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A brief history of cosmology
MALCOLM S. LONGAIR
Cavendish Laboratory, Cambridge, UK

Abstract
Some highlights of the history of modern cosmology and the lessons to be learned from the
successes and blind alleys of the past are described. This heritage forms the background
to the lectures and discussions at this Second Carnegie Centennial Symposium, which cele-
brates the remarkable contributions of the Carnegie Institution in the support of astronomical
and cosmological research.

1.1 Introduction
It is a great honor to be invited to give this introductory address at the Second

Carnegie Centennial Symposium to celebrate the outstanding achievements of the Obser-
vatories of the Carnegie Institution of Washington. I assume that the point of opening this
meeting with a survey of the history of cosmology is not only to celebrate the remarkable
achievements of modern observational and theoretical cosmology, but also to provide lessons
for our time, which may enable us all to avoid some of the errors that we now recognize were
made in the past. I am bound to say that I am not at all optimistic that this second aim will
be achieved. I recall that, when I gave a similar talk many years ago with the same intention,
Giancarlo Setti made the percipient remark:

Cosmology is like love; everyone likes to make their own mistakes.

By its very nature, the subject involves the confrontation of theoretical speculation with
cosmological observations, the scepticism of the hardened observer about taking anything
a theorist says seriously, the problems of pushing observations to the very limits of techno-
logical capability, and sometimes beyond these, resulting in dubious data, and so on. These
confrontations have happened many times in the past. My suspicion is that the commu-
nity of astronomers and cosmologists is now sufficiently large for false dogma and insecure
observations to have only limited shelf-lives, but we must remain vigilant. Nonetheless, it
is intriguing to survey the present state of cosmology, with its extraordinary successes and
challenges, and recognize the many similarities to those that faced the great scientists of the
past. I leave it to readers to draw their own preferred analogies.
The history of cosmology is a vast and fascinating subject, and I will only touch on some

of the highlights of that story. I have given a more detailed account of that history elsewhere
(Longair 1995), and it is a subject that repays careful study. To my regret, there will be little
space to do justice to the technological achievements that have made modern cosmology a
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2 M. S. Longair

rather exact science (see Longair 2001). Without these developments, none of us would be
celebrating the achievements of modern cosmology at this symposium.
Before getting down to the history, let me contribute a personal appreciation of Andrew

Carnegie’s philanthropy. He gave away $350M of his fortune of $400M to charitable causes.
Among the more remarkable of these was the founding of about 3000 libraries worldwide,
including five in my home town of Dundee in Scotland, only about 30 miles from Dun-
fermline, Carnegie’s birthplace. Here is a quotation from the Carnegie Libraries of Scotland
web-site:

When the library was officially opened on 22 October 1908, [Charles] Barrie [a former Lord
Provost] was asked to perform the opening ceremony . . . There was a banquet afterwards in the Victo-
ria Art Galleries hosted by Lord Provost Longair.

Lord Provost Longair was my great, great uncle. I remember as a small boy going regularly
to the Dundee Public Libraries to learn about rockets and space flight. Little did I realise then
that, more than 50 years later, I would be participating in the celebrations of the centenary
of the founding of the Carnegie Institution.

1.2 Observational Cosmology to 1929
The earliest cosmologies of the modern era were speculative cosmologies. The

“island universe” model of Descartes, published in The World of 1636, involved an inter-
locking jigsaw puzzle of solar systems. Wright’s An Original Theory of the Universe of
1750 involved spheres of stars and solar systems, while Kant in 1755 and Lambert in 1761
developed the first hierarchical, or fractal, pictures of the Universe (see Harrison 2001). The
problem with these early cosmologies was that they lacked observational validation. When
these ideas were put forward, the only star whose distance was known was the Sun. The first
parallax measurements of stars were only made in the 1830s by Friedrich Bessel, Friedrich
Georg Wilhelm Struve and Thomas Henderson.
The first quantitative estimates of the scale and structure of the Universe were made by

