Index

acceleromyography, 271–272
Accreditation Council for Graduate Medical Education (ACGME), 27
accredited residency programs, 70
competency defined by, 28
acoustic myography, 273
ACT. See activated clotting time (ACT) measure
activated clotting time (ACT) measure, 308
activated partial thromboplastin time (aPTT) coagulation test, 293–294
acute myocardial infarction (AMI), 66, 319, 322, 374
acute respiratory distress syndrome (ARDS), 63
admission clinical assessment scales (neurologic clinic) FOUR Score, 353
Glasgow Coma Scale, 238, 353, 369
Hunt-Hess grade, 353
adult learning theory (Knowles/Davis), 27, 28
AIMS (anesthesia information management systems), 383
barriers to, 386–387
benefits of, 385
connectivity, 384
data storage, 384–385
point-of-care workstations, 384
software, 385
system architecture, 383–384
Albert, N. M., 50
alcuronium, 5
Alderson, P. J., 58
Aldrete, A. J., 357–358
Aldrete PACU scoring system, 357–358
Ali, H. H., 5, 266
Allen test, 48, 52
Altman, D. G., 20
American Academy of Neurology (AAN), 214
American Board of Anesthesiology (ABA), 31
American Board of Medical Specialties (ABMS), 28
American Board of Neurophysiologic Monitoring (ABNM), 234
American Board of Registration of Electroencephalographic and Evoked Potential Technologists, 200
American Clinical Neurophysiology Society, 200
American College of Cardiology (ACC), 36, 131
American College of Emergency Physicians, 142
American College of Obstetricians and Gynecologists (ACOG), 344
American College of Physicians, 131
American College of Surgeons, 142, 378
American Heart Association (AHA)
echocardiography guidelines, 131
Electrocardiography and Arrhythmias Committee, 37
noninvasive blood pressure measurement recommendations, 45, 52
practice standards for hospital ECG monitoring, 36
Task Force on Practice Guidelines, 36
"unipolar"/"bipolar" usage recommendations, 39
American Institute of Ultrasound in Medicine, 233
American Medical Association (AMA), 142
American Society of Anesthesiologists (ASA), 224.
See also Standards for Basic Anesthesia Monitoring (ASA)
basic anesthesia monitoring guidelines, 36, 45
Closed Claims Project, 6, 12, 184, 192–193
Intraoperative Awareness and Brain Monitor Function Monitoring practice advisory, 13
intraoperative BP measurement requirement, 51
intraoperative monitoring standards, 154
PACU discharge guidelines, 357
practice parameters/evidence of utility, 130–131
American Society of Neuroimaging, 234
American Society of Neurophysiologic Monitoring, 200, 233–234
American Society of Regional Anesthesia (ASRA), 147
American Spinal Injury Association (ASIA) Scale, 355
American Thoracic Society, 66
Andropoulos, D. B., 232
Anesthesia Patient Safety Foundation (APSF), 28, 183
anesthesia records AIMS connectivity, 384
data storage, 384–385
point-of-care workstations, 384
software, 385
system architecture, 383–384
ARPs system, 11, 12, 383
historical background, 2, 383
Anesthesiology journal on PNS units, 261–262
animal experimentation with anesthetics, 1
EEG activity study, 200
NIOM clinical utility evidence, 200
PbO\textsubscript{2}, MAP relationship study, 242
PRAM device study, 85
antecubital veins, cannulation of, 5, 59
antepartum assessment biophysical profile, 346
contraction stress test, 345
nonstress test, 345
oxytocin challenge test, 345
anticoagulation monitoring. See also Coagulation/hematologic point-of-care (POC) testing: Heparin monitoring heparin-induced, 294, 308
ACT measure, 308
complexities of, 301
Lee-White clotting time measure, 308
TEG performance/sodium citrate, 299
warfarin-induced, 293
aortic disease, 130
APACHE I ICU scoring system (1981)
description, 372
limitations, 372
strengths, 372
APACHE II ICU scoring system (1985)
description, 372–373
limitations, 373
strengths, 373
APACHE III ICU scoring system (1991)
description, 373
limitations, 373–374
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
</table>

APACHE IV ICU scoring system (2006)
description, 374
limitations, 374
strengths, 374

APACHE severity of illness scoring system, 369

Appgar, Virginia, 357

arterial blood pressure monitoring, 45–53
catheterulation, 46–48
catheter-over-the-needle technique, 4
Doppler-assisted techniques/two-dimensional ultrasound methods, 47
end-pressure artifacts, 46
sites for, 48–49
arterial pressure waveform, 49
complications, 51–52
contraindications, 53
coupling system/pressure transducers, 49–50
credentialing, 52–53
evidence of utility (clinical outcome), 51
general principles (technical concept)

invasive monitoring, 46
noninvasive BP measurement, 45–46
overview, 45
historical background, 1, 3–4
indications for, 53
intracatheter assessment measurement (case study), 11
measurement system characteristics, 50–51
percutaneous plastic catheter placement, 3
via surgical cut-down technique access, 4
arterial oxygen saturation (SaO2), 98, 268

artifacts
catheter whip artifact, 69
clinical alarm systems, 388–389
electrocautery artifact, 109
end-pressure artifacts, 46
intrinsic and extrinsic, 37–38
motion artifacts, 107, 109, 188
Nyquist limit creation of, 107
OR setting/false positives, 42
rotational artifacts, 108
smoothing technologies, 16
suppression methods, 14, 37

ASE standard views. See transesophageal echocardiography (TEE), parameters monitored (standard ASE views)

ASK [attitudes, skills, knowledge] to achieve model (for developing monitoring skills), 28
intraperative phase, 29
postoperative phase, 29
preoperative phase, 29

Association for the Advancement of Medical Instrumentation (AAMI, U.S.), 45

atrioventricular rhythm, and

arterial blood gas monitoring, 45–53
catheterulation, 46–48
catheter-over-the-needle technique, 4
Doppler-assisted techniques/two-dimensional ultrasound methods, 47
end-pressure artifacts, 46
sites for, 48–49
arterial pressure waveform, 49
complications, 51–52
contraindications, 53
coupling system/pressure transducers, 49–50
credentialing, 52–53
evidence of utility (clinical outcome), 51
general principles (technical concept)
invasive monitoring, 46
noninvasive BP measurement, 45–46
overview, 45
historical background, 1, 3–4
indications for, 53
intracatheter assessment measurement (case study), 11
measurement system characteristics, 50–51
percutaneous plastic catheter placement, 3
via surgical cut-down technique access, 4
arterial oxygen saturation (SaO2), 98, 268

artifacts
catheter whip artifact, 69
clinical alarm systems, 388–389
electrocautery artifact, 109
end-pressure artifacts, 46
intrinsic and extrinsic, 37–38
motion artifacts, 107, 109, 188
Nyquist limit creation of, 107
OR setting/false positives, 42
rotational artifacts, 108
smoothing technologies, 16
suppression methods, 14, 37

