular polytopes, as they are called, in four-dimensional space.
Curiously, in every space of more than four dimensions there are
only three regular polytopes: analogs of the tetrahedron, cube, and
octahedron.

A moral may be lurking here. There is a very real sense in which
mathematics limits the kinds of structures that can exist in nature.
It is not possible, for example, that beings in another galaxy gam-
ble with dice that are regular convex polyhedra of a shape unknown
to us. Some theologians have been so bold as to contend that not
even God himself could construct a sixth Platonic solid in three-
dimensional space. In similar fashion, geometry imposes unbreak-
able limits on the varieties of crystal growth. Some day physicists
may even discover mathematical limitations to the number of fun-
damental particles and basic laws. No one of course has any notion
of how mathematics may, if indeed it does, restrict the nature of
structures that can be called “alive.” It is conceivable, for example,
that the properties of carbon compounds are absolutely essential
for life. In any case, as humanity braces itself for the shock of finding
life on other planets, the Platonic solids serve as ancient reminders
that there may be fewer things on Mars and Venus than are dreamt
of in our philosophy.

ANSWERS

The total resistance of the cubical network is 5/6 ohm. If the three
corners closest to A are short-circuited together, and the same is
done with the three corners closest to B, no current will flow in the
two triangles of short circuits because each connects equipotential
points. It is now easy to see that there are three one-ohm resistors
in parallel between A and the nearest triangle (resistance 1/3 ohm),
six in parallel between the triangles (1/6 ohm), and three in parallel
between the second triangle and B (1/3 ohm), making a total resis-
tance of 5/6 ohm.

C. W. Trigg, discussing the cubical-network problem in the
November–December 1960 issue of Mathematics Magazine, points
out that a solution for it may be found in Magnetism and Electricity,
by E. E. Brooks and A. W. Poyser, 1920. The problem and the method
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The Five Platonic Solids 9

of solving it can be easily extended to networks in the form of the
other four Platonic solids.

The three ways to number the faces of an octahedron so that the
total around each corner is 18 are 6, 7, 2, 3 clockwise (or counter-
clockwise) around one corner, and 1, 4, 5, 8 around the opposite
corner (6 adjacent to 1, 7 to 4, and so on); 1, 7, 2, 8 and 4, 6, 3, 5; and
4, 7, 2, 5 and 6, 1, 8, 3. See W. W. Rouse Ball’s Mathematical Recre-
ations and Essays, Chapter 7, for a simple proof that the octahedron
is the only one of the five solids whose faces can be numbered so
that there is a constant sum at each corner.

The shortest distance the fly can walk to cover all edges of an
icosahedron is 35 units. By erasing five edges of the solid (for exam-
ple, edges FM, BE, JA, ID, and HC) we are left with a network that
has only two points, G and K, where an odd number of edges come
together. The fly can therefore traverse this network by starting at
G and going to K without retracing an edge – a distance of 25 units.
This is the longest distance it can go without retracing. Each erased
edge can now be added to this path, whenever the fly reaches it, sim-
ply by traversing it back and forth. The five erased edges, each gone
over twice, add 10 units to the path, making a total of 35.

POSTSCRIPT

Margaret Wertheim, writing on “A Puzzle Finally Makes the
‘Cosmic Figures’ Fit,” in The New York Times (May 10, 2005),
describes a remarkable puzzle created by Dr. Wayne Daniel, a retired
physicist living in Genoa, Nevada. Called All Five, it consists of
41 wooden pieces that form the five Platonic solids, all nested
together like Russian matryoshka dolls. Outside is the icosahedron,
followed by the dodecahedron, cube, tetrahedron, and in the center
a tiny octahedron. There are no empty spaces between the pieces!
Dr. Daniel has constructed other puzzles based on the five regular
solids, but this one is his crowning achievement. He has made a
DVD showing how the pieces come apart and go back together. It
can be seen on his Web site.

In the books to follow in this series, there are many references to
problems and curiosities involving the five solids. Note in particular
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10 Origami, Eleusis, and the Soma Cube

a chapter in Book 10 on Jean Pedersen’s way of plaiting polyhe-
dra with paper strips, and references there cited. A chapter devoted
entirely to tetrahedra is in Book 5.

One can imagine how amazed and delighted Plato and Kepler
would have been if someone had given them an All Five.
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