William Herschel in the late 18th century. Herschel’s model of the large-scale structure
of the Universe was based upon star counts and provided the first quantitative evidence
for the “island universe” picture of Wright, Kant, Swedenborg and Laplace. In deriving
his famous model for our Galaxy, Herschel assumed that all stars have the same absolute
luminosities. The importance of interstellar extinction in restricting the number counts of
stars to a relatively local region of our Galaxy was only fully appreciated in the early 20th
century.
John Michell had already warned Herschel that the assumption that the stars have a fixed

luminosity was incorrect. This is the same John Michell who was Woodwardian Professor
of Geology at Queen’s College, Cambridge, before becoming the rector of Thornhill in
Yorkshire in 1767. He designed and built what we now know as the Cavendish experiment
to measure the mean density of the Earth. Nowadays, he is rightly remembered as the
inventor of black holes. In 1767, he showed that there must be a dispersion in the absolute
luminosities of the stars from observations of bright star clusters. Despite this warning,
Herschel ignored the problem and proceeded to produce a number of different versions of
the structure of our Galaxy. In 1802, Herschel measured the magnitudes of visual binary
stars and was forced to agreed with Michell’s conclusion. Equally troubling was the fact
that observations with his magnificent 40-foot telescope showed there was no edge to the
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A brief history of cosmology 3

Galaxy. He continued to find stars the fainter he looked—evidently, the stellar system was
unbounded. Eventually, Herschel lost faith in his model of the Galaxy.
The desire to observe the Universe with telescopes of greater and greater aperture contin-

ued throughout the nineteenth century. The largest reflecting telescope constructed during
that century was the great 72-inch reflector at Birr Castle in Ireland by William Parsons, the
3rd Earl of Rosse. This “Great Leviathan” was moved by ropes and astronomical objects
could be tracked by moving the barrel of the telescope between the two large walls, which
also accommodated a movable observing platform at the Newtonian focus of the telescope.
Observations were made by eye and so the “length of the exposure” was limited to about a
tenth of a second. Despite the difficulties of making observations and the inclement weather
in central Ireland, Lord Rosse was able to resolve nebulae into stars and, perhaps most im-
portant of all, discovered the spiral structure of galaxies, the most famous drawing being his
sketch of M51.
The revolutions that led to the discipline of extragalactic astronomy as we know it today

were the use of photography to record astronomical images and the shift from refracting to
reflecting telescope designs. The Yerkes 40-inch refractor was the end of the line so far as
refracting telescopes were concerned. The much more compact reflecting design had the
advantage of greater collecting area, but was much more sensitive to tracking and guiding
errors. Many key technologies were developed during the latter half of the nineteenth cen-
tury, thanks to pioneers such as Lewis Morris Rutherfurd, John Draper, Andrew Common
and George Carver. These pioneers solved the problems of the tracking and pointing of re-
flecting telescopes, an invention of particular importance being the adjustable plate holder,
which enables the observer to maintain the pointing of the telescope with high precision.
The resulting technical advances contributed to the remarkable achievement of James

Keeler and his colleagues at the Lick Observatory in enhancing the performance of the 91-
cm Crossley reflector to become the premier instrument for astronomical imaging. During
the commissioning of the Crossley reflector in 1900, Keeler obtained spectacular images of
spiral nebulae, including his famous image of M51. Not only were the details of its spiral
structure observed in unprecedented detail, but there were also large numbers of fainter spiral
nebulae of smaller angular size. If these were objects similar to the Andromeda Nebula M31,
they must lie at very great distances from our Solar System. Tragically, just as this new era
of astronomy was dawning, Keeler died of a stroke later that same year at the early age of
only 42 (Osterbrock 1984).
George Ellery Hale plays a central role in the celebrations of the centenary of the Carnegie

Institution. He is rightly regarded as the most successful astronomical entrepreneur of the
modern era. He maintained an unswerving determination to construct successively larger
and larger telescopes from the time of his directorship of the Yerkes Observation in the
1890s through the period when he became Director of the Mount Wilson Observatory in
1903 until his death in 1938. In 1895, he had persuaded his father to buy the 1.5 meter
blank for a 60-inch reflecting telescope. The design was to be an enlarged version of the
Calver-Common design for the 91-cm Crossley reflector at the Lick Observatory. Before the
60-inch telescope was completed, however, he persuaded J. D. Hooker to fund an even bigger
telescope, the 100-inch telescope to be built on Mount Wilson. The technological challenges
were proportionally greater, the mass of the telescope being 100 tons, but the basic Calver-
Common design was retained. The optics were the responsibility of George Ritchey, an
optical designer of genius, who was to come up with the ingenious optical configuration
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4 M. S. Longair

known as the Ritchey-Chrétien design, which enabled excellent imaging to be achieved over
a wide field of view. The 60- and 100-inch telescopes became the prime telescopes for
the study of the spiral nebulae, but these accomplishments were not achieved without an
enormous effort on Hale’s part.
The story of Hale’s construction of these telescopes is a heroic tale. Equally impressive is

Andrew Carnegie’s generosity in enabling Hale to realise his vision. Carnegie’s fateful visit
to the Mount Wilson Observatory in 1906 has been recorded in the volume The Legacy of
George Ellery Hale (Wright, Warnow, & Weiner 1972). Carnegie was clearly impressed by
what he saw during his visit. As recorded in the local Pasadena newspaper, he remarked:

“We do not know what may be discovered here,” he said. Franklin had little idea what would be the
result of flying his kite. But we do know that this will mean the increase of our knowledge in regard to
this great system of which we are part.