ASE standard views. See transesophageal echocardiography (TEE), parameters monitored (standard ASE views)

ASK [attitudes, skills, knowledge] to achieve model (for developing monitoring skills), 28
intraperative phase, 29
postoperative phase, 29
preoperative phase, 29

Association for the Advancement of Medical Instrumentation (AAMI, U.S.), 45

atrioventricular rhythm, and

arterial blood gas monitoring, 45–53
catheterulation, 46–48
catheter-over-the-needle technique, 4
Doppler-assisted techniques/two-dimensional ultrasound methods, 47
end-pressure artifacts, 46
sites for, 48–49
arterial pressure waveform, 49
complications, 51–52
contraindications, 53
coupling system/pressure transducers, 49–50
credentialing, 52–53
evidence of utility (clinical outcome), 51
general principles (technical concept)
invasive monitoring, 46
noninvasive BP measurement, 45–46
overview, 45
historical background, 1, 3–4
indications for, 53
intracatheter assessment measurement (case study), 11
measurement system characteristics, 50–51
percutaneous plastic catheter placement, 3
via surgical cut-down technique access, 4
arterial oxygen saturation (SaO2), 98, 268

artifacts
catheter whip artifact, 69
clinical alarm systems, 388–389
electrocautery artifact, 109
end-pressure artifacts, 46
intrinsic and extrinsic, 37–38
motion artifacts, 107, 109, 188
Nyquist limit creation of, 107
OR setting/false positives, 42
rotational artifacts, 108
smoothing technologies, 16
suppression methods, 14, 37

ASE standard views. See transesophageal echocardiography (TEE), parameters monitored (standard ASE views)
Clinical Assessment of Confusion-B (CAC-B), 364
Closed Claims Project (ASA), 6, 12, 184, 192–193
closed-loop system (CLS) for medication delivery, 391
analgesics, 392
neuromuscular blocking agents, 392
other applications, 392
voleic anesthetics, 392
Clot Signature Analyzer hemostatometer, 315
Clever, Joseph Thomas, 1
CoaguChek Pro DM monitor, 310
cogulation/hematologic point-of-care (POC) testing. See also Platelet function monitoring anticoagulation/heparin monitoring, 294, 308
Cascade POC system, 309
complexities of, 301
concentration monitoring, 308
individualized heparin dosing, 309–310
cogulation status monitoring, 309–310
fibrinogen level POC tests, 310–311
outcome study results, 308
core POC testing, 308
thrombin time/heparin neutralized thrombin time, 310
Cochrane review (bispacial index), 222
Codman, A. E., 2, 383
Cognitive Test for Delirium (CTD), 363
Cohen, M. G., 66
Collins, S. L., 349
color-flow Doppler (CFD), 107, 109
for artery/vein differentiation, 138
in MV regurgitation site localization, 114
in pulmonary regurgitation, 116
qualitative grading using, 126–127
3D, gated, 109
computer-assisted medication delivery closed-loop system (CLS), 391
analgesics, 392
neuromuscular blocking agents, 392
other applications, 392
voleic anesthetics, 392
target-controlled infusions (TCIs), 390–391
analgesics, 392
clinical efficacy/prophylol infusion, 391–392
neuromuscular blocking agents, 392
computer-driven mannequins, 32
computers and monitoring AIMS, 383
barriers to, 386–387
benefits of, 385
connectivity, 384
data storage, 385–386
point-of-care workstations, 384
software, 385
system architecture, 383–384
automated recordkeepers (ARKs), 11, 12, 383
clinical alarm systems auditory alarms, 388
false alarms, limits, artifacts, 388–389
IEC standards, 388
visual alarms, 388
emerging technologies, 389–390
CO2NFORM NOW CO2 Detector, 161
Confusion-Assessment Method (CAM), 362–363
Confusion-Assessment Method for the Intensive Care Unit (CAM-ICU), 363
Confusion Rating Scale (CRS), 364
congestive heart failure. See also ESCAPE trial
bioimpedance system unreliability, 86
hypomagnesemia potential of, 284
monitoring indication determination, 30
pulse pressure relation to, 51
pulmonary levels, 320
Connors, A. E., 65, 66, 89
consciousness monitoring. See Level of consciousness monitoring
continuous cardiac output (CCO) device, 20
continuous ECG (cEEG), 241–242
continuous electronic fetal heart rate (CFHR) monitoring, 344
continuous-wave (CW) Doppler echocardiography, 107, 127
Cooper, J. B., 6, 31
coronary artery bypass graft (CABG) surgery, 64
off-pump, 65
ST elevation during weaning from, 40
coronary artery disease (CAD), 29
CVP monitoring, 64
MPO levels, 322
multiple lead ST changes in, 39
outcome predictions using Tnl, 320
Cournand, A. E., 5
C-reactive protein, high-sensitivity CRP, 321–322
creatinine kinase MB (CK-MB) isoenzyme, 319
creatine phosphokinase (CPK), 319–320
credentiaing arterial blood pressure monitoring, 52–53
CO monitoring measurements, 90
gastric tonometry, 96
level of consciousness monitoring, 223
near-infrared spectroscopy, 258
point-of-care laboratory testing in the OR, 287
pressure, volume, and flow monitoring, 183
pulse oximetry, 194–195
regional anesthesia procedures, ultrasound guidance, 147–148
respiratory gas monitoring, 168
TCD ultrasound, 233–235
transesophageal echocardiography, 131–132
vascular catheterization, ultrasound guidance, 142
Creteur, J., 101
Critchley, J.A.H.J., 22
critical DO2, 98–99
critically ill neurologic patients. See Multimodality monitoring in critically ill neurologic patients
Cumin, D., 31
Cushing, Harvey, 2, 383
Darmon, P. L., 22
Datscope (Anestar) anesthesia workstation, 176
Datex-Ohmeda Compact Airway Module IR analysis system (GE Healthcare), 156
Davis, D., 27
deaths from anesthesia delivery equipment, 184
anonymous reporting system, 6
APACHE III and, 373
APACHE IV and, 374
ASA Closed Claims Study report, 192
calibration measurement, 370
from cardiac tamponade, 12
central venous catheter placement (case study), 12
from chloroform anesthesia, 1
delirium, 361
from neurologic complications, 51
PAPV/A/sudden cardiac death, 323
from persistent tissue hypoxia, 285
TCD confirmation test for, 241
Tnl prediction of, 320
De Backer, D., 102
deep transgastric long axis TEE parameter (ASE), 110–112
delirium detection of, 362
DSM-IV-TR definition, 360
incidence of, 360–361
prevention/treatment of, 364–365
risk factors for, 361–362
significance of, 361
types of, 360
delirium assessment instruments
Clinical Assessment of Confusion, 364
Cognitive Test for Delirium, 363
Confusion-Assessment Method, 362–363
Confusion-Assessment Method for the ICU, 363
Confusion Rating Scale, 364
Delirium Detection Score, 363
Delirium Rating Scale, 363
Delirium Symptom Interview, 364
Intensive Care Delirium Screening Checklist, 363
Memorial Delirium Assessment Scale, 364
NEECHAM Confusion Scale, 363
Nursing Delirium Screening Scale, 364
© in this web service Cambridge University Press & Assessment
www.cambridge.org
Visual Analog Scale for Acute Confusion, 364
Delirium Detection Score (DDS), 363
Delirium Rating Scale (DRS), 363
Delirium Symptom Interview (DSI), 364
Denault, A., 16
Dent, C. L., 256
descending aortic long
axis/upper esophageal aortic arch short axis TEE parameter (ASE), 118
descending aortic short
axis/upper esophageal aortic arch long axis TEE parameter (ASE), 117
Deschamps, A., 16
Despotis, G. J., 303
Dexter, L., 5
diastolic pulse contour analysis, 83
differential CO, partial
breathing technique, 80
digital signal processing (DSP)
techniques, 37
and intrinsic/extrinsic
minimization, 37
digoxin, 39, 284
direct-writing ECG recorders, 5
disease-specific risk
prognostication scores, 369
disseminated intravascular
coagulation (DIC), 308
Dittrich, R., 233
Djaiani, G., 65
D-Lite pressure/flow sensor, 175
Doppler techniques
described, 106
echocardiography cardiac
output (CO\textsubscript{\text{EO}}), 20–22
mitral valvular stenosis
assessment, 125–126
target velocity calculation, 106
types of
color-flow Doppler (CFD), 107, 109
continuous-wave (CW)
Doppler, 107
pulsed-wave (PW)
Doppler, 107
waveforms, 106
Doppler ultrasound-based CO
monitoring systems, 19, 86
complications, 90
esophageal system, 89
instruction/practice courses, 90
real-time system limitations, 89
dorsalis pedis artery
cannulation, 48–49
Dräger Spiremed anesthesia
workstation, 173–174, 176
Dripps, Robert, 3–4
d-tubocurarine (dTC), 5, 261
Easy Cap II CO\textsubscript{2} Detector, 160
Edmonds, H. L., 233
derothorax, 275
Eichhorn, J. H., 195
Einthoven, Willem, 36
Ekman, A., 223
electrical impedance
cardiography-based CO
monitoring systems, 85–86
diastolic pulse contour analysis, 36–42
target velocity calculation, 106
Kubicek/NASA studies, 85
stroke volume calculation
formula, 85–86
electrocardiography (EKG), 4–5, 36–42
myocardial ischemia
detection/pathophysiology of
ST segment responses, 5, 39
ECG manifestations, 39–40
perioperative ECG
monitoring, 40–42
perioperative arrhythmia
monitoring, 42
technical concepts
historical perspective, 36–37
power spectrum, 37
electrocardiography (EKG), lead
systems
development of, 38
history/description, 12-lead system, 38–39
intrinsic/extrinsic artifacts, 37–38
monitoring frequency
response, 37
electroencephalographic (EEG)
techniques, 200–204
anesthetic agent interactions, 204
continuous EEG (cEEG), 241–242
described, 200
origin of, 218
uses, 200–201
electromyography (EMG)
nerve conduction studies and,
213–214
neuromuscular functioning,
perioperative monitoring, 271
El Makatti, N., 274
EMG NeuroMuscular
Transmission Module (the
E-NMT), 271
EMMA Emergency Capnometry,
159
diastolic pulse contour
analysis, 83
evidence of utility, 329
differential CO, partial
breathing technique, 329
parathyroid hormone (PTH)
characteristics of, 327
intraoperative monitoring.
328
intraoperative testing,
327–328
resistance to, in
hypocalemia, 283, 328
diabetes, 328
role of, 327
practice parameters, 329
specimen collection, 328–329
diastolic pulse contour
analysis, 83
end-stage renal disease (ESRD),
320
end-tidal anesthetic gas (ETAG)
targeted anesthesia study, 222
Engbaek, J., 274
targeted anesthesia study, 222
Epstein, R. M., 271
Eriksson, L. I., 267
ESCAPE (Evaluation Study
of Congestive Heart Failure
And Pulmonary Artery
Catheterization Effectiveness)
trial, 66
ether anesthesia, 3
atrophicventricular rhythm and, 4
etomidate
and dose-dependent EEG
slowing, 204
European Society of
Hypertension, 23, 46
European Society of Regional
Anesthesia (ESRA), 147
Examination of Special
Competence in Perioperative
Transesophageal
Echocardiography (PTExEAM),
132
extravascular vein (EVV)
cannulation, 58–59
eye signs of anesthesia depth, 3
face scales (FSs) of pain
intensity, 350
fast Fourier transformation
(FFT), 221, 227
femoral artery cannulation, 48
femoral veins cannulation, 59
FENEM CO\textsubscript{2} indicator, 161
fetal bradycardia, 337
fetal heart rate monitoring,
337–346
antepartum assessment
biophysical profile, 346
contraction stress test, 345
nonstress test, 346
oxytocin challenge test, 345
continuous electronic fetal
heart rate monitoring, 344
continuous vs. intermittent,
344
early deceleration, 342
efficacy of, 342–344
fetal hemoglobin, 337
goal of, 342–344
heart rate control, 338
heart rate responses
to mild/moderate
hypoxemia, 338–340
to phasic hypoxemia/late
decelerations, 340–341
heart rate variability, 338, 341
historical background, 337
NICHD nomenclature
establishment, 344–345
oxygen delivery, 337–338
sinusoidal pattern, 341
variable deceleration, 341–342
fetal mortality, 337
fibrin degradation products,
D-dimers (coagulation test), 295
fibrinogen level POC tests,
310–311
Fick’s principle-based CO
monitoring systems, 5, 79–80
calculation formula, 79–80
described, 19
differential CO, partial
breathing technique, 80
calculation formula, 80
limitations of, 19
Fiddian-Green, R. G., 95
finger cuff (FINAP) BP method,
46
Fink, B. Raymond, 2
Finometer (Finapres Medical
Systems BV) pulse contour
analysis system, 84
ICH (intracerebral hemorrhage) score, 354–355
image formation, TEE color-flow (CFD) Doppler, 107, 109
continuous-wave (CW) Doppler, 107
Doppler effect/equation, 106–107
M mode, 106
pulsed-wave (PW) Doppler, 107
2D mode, 106
implantable, miniaturized devices, 37
indicator dilution-based CO monitoring systems, 80–82
continuous CO monitoring, 82
dye dilution, 80
thermodilution cardiac output, 81–82
indirectly evoked response (neuromuscular functioning, perioperative monitoring)
acoustic myography, 273
motor nerve stimulation, 262–263
objective measurement acceleromyography, 271–272
electromyography, 271
kinemyography, 272–273
mechanomyogram, 270
PNS/conventional nerve stimulators, 5, 261, 263
infrared analysis (respiratory gas monitoring)
collision (pressure broadening), 155
dual-beam positive filter, 156
photoacoustic spectrometer, 157–168
radiation detectors, 156
radiation sources, 156
sampling systems and, 157
single-beam negative filter, 156
single-beam positive filter, 156
technical details, 155
wavelength/anesthetic agent specificity, 156–157
infrared sensors, 332