Mr. Hale has discovered here 1600 worlds about one of the stars which were not known before. We
have found helium in the Sun, and after finding it there, we find it in the Earth. It all goes to show that
all things are of a common origin.

To anyone who has had the fortune to be responsible for the operation of a large ob-
servatory facility, these remarks have heartening resonances. Carnegie did not quite get the
science right so far as the stars were concerned, but he got it absolutely right so far as helium
is concerned. Helium was discovered astronomically long before it was identified in the lab-
oratory and is but one of many examples of how astronomical observations can provide key
insights into the behavior of matter under circumstances which are only later reproduced
in the laboratory. Plainly, Hale had carried out a very successful campaign in enthusing
Carnegie about the importance of progress in astronomy.
Following his visit, Carnegie pledged an additional $10M to the endowment of the Carnegie

Institution, specifically requesting that the benefaction be used to enable the work of the
Observatory to proceed as rapidly as possible. This is the purist music to the ears of any
Observatory Director, who knows that, while it is usually possible in the end to find the
capital resources for ambitious projects, these cannot succeed without matching funds for
operations in the long term. Carnegie’s vision and understanding are models for benefactors
of astronomy.
The construction of the 60- and 100-inch telescopes were stressful and Hale suffered a

nervous breakdown in 1910. It is touching to read Carnegie’s letter to Hale of 1911 (with
the original spelling), urging him to take care of his health:

November 27, 1911
Mr dear Frend,-
Delited to read your long note this morning; not too long—every word tells, but pray show your

good sense by keeping in check your passion for work, so that you may be spared to put the capstone
upon your career, which should be one of the most remarkable ever lived.

Ever yours,
Andrew Carnegie.

Carnegie’s benefaction was crucial for the completion of the 100-inch Hooker Telescope
at Mount Wilson. The telescope was by far the largest in the world and incorporated all
the lessons learned from the works of earlier telescope builders. Completed in 1918, this
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A brief history of cosmology 5

instrument was to dominate observational cosmology for the next 30 years until the com-
missioning of the Palomar 200-inch telescope in 1948.
The Hooker 100-inch telescope played a central role in the resolution of what became

known as the “Great Debate,” which concerned the related issues of the size of our own
Galaxy and the nature of the white, or spiral, nebulae. This confrontation between Harlow
Shapley and Heber D. Curtis is too well known to need much amplification here (see Chris-
tianson, this volume). In 1899, Scheiner had obtained a spectrogram of M31 and stated that
the spectrum suggested a “cluster of Sun-like stars.” In 1922, Öpik estimated the distance
of M31 by comparing the mass-to-light ratio of the central region of M31 with that of our
own Galaxy and found a distance of 440 kpc, suggesting that it lay well outside the confines
of our Galaxy. The discovery of variable stars in spiral nebulae by Duncan in 1922 led to a
flurry of activity and Hubble’s famous discovery of Cepheid variables in M31.
Central to Hubble’s use of Cepheid variable stars in M31 to measure its distance was

the discovery of the period-luminosity relation for Cepheids in the Magellanic Clouds by
Henrietta Leavitt (Leavitt 1912). Leavitt, like Annie Cannon, was profoundly deaf. While
she is best remembered for her work on the Cepheid variables, her main work was the
establishment of the North Polar Sequence, the accurate determination of the magnitude
scale for stars in a region of sky which would always be accessible to observers in the
Northern Hemisphere. By the time of her death in 1921, she had extended the North Polar
Sequence from 2.7 to 21st magnitude, with errors less than 0.1 magnitudes. To achieve
this, she used observations from 13 telescopes ranging from 0.5 to 60 inches in diameter
and compared her scale using 5 different photographic photometric techniques. Without this
fundamental work, the magnitude scale for galaxies could not have been established.
It is intriguing that by far the most stubborn pieces of observational evidence against what

might be termed the long distance scale were van Maanen’s measurements of the proper
motions of spiral arms. It is now well understood how difficult it is to measure tiny displace-
ments of any diffuse object—van Maanen’s evidence was only refuted in 1933 by Edwin
Hubble after a considerable observational effort.
Hubble’s paper of 1925 establishing the extragalactic nature of the spiral nebulae is im-