Inhalation of the Vapour of Ether in Surgical Operations (Snow), 1
Injury Severity Score (ISS), 369
INOvent delivery system
(GE/Datex-Ohmeda), 164
Institute of Medicine (IOM), 32
Intensive Care Delirium Screening Checklist (ICDSC), 363
intensive care unit (ICU) risk scoring
APACHE I system (1981) description, 372
limitations, 372
strengths, 372
APACHE II system (1985) description, 372–373
limitations, 373
strengths, 373
APACHE III system (1991) description, 373
strengths/limitations, 373–374
APACHE IV system (2006) description, 374
limitations, 374
strengths, 374
calibration, 371
classification of, 369
customization, 371–372
discrimination, 371
limitations/pitfalls of prediction models, 379–380
Logistic Organ Dysfunction System, 369, 377
model creation
outcome selection, 370
target population selection, 370
variable selection, 370
weight assignment, 370
model performance, 370–371
Mortality Probability Model I, 375–376
Mortality Probability Model II, 376
Mortality Probability Model III, 376
Multiple-Organ Dysfunction Score, 369, 377
NSQIP (1997), 378
POSSUM, 377–378
SAPS I (1984), 375
SAPS II (1994), 375
SAPS III (2005), 375
Sequential Organ Failure Assessment, 369, 377
Therapeutic Intervention Scoring System, 378–379
utility of, 369–370
intermittent auscultation (IA) heart rate monitoring, 344
internal jugular vein (IJV) cannulation
advantages of, 57
approach in PAC, 59, 60
CVC insertion, 139
needle placement, 57
TEE probe prior to, 57
ultrasound guidance of, 58
International Normalized Ratio (INR), 293
Intocostrin (curare, dTc), 261
intracranial aneurysm repair, 230
CBFV monitoring during, 230
SSEP monitoring during, 204
intracranial pressure (ICP) and compliance monitoring (in critically ill neurologic patients), 237–240
intracranial pressure (ICP) transducer accident (case study), 13
Intraoperative Awareness and Brain Monitor Function Monitoring practice advisory (ASA), 13
Intraoperative awareness monitoring
ASA monitoring suggestions, 13
B-aware trial and, 222
case study, 12
cost of prevention, 223–224, 392
entropy analysis, 220, 222
ETAG and, 222
low-concentration alarm, 167
malpractice lawsuits for, 13
NeuroTrend monitoring and, 222
intraoperative stroke
malpractice lawsuits, 13
intrapartum maternal mortality, 337
intrinsic/extrinsic ECG artifacts, 37–38
INVOS 5100, cerebral oximeter, 249
IRMA multigas analyzers, 159
ischemia-modified albumin (IMA), 322
Israel Board of Anesthesiology Examination Committee, 31
i-STAT analyzer (Abbott Point of Care), 287–288
Itskovitz, J., 340
Ivatury, R. R., 96
Jacobsen, P. D., 9
Jannelle, G. M., 252
Jobsis, F. E., 249
Joint Commission on the Accreditation of Healthcare Organizations (JCAHO), 12, 287, 351, 370
Jones, R., 27
JUPITER rosvastatin trial, 321
Kallmeyer, I. J., 131
Kang, Y. G., 298
Kaplan, J. A., 5
Kapral, S., 146
Katz, I., 5
Keanan, S. P., 141
Kern, K. B., 99
Kilman, A. F., 266
King, S. B., 5
Kirk, Robert, 2
Klein, O., 5
Kopman, A. F., 266
Kreuer, S., 222
Kubicek, William, 85
Kussman, B. D., 257
kymograph, 3
lactic acid (OR point-of-care laboratory testing), 285
Laerdal, Asmund, 31
Landesberg, G., 41
Lasocki, S., 320
Lawrie, Edward, 1
lead systems, electrocardiography development of, 38
history/description, 12-lead system, 38–39
intrinsic/extrinsic artifacts, 37–38
monitoring/diagnostic modes, ECG monitor frequency response, 37
Lee, C. M., 271
Lee-White clotting time measure, 308
left bundle-branch block (LBBB), 68–69
left ventricular end-diastolic volume (LVEDV), 62–63
left ventricular hypertrophy (LVH), 39, 121
Lennox, W. G., 4
simulation-based training, 33
vigilance component, 30
peroperative phase, 28–29
anatomical considerations, 30
ASK to achieve for, 29
monitor determination, 28–29
patient safety/comfort emphasis, 30
psychomotor skill requirements, 30
simulation-based training, 33
timing of placement considerations, 29–30
postoperative phase, 29
ASK to achieve in, 29
patient stability determination, 30
simulation-based training, 33
Monroe-Kelly doctrine, 237
Morris, L. E., 261
Mortality Probability Model (MPM) severity of illness scoring system, 369
MPM-I (1985), 375–376
MPM-II (1993), 376
MPM-III (2007), 376
Morton, W. T. G., 1
motion artifacts, 107, 109, 188
motor nerve stimulation, 262–263
De Motu Cordis (Harvey), 1
mouth-to-mouth resuscitation training, 31
Muiler, J. P., 101
multimodality monitoring in critically ill neurologic patients
technologies
brain oxygen monitoring, 239, 242–243, 244
cerebral blood flow, 245
continuous EEG, 241–242
epidural/subarachnoid monitors, 239
intracranial pressure/compliance monitoring, 237–240
intraparenchymal monitors, 239
jugular venous oxygen saturation, 244–245
microdialysis, 239, 242, 243–244
TCD, 240–241
Multiple-Organ Dysfunction Score (MODS), 369, 377
multiplexed mass spectrometry systems, 154–155
Murdoch, S. D., 66
Murkin, J. M., 256
Murphy, G. S., 276
myeloperoxidase (MPO), 322
Myles, P. S., 223
myocardial infarction (MI).
myocardial infarctions acute MI, 66, 319
EGC ischemia monitoring, 41
hypoglycemia-precipitated, 284
IMA and, 322
mitral regurgitation and, 126
PAC use and, 66
PAPP-A and, 323
Q wave MI, 256
RV ejection fraction catheters and, 72
ST-elevation MIs, 322
myocardial ischemia, 110
assessment of, 120
detection/pathophysiology of ST segment responses, 5, 39
EGC manifestations of, 39–40
ischemia-modified albumin and, 322
myeloperoxidase and, 322
PCWP waveform and, 61
peroperative ECG monitoring, 40–42
rate decrease using pulse oximetry, 192
troponin levels, 320
Myograph 2000 neuromuscular analyser, 270
Naguil, M., 274
Nakagawa, Y., 102
NarcoTrend index, 221, 222
National Aeronautic and Space Administration (NASA), 85
National Board of Echocardiography, 13–14, 132
National Credentialing Committee of Malaysia, 90
National Institute for Clinical Excellence (NICE, Great Britain), 141
National Institute of Child Health and Human Development (NICHD), 344
National Institute of Standards and Technology, 20
National Surgical Quality Improvement Program (1997), 378
near-infrared spectroscopy (NIRS), 101, 232, 233
clinical data adult cardiac surgery, 252–253
noncardiac surgery, critical care, 254–256
pediatric cardiac surgery, 253–254
complications/pitfalls of, 258
credentialed/training for, 258
frequency-domain NIRS, 249
historical background, 249
low rSO₂, 249
outcome studies, 255–258
treatment, 254
outcome studies of, 255–258
parameters measured with, 251–252
practice parameters/guidelines, 258–259
respiratory multigas analyser use of, 153
somatic near-infrared oximetry, 251
uses in adult/pediatric surgery, critical care, 254–255
technical concepts of, 249–251
Beer-Lambert equation, 249
cerebral oximetry/cerebral oximeters, 249–250, 252
NEECHAM Confusion Scale, 363
negligence (professional negligence)
acts of, 10
defined, 10
determination of, 12
examples of, 10
examples of, 10
neostigmine, 269, 275
nervous conduction studies and electromyography, 213–214
nerve-stimulation (NS) techniques, 145
Block-Aid monitor, 5
lower extremity blocks, 146
peripheral nerve block placement, 146
sciatic nerve blocks, 146
sensory parenthesia elicitation with, 146
supraclavicular blocks, 146
upper extremity blocks, 145, 146, 147–148
upper/lower extremity blocks, 146
neurologic clinical scales, 353–356
admission clinical assessment scales
FOUR Score, 353
Glasgow Coma Scale, 238, 353, 369
Hunt-Hess grade, 353
ASIA score, 355
ICH score, 354–355
NIH Stroke Scale, 354
outcome assessment scales
Barthel score, 355–356
Glasgow Outcome Scale, 355
modified Rankin scale, 355
WFNS Subarachnoid Grade system, 353–354
neurologic intraoperative electrophysiologic monitoring (NIOM), 199–215
areas of uncertainty/multimodality monitoring, 214
efficacy, challenges to establishing, 200
goal of, 199
guidelines, 214
summary/recommendations, 214–215
techniques
brainstem auditory evoked potentials, 213
electroencephalograph, 200–204
electromyography/nerv conduction studies, 213–214
somatosensory evoked potentials, 204–209
transcranial motor-evoked potentials, 208–213
visual-evoked potentials, 213
neurologic patients (critically ill). See Multimodality monitoring in critically ill
neurologic patients
neuromuscular blocking drugs (NMIBDs), 261
neuromuscular functioning, perioperative monitoring, 261–276
abbreviation key, 261
alternative monitoring sites
facial muscles, 273–274
flextor hallucis brevis, 274
bedside/clinical tests of recovery, 274
case for/against objection monitoring, 275–276
neuromuscular (cont.)
clinical consequences, 276
future considerations, 276
historical evolution of \(\text{TcO}_2\) testing
hemostatometry/Clot
Signature Analyzer, 315
HemoSTATUS device, 312
Impact Cone/Plate(let) Analyzer, 315