pressive enough (Hubble 1925), but to my mind his paper of the following year entitled
Extragalactic Nebulae is even more compelling (Hubble 1926). In this paper, he provided
the first more or less complete description of galaxies as extragalactic systems. The paper
includes a morphological classification of galaxies into the classic Hubble types, estimates
of the relative numbers of different types, estimates of mass-to-luminosity ratios for differ-
ent types of galaxies and their average number densities. Finally, the mean mass density in
galaxies in the Universe as a whole was derived for the first time. Adopting Einstein’s static
model for the Universe, the radius of curvature of the spherical geometry was R = 27,000
Mpc and the total number of galaxies 3.5× 1015. Thus, by 1926, the first application of
the ideas of relativistic cosmology to the Universe of galaxies had been made. Hubble con-
cluded that the observations already extended to about 1/300 of the radius of the closed
Einstein universe. The prophetic last sentence of his great paper reads

. . . with reasonable increases in the speed of the plates and size of telescopes, it may become possible
to observe an appreciable fraction of the Einstein Universe.

It is no surprise that Hale began his campaign to raise funds for the 200-inch telescope in
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6 M. S. Longair

1928. By the end of the year, he had received the promise of a grant of $6M from the
Rockefeller foundation.
Hubble’s important insights were soon followed by an even more remarkable discovery.

In 1917, Vesto M. Slipher had published his heroic pioneering spectroscopic observations of
25 spiral nebulae (Slipher 1917). He realised that, for the spectroscopy of low surface bright-
ness objects such as the spiral nebulae, the crucial factor was the f -ratio of the spectrograph
camera, not the size of the telescope. The observations involved very long integrations of
20, 40 or even 80 hours with small telescopes.
The velocities of the galaxies inferred from the Doppler shifts of their absorption lines

were typically about 570 km s−1, far in excess of the velocity of any known object in our
Galaxy. Furthermore, most of the velocities corresponded to the galaxies moving away
from the Solar System, that is, the lines were redshifted to longer (red) wavelengths. In
1921, Carl Wilhelm Wirtz concluded that, when the data were averaged in a suitable way,
“an approximate linear dependence of velocity upon apparent magnitude is visible” (Wirtz
1921). By 1929, Hubble had assembled approximate distances of 24 galaxies for which
velocities had been measured, mostly by Slipher, all within 2 Mpc of our Galaxy. I have
always been impressed that Hubble was able to find the law which bears his name from the
very crude distance indicators which he had available. The first seven objects within 500
kpc had Cepheid distances; the distances of the next 13 were found assuming the brightest
stars all had the same absolute magnitude; the last four, in the Virgo cluster, were estimated
on the basis of the mean luminosities of nebulae in the cluster. From these meager data,
Hubble derived his famous redshift-distance relation (Hubble 1929). If the redshifts z are
interpreted as the Doppler shifts of galaxies due to their recession velocities υ, the relation
can be written υ = H0r, where H0 is Hubble’s constant.
Milton Humason had by then mastered the use of the 100-inch telescope for obtaining

the spectra of faint galaxies and by 1934 Humason and Hubble had extended the velocity-
distance relation to 7% of the speed of light (Humason & Hubble 1934). Furthermore,
Hubble realised that he could test for the isotropy and homogeneity of the Universe by
counting the numbers of faint galaxies. Hubble established that the numbers of galaxies
increased with increasing apparent magnitude in almost exactly the fashion expected if they
were uniformly distributed in space.
Even before 1929, however, it was appreciated that Hubble’s law was expected according

to world models based upon the general theory of relativity.

1.3 Theoretical Cosmology to 1939
Let us turn to theoretical cosmology and the history of Einstein’s static model for

the Universe. Working independently, Lobachevsky in Kazan in Russia and Bolyai in Hun-
gary solved the problem of the existence of geometries that violated Euclid’s fifth axiom
in 1825. These were the first self-consistent hyperbolic (non-Euclidean) geometries. In his
great text On the Principles of Geometry (1825), Lobachevsky worked out the minimum
parallax of any star in hyperbolic geometry

θ = arctan
( a
R

)
(1.1)

where a is the radius of the Earth’s orbit andR the radius of curvature of the geometry. In his
textbook, he found a minimum value of R≥ 1.66×105 AU. What is intriguing is that this
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A brief history of cosmology 7

estimate was made 8 years before Bessell’s announcement of the first successful parallax
measurement of 61 Cygni. In making his estimate, Lobachevsky used the observational
upper limit to the parallax of bright stars. In a statement which will warm the heart of
observational astronomers, and which is particularly apposite in the light of what we will
hear at this meeting, he remarked

There is no means other than astronomical observations for judging the exactness which attaches
to the calculations of ordinary geometry.