O’Brien, J. J., 233
off-pump coronary artery bypass graft surgery, 65
Ohmeda GMS Absorber System, 179
Ohmeda 6000 Multigas Analyzer, 155, 166
Ohmeda RASCAL II analyzer, 152, 159
open-drop ether, 3
operating room laboratory testing. See Point-of-care laboratory testing
organ dysfunction scores
Logistic Organ Dysfunction System Score, 369, 377
Multiple-Organ Dysfunction Score, 377
Sequential Organ Failure Assessment, 369, 377
orthogonal polarization spectral (OPS) imaging, 102
ORYX Core Measures program (JCAHO), 370
oscillometric BP measurement (NIBP) method, 46
Oxi-Max reflectance sensor, 189
oxygen (\(\text{DO}_2\), global and regional), monitoring
base deficit/equation, 100
central venous oxygen saturation \(\text{ScvO}_2\), 101
mixed venous oxygen saturation \(\text{SvO}_2\), 100–101
serum lactate, 100
tissue perfusion metabolic indicators, 99–100
oxygen delivery (\(\text{DO}_2\)) and utilization
alveolar \(\text{PO}_2\)-to-\(\text{PaO}_2\) gradient, 98
total arterial \(\text{O}_2\) blood content equation, 98
critical \(\text{DO}_2\), 98–99
Fick equation for delivery to peripheral tissues, 98
oxygen extraction ratio \(\text{O}_{2\text{ER}}\) equation, 98
oxygen uptake \(\text{VO}_2\) Fick variation equation, 98
\(\text{PaO}_2\) and \(\text{SaO}_2\), 98
transport and delivery variables, 98
venous \(\text{O}_2\) blood content equation, 98
Ozanne, G. M., 153
pacomakers, 37, 42
conduction abnormalities, 4
external pacemaker, 68, 69
need for anesthesiologist familiarity, 42
spikes, clinical significance, 37
temporary transvenous pacemaker, 68
wire displacement possibility, 71
PACU assessment scales. See postanesthesia care unit assessment scales
PADS. See Post-Anesthetic Discharge Scoring System
pain scales, 348–352
JCAHO/NYS DOH recommendations, 351–352
McGill Pain Questionnaire, 351
unidimensional scales
Box Scale, 349
face scales, 350
Numeric Rating Scale, 349
Verbal Rating Scale, 349–350
Visual Analog Scale, 348–349
Palve, H., 194
pencuronium, 5
\(\text{PaO}_2\) (oxygen in the plasma), 185
parathyroid hormone (PTH) characteristics of, 327
intraoperative monitoring, 328
intraoperative testing, 327–328
resistance to, in hypocalcemia, 283, 328
role of, 327
paroxysmal atrial tachycardia, 4
Patient State Index (PSI), 221
Payne, D. A., 232
Pederson, T., 193
Pedersen, Lyle, 3–4
Pettersson, T., 193
Peterson, T., 193
Peterson, Lyle, 3–4
Peter Bent Brigham Hospital (Boston), 4
Peterin, ELMER multiplexed mass spectrometry system, 153
Perlas, A., 145, 146
Peter Bent Brigham Hospital (Boston), 4
Pierce, Ellison, 6
piezoresistive effect, 171–172
Pitot tube flowmeter, 176
plasma/serum-based coagulation tests activated partial thromboplastin time, 293–294
fibrin degradation products, D-dimers, 295
fibrinogen concentration, 294–295
prothrombin (PT) time, 293
thrombin time (TT), 294
plastic “nonthrombogenic” sterile tubing, 3
Platelet Function Analyzer (PFA-100), 311
platelet function monitoring, POC tests
hemostatometry/Clot Signature Analyzer, 315
HemoSTATUS device, 312
Impact Cone/Plate(let) Analyzer, 315

Platelet Function Analyzer, 311
Platelet Works assay, 312
Sonoclot Analyzer, 296–298, 312–313
TEG ... 188
oxygen transport (flux),
185
evidence of utility
acceptance as monitoring
standard, 192, 193
415

POSSUM (Physiological and
Operative Severity Score for the
Enumeration of Mortality and
Morbidity), 377–378
postanesthesia care unit (PACU)
assessment scales, 357–359
ASA guidelines, 357
early/late recovery phases, 357
scoring systems
Aldrete, 357–358
Carighan system, 357
Modified Aldrete Scoring
System, 358
PADSS, 358
REACT assessment tool, 357
Steward/Robertson system, 357
Virginia Appar system, 357
Post-Anesthetic Discharge
Scoring System (PADSS), 358
posterior tubal artery
 cannulation, 48–49
postoperative neuromuscular
block (PONB), 274–275
potassium (OR point-of-care
laboratory testing)
hyperkalemia, 282
hypokalemia, 282–283
role/relative range, 282
Practice Advisory (ASA), 224
pregnancy-associated plasma
protein A (PAPP-A), 323
pressure, volume, and flow
monitoring. See also Flow
measurements; Pressure
measurement; Volume and flow
measurements (mechanical,
electronic)
complications, 183
credentialing, 183
information derived from,
178–179
practice parameters, 183–184
utility of
breathing system leak
detection, 182
flow monitoring, 180
flow-volume loop, 182
PEEP/optimizing
compliance, 183
pressure monitoring,
179–180
spirometry loops, 180–181,
182
volume monitoring, 180
volume-pressure loop,
181
volumetric capnography,
oxymetry, 183
pressure measurement
analog gauges, 171
bellow gauges, 171–172
conditioning-pressure alarms, 180
electromechanical transducer
workstations, 171–172
high-pressure alarms, 180
inferences from, 178
low pressure alarms, 179–180
piotr tube flowmeter, 176
pneumotachometers, 174, 175
pressure (defined), 171
semiconductor strain gauges,
172
subatmospheric pressure
alarms, 180
variable orifice flow sensor,
177–178
pressure- recording analytical
method (PRAM), 85
Preventing and Managing the
Impact of Anesthesia Awareness
(ICAHO), 12
Price, H. L., 95
professional negligence. See
Negligence (professional
negligence)
propofol
BIS utility and, 221
consequences of use, 210
dose-dependent EEG
slowing, 204
NarcoTrend index
monitoring, 222
SSCP latency/amplitude and,
206
TCI/propofol infusion clinical
efficacy, 391–392
TCMep monitoring via IV
infusion, 212
TIVA anesthetic regime and,
222
prostate dose assay (PDA-O),
309
prothrombin (PT) time
(coagulation test), 293
pro-type B nitricreatic peptide,
320–321
psychology and perception, 389
Pulmonary Artery Catheter
Consensus Conference, 89
pulmonary artery
catheterization (PAC)
balloon-tipped PAC, 79
cardiac filling measures using,
79
for cardiac surgery patients,
65
complications, 68–69, 89–90
credentialing for monitoring,
70
for critically ill ICU patients,
66–67
historical background, 57
insert site considerations, 59,
60, 65
monitoring, 64–65
for noncardiac surgery
patients, 65–66
placement
contraindications to, 71
indications for, 70–71
RA waveform and, 60
specialty catheters
mixed venous oxygen
saturation catheters, 72
pacing catheters, 72
right ventricular ejection
fraction catheters, 72
pulmonary artery occlusion
pressure (PAOP), 60
pulmonary capillary wedge
pressure (PCWP), 60–61
pulmonary embolism, 66, 320,
321
pulse contour analysis-based CO
monitoring systems, 20, 82–85
accreditation activities, 90
complications, 90
description, 82–83
device accuracy issues, 83
diastolic pulse contour
analysis, 83
Finometer system, 84
Flo Trac/Vigileo system, 84
historical background, 82
LiDCO plus system, 84
Modelflow pulse contour
analysis, 84
PiCCO system, 83–84
pressure- recording analytical
method, 85
pulse power analysis, 84–85
systolic pulse contour
analysis, 83–84
TDCC calibration
measurement devices for,
82, 87
Windkessel (two-element)
model, 82, 83
pulsed-wave (PW) Doppler,
107
pulse oximetry, 185–196
complications, 193–194
credentialing, 194–195
definitions
functional/fractional
hemoglobin saturation,
185, 188
oxygen transport (flux),
185
evidence of utility
acceptance as monitoring
standard, 192, 193
Index

pulse oximetry (cont.)
 brain damage/deaths
 reduction, 192–193
 hand collateral artery
 periphereal nerve block
 patentyassessment, 48
 patient safety/
 postoperative cardiac
 periphereal monitoring
 clinical trials, 192
 reduced hypoxemia
 mortality, 192, 193
 histroical background, 5, 6, 9, 185–186

parameters monitored
 COHb (SpCO)/methHb
 hyoxemia, 189–192
 perfusion, 192
 plethysmographic
 variability index, 191
 pulse rate at sensor site,
 practice parameters, 195–196
 technical concepts
 carboxyhemoglobin, 188
 methemoglobinemia,
 multiple-wavelength pulse
 oximeters, 189–195
 optical plethysmography,
 reflectance pulse oximetry,
 spectrophotometry, 186
 pulse reading during anesthetic
 (Harrigan), 2
 pulse/respiration monitoring
 advocacy, 1–2

Q wave myocardial infarction, 256

Rackow, E. C., 102
Raman spectroscopy, 152, 159
Rampil, J. I., 218
Ramsey, F. M., 65
Randolph, A. G., 141
 Ranucci, M., 66
RASCAL II Raman
spectrometer, 159
Raynaud syndrome, 53
realistic patient simulators
(RPss), 32
regional anesthesia procedures,
See also Nerve-stimulation (NS)
techniques
 complications, 147
 credentialing, 147–148
evidence of utility, 145–147
nerve-stimulation (NS)
techniques, 145
 Block-Aid monitor, 5
 lower extremity blocks, 146
 peripheral nerve block
 placement, 146
 sciatic nerve blocks, 146
 sensory paresthesia
deliction with, 146
 supraclavicular blocks, 146
 upper extremity blocks,
 145, 146, 147–148
 technical concepts
 linear array probes, 145
 needle visualization
 optimization, 145
 nerve stimulation (NS)
techniques, 145
 Reiter, H. L., 27

Relaxometer neuromuscular
analyzer, 270
remifentanil, 212
repetitive single stimuli
(neuromuscular functioning,
periphereal monitoring)
EMG recordings, 265
mechanical recordings, 265
Report of the ASA Task Force on
Postanesthetic Care, 262
Resano, F. G., 65
res ipsa loquitur argument, 10–11
Respiration, Energy, Alertness,
Circulation, and Temperature
(REACT) PACU assessment
tool, 357
respiratory gas monitoring
applications of
CO2, 165–167
nitrogen, 167
oxygen, 164–165
balance gas, 163
colorimetric CO2 detectors,
160–161
complications, 167–168
credentialing, 168
fuel cells
 calibration of oxygen
 analyzers, 163
description, 161–162
paramagnetic oxygen
analyzer, 162–163
gas analysis systems, 152
gas analysis technologies, 153
gas sampling systems, 150
mainstream (nondiverting)
system, 150, 152, 160
sidestream (diverting)
system, 150, 151–152, 160
historical background, 150
infrared analysis
collision (pressure
broadening), 155
 dual-beam positive filter,
 156
photoacoustic
spectrometer, 157–168
radiation detectors, 156
radiation sources, 156
sampling systems and, 157
 single-beam negative filter,
 156
 single-beam positive filter,
 156
technical details, 155
 wavelength/anesthetic
 agent specificity, 156–157
 mass spectrometry
dedicated (stand-alone)
systems, 155
 instrument description,
 153
 partial pressure formula,
 154
 principles of operation,
 153–154
 shared (multiplexed)
systems, 154–155
 measurement of proportion
 (volumes percent), 152–153
 microstream capnography
 technology, 160
 molecular correlation
 spectroscopy, 160
 nitric oxide (NO), 163–164
 number of molecules (partial
 pressure), 152
 oxygen analyzers, 161
 calibration of, 163
 paramagnetic analyzer,
 162–163
 practice parameters, 168–169
 Raman spectroscopy, 152, 159
 water vapor/capnometer
 accuracy, 160
Resusc-Ann (mouth-to-mouth
resuscitation training
mannequin), 31
Revised Trauma Score (RTS),
369
Rhodes, A., 66
right bundle-branch block
(RBBB), 68–69
Ringelstein, B., 233
Rivers, E. P., 99
Robbertze, R., 193
Robertson, G., 357
rocuronium, 273, 275, 276
rosuvastatin trial, 321
rotational thromboelastometry
(ROTEM), 298, 314–315
Rovenstine, Emery, 261
Royal Medical and Chirurgical
Society (England), 1
Royston, D., 303
Rundshagen, I., 222
Russell, D., 232
Safar, Peter, 31
safety-drive monitoring
standards, 6
Sakr, Y., 66
saline gastric tonometry, 95
Sandham, J., D, 65
SAPS (Simplified Acute
Physiology Score) severity of
illness scoring system, 369
SARA (System for Anesthetic
and Respiratory Analysis) mass
spectrometry system, 153–154
Scheiner, M., 5
Schmidt, G., 222
Schoenfeld, A., 147
Schwann, T. A., 65
Second Hyderabad Chloroform
Commission (India, 1889), 1
Seguin, P., 24
Seldinger cannulation technique,
48, 57
semicontinuous thermocapillary
cardiac output (CCCO), 24
Sequential Organ Failure
Assessment (SOFA), 369, 377
serum-based coagulation tests.
See Plasma/serum-based
coagulation tests
Severinghaus, John W., 5
severity of illness scoring
systems, 369
Shore-Lesserson, L., 303
sidestream (diverting) gas
analysis system, 150, 151–152, 160
SimMan (patient simulator
mannequin), 31
SimOne (patient simulator
mannequin), 31
Simplified Acute Physiology
Score Models
SAPS I (1984), 375
SAPS II (1994), 375
SAPS III (2005), 375
Simpson, James Young, 1

Cambridge University Press & Assessment
978-0-521-75598-6 — Monitoring in Anesthesia and Perioperative Care
David L. Reich, Edited by Ronald A. Kahn, Alexander J. C. Mittnacht ,
Andrew B. Leibowitz , Marc E. Stone , James B. Eisenkraft
Index

© in this web service Cambridge University Press & Assessment www.cambridge.org

Cambridge University Press & Assessment
978-0-521-75598-6 — Monitoring in Anesthesia and Perioperative Care
David L. Reich, Edited by Ronald A. Kahn, Alexander J. C. Mittnacht ,
Andrew B. Leibowitz , Marc E. Stone , James B. Eisenkraft
Index

© in this web service Cambridge University Press & Assessment www.cambridge.org
Index

simulation in teaching monitoring skills, 30–34
thromboelastography (cont.)
measured parameters
alpha angle, 300
clot lysis parameters, 301
coaagulation index, 301
decrease in area, 301
G parameter, 301
K parameter (K), 300
maximum amplitude
(MA), 301
reaction time (R), 299–300
modifications
fibrinogen assay, 314
platelet mapping assay, 314
rotational
thromboelastometry, 298,
314 principles/technical aspects,
298–299
Thrombolytic Assessment
System (TAS), 309
TISS (Therapeutic Intervention
Scoring System), 378–379
tissue perfusion
metabolic indicators, 99–100
regional indicators
metabolic PET, 102
near-infrared spectroscopy, 101
orthogonal polarization
spectral imaging, 102
tissue CO2 monitoring, 101–102
transcutaneous oxygen
tension, 102
Todd, D. P., 261
To Err Is Human: Building a Safer
Health System (IOM, 2000), 32
TOF-Watch S monitor, 272
Tonomap gastrointestinal
tonometer, 95
training, importance of, 13–14
train-of-four count (TOFC)
neuromuscular stimulation,
263–268
train-of-four (TOF)
neuromuscular stimulation, 5,
266–268
Transcranial Doppler (TCD)
ultrasound, 226–235
complications of, 233
education, credentialing,
233–235
intraoperative setting uses of
cardiopulmonary bypass,
230–232
carotid
derarterectomy/ischemic
threshold, 230
Circle of Willis function, 230
detection/quantification of
intrapathological aneurysm
repair, 230 (See also
Intrapathological aneurysm
repair)
intracranial hemodynamics
assessment, 230
outcome studies using,
232–233
practice parameters for, 235
technical considerations
background information,
226
cerebral blood flow velocity
measurement, 226–229
(See also Cerebral blood
flow velocity
measurement)
cerebral emboli detection
and counting, 229
use in monitoring critically ill
neurologic patients, 240–241
transcranial motor-evoked
potentials (TcMEPs), 208–213
anesthetic interactions,
208–209
anesthetic monitoring regime,
212
attenuation by neuromuscular
blocking drugs, 212
challenges of, 210–212
downsides/limitations of,
209
optimal intraoperative
monitoring approach,
209–212
performance mechanics, 208
transcutaneous blood gas
monitoring, 5
transcutaneous oxygen tension,
102
transducer/user syndrome, 147
transesophageal
echocardiography (TEE)
in antecubital vein placement,
59
certification courses/
credentialing, 131–132
complications/contraindications,
131
image formation
color flow (CDF) Doppler,
107, 109
continuous-wave (CW)
Doppler, 107
Doppler effect/equation, 106–107
M mode, 106
pulsed-wave (PW)
Doppler, 107
2D mode, 106
increasing popularity/use of,
66–67
placement prior to IJV
 cannulation, 57
practice parameters, evidence of
utility, 130–131
in pulmonary artery
catheterization, 60
reasons for use, 13–14
technical concepts
attenuation, reflection,
scatter, 105–106
ultrasound physics, 105
wavelength, frequency,
velocity, 105
3D echocardiography
concepts
artifacts, types of, 108
matrix array design, 108
one-dimensional arrays,
107–108
3D image display, types of
color Doppler, gated, 109
full volume, gated, 108–109
live 3D, real time, 108
zoom, real time, 108
transesophageal
echocardiography (TEE),
derived information
aortic disease, 130
aortic regurgitation, 123–124
aortic stenosis, 121–123
aortic valve evaluation, 121
cardiac tamponade, 129–130
evaluation of right/left
ventricular size, function, 118
fractional shortening, 118
left ventricular function, 3D
assessment, 119
left ventricular mass, 118
left ventricular wall thickness,
118
mitral valve evaluation, 124
mitral valve regurgitation,
126
mitral valve stenosis, 124–125
Doppler assessment, 125–126
one-dimensional linear
measurements, 118
pericardial disease, 129
pericardial effusion, 129
pressures/flow, assessment of,
121
proximal isovelocity surface
area, 127–128
pulmonary vein flow pattern,
127
qualitative grading/color flow
Doppler, 126–127
relative wall thickness, 118
right ventricle, 119
RWMAs (coronary ischemia
assessment), 120
tricuspid valve, 128–129
ventricular function, 2D
assessment, fractional area
change, 118–119
ventricular thickening, 120
wall motion, 120
transesophageal
echocardiography (TEE),
parameters monitored (standard
ASE views)
deep transgastric long axis,
110–112
descending aortic long axis/upper
easophageal aortic arch
short axis, 118
descending aortic short
axis/upper esophageal aortic
arch long axis, 117
midesophageal aortic valve
long axis, 115–116
midesophageal aortic valve
short axis, 115
midesophageal ascending
tortic long axis, 116
midesophageal ascending
tortic short axis, 117
midesophageal bi-caval, 117
midesophageal four chamber,
112–113
midesophageal long axis,
114–115
midesophageal mitral
commissural, 113–114
midesophageal right
ventricular inflow-outflow,
116
midesophageal two-chamber,
114
transgastric basal short axis,
112
transgastric long axis, 110
transgastric midpapillary
short axis, 110
transgastric right ventricular
inflow, 110
transgastric two chamber,
110
transgastric basal short axis
TEE parameter (ASE), 112
transgastric long axis TEE
parameter (ASE), 110
transgastric midpapillary short
axis TEE parameter (ASE), 110
transgastric two chamber TEE
parameter (ASE), 110
Trauma Injury Severity Score
(TISS), 369
Trauma Score (TS), 369
Trendelenburg positioning, 60,
136, 138
tricuspid valve
anatomy, 128
Index

continuous-wave Doppler measurements, 128
intrinsic structural abnormalities, 128
regurgitation, 128–129
stenosis, 128
Troianos, C. A., 58
troponins (TnI or TnT), 320, 322
12-lead electrocardiogram system, 40
ACC/AHA Task Force on Practice Guidelines, 36
history/description, 5, 38–39
lateral precordial lead studies, 41
London's mixed cohort study, 41
Martinez's cohort evaluation, 41
two-dimensional (2D) ultrasonic methods, 47
for air embolism detection, 67
for aortic valve evaluation, 121
for IJV cannulation in adults, 58
for image formation in TEE, 106
NICE/AHRQ recommendations, 142
for radial artery cannulation, 47–48
for ventricular function assessment, 118–119
ultrasound (Doppler) cardiac output (UCCO), 20
ultrasound guidance

NICE/AHRQ recommendations, 142
for regional anesthesia procedures, 145–148
usefulness in catheter placement, 12
of vascular catheterization, 136–143
categories, 139
static vs. dynamic, 139–141
Urmey, W. F., 146
Utting, J. E., 266
Vakkuri, A., 222
Valsalva maneuver, 58, 117, 136, 138, 237
Van Geffen, G. J., Vanluchene, A. L. G., 222
vascular catheterization, ultrasound guidance, 136–143
credentialing, 142
evidence of utility future directions, 141–142
traditional approaches, 139
ultrasound guidance, 139–141
parameters monitored, 138–139
pediatric patient complications, 139
practice parameters, 142–143
technical concepts, 136–138
2D ultrasound, 136
machine/transducer choice, 137–138
PART acronym, 136

static vs. dynamic imaging, 136–137, 139–141
transducer placement/ manipulation, 136–137
vecuronium, 275
Velmahos, G. C., 99
Verbal Rating Scale (VRS) of pain, 349–350
VerifyNow system, 311
Viby-Mogensen, J., 266, 271
Vigoda, M. M., 11
viscoelastic whole blood clotting testing
Sonoclot coagulation/platelet function analyzer, 296–298
thromboelastography, 298–303
Visual Analog Scale for Acute Confusion (VAS-AC), 364
Visual Analog Scale (VAS) of pain intensity, 348–349
visual-evoked potentials (VEPs), 213
volume and flow measurements (mechanical, electronic)
D-Lite pressure/flow sensor, 175
Dräger Spiromed, 173–174, 176
GE-Datex Sidestream Spirometry system, 175
inferences from, 178
pilot tube flowmeter, 175–176
pneumotachometers, 174, 175
sealed mechanical volumeter, 174
utility of, 180
vane anemometer, 173
Wright respirometer, 173
volume-clamp BP monitoring method, 46
volume-pressure loops, 181
volumetric capnogram, 183
VR (virtual reality) training simulators, 32
Vuori, A., 194
Wagner, G. S., 41
Waller, Augustus, 36, 64
Watzman, H. M., 249
Werko, L., 5
Wesseling, K. H., 46, 83
Wiener, R. S., 66
Windkessel (two-element) model, 82
Wong, D. L., 350
Working Group on Blood Pressure Monitoring (European Society of Hypertension), 46
World Federation of Neurological Surgeons (WFNS)
Subarachnoid Grade system, 353–354
World Health Organization (WHO), 147
Wright, B. Martin, 173
Zimmerman, A. A., 232

© in this web service Cambridge University Press & Assessment
www.cambridge.org