The pioneering works of Lobachevsky and Bolyai led to Riemann’s introduction of quadratic
differential forms, his generalization of their results to non-Euclidean geometries, and his
discovery of spaces of positive curvature—that is, spherical non-Euclidean geometries.
Unlike his other great discoveries, Einstein’s route to general relativity was long and

tortuous. Four ideas were important in his search for a self-consistent relativistic theory of
gravity:

• The influence of gravity on light
• The principle of equivalence
• Riemannian spacetime
• The principle of equivalence

Toward the end of 1912, he realised that what was needed was non-Euclidean geometry.
Einstein consulted his old school friend, Marcel Grossmann, about the most general forms
of transformation between frames of reference for metrics of the form

ds2 = gµν dxµdxν . (1.2)

Grossmann soon came back with the answer that the most general transformation formulae
were the Riemannian geometries, but that they had the “bad feature” that they are nonlinear.
Einstein instantly recognized that, on the contrary, this was a great advantage since any
satisfactory theory of relativistic gravity must be nonlinear.
After further years of struggle, during which he and Grossmann were ploughing very

much a lone furrow, general relativity was formulated in its definitive form in 1915 (Einstein
1915). In 1916, Willem de Sitter and Paul Ehrenfest suggested in correspondence that a
spherical 4-dimensional spacetime would eliminate the problems of the boundary conditions
at infinity, which pose insuperable problems for Newtonian cosmological models. In 1917,
Einstein realised that, in general relativity, he had for the first time a theory which could be
used to construct fully self-consistent models for the Universe as a whole (Einstein 1917).
At that time, the expansion of the Universe had not been discovered.
One of objectives of Einstein’s program was to incorporate into the structure of general

relativity what he calledMach’s Principle, meaning that the local inertial frame of reference
should be determined by the large-scale distribution of matter in the Universe. There was,
however, a further problem, first noted by Newton, that static model universes are unstable
under gravity. Einstein proposed to solve both problems by introducing an additional term
into the field equations, the cosmological constant Λ. In Newtonian terms, the cosmological
constant corresponds to a repulsive force �f acting on a test particle at distance �r, �f = 1

3Λ�r.
Unlike gravity, this force is independent of the density of matter. The Λ-term has negligible
influence on the scale of the Solar System and is only appreciable on cosmological scales.
The equation that describes the expansion becomes
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8 M. S. Longair

d2R
dt2

= −
4πGρ0
3R2

+
1
3
ΛR (1.3)

The first term on the right-hand side describes the deceleration due to gravity and the second
what Zel’dovich referred to as the “repulsive effect of the vacuum” (Zel’dovich 1968). At
that time, the physical significance of the Λ term was not understood.
Einstein believed that he had incorporated Mach’s Principle into general relativity. In his

words,

The inertial structure of spacetime was to be “exhaustively conditioned and determined” by the
distribution of material throughout the Universe.

Further, he stated that the extension of the field equations was “not justified by our actual
knowledge of gravitation,” but was “logically consistent.” Furthermore, the cosmological
term was “necessary only for the purpose of making possible a quasi-static distribution of
matter, as required by the fact of the small velocities of stars.”
From Einstein’s field equations of general relativity, it followed that the geometry of

Einstein’s static universe is closed and the radius of curvature of the geometrical sections is
R = c/(4πGρ0)1/2, where ρ0 is the mean density of the static Universe. The value of Λ was
directly related to the mean density of the Universe, Λ = 4πGρ0. Einstein believed that he
had incorporated Mach’s Principle into general relativity, in that static solutions of the field
equations did not exist in the absence of matter.
Almost immediately, de Sitter (1917) showed that one of Einstein’s objectives had not

been achieved. He found solutions of Einstein’s field equations in the absence of matter,
ρ = p = 0. The metric he derived had the form

ds2 = dr2 − R2 sin
( r

R

)(
dφ2 + cos2φdθ2

)
+ cos2

( r
R

)
c2 dt2 (1.4)

Although there is no matter present in the Universe, a test particle still moves along a per-
fectly well-defined path through spacetime. As de Sitter remarked, “If no matter exists apart
from the test body, has this inertia?” One prediction of de Sitter’s paper was the fact that
distant galaxies would be observed with a redshift, although in his solution the metric was
stationary—this phenomenon became known as the de Sitter effect.
In 1922, Kornel Lanczos showed that by a simple change of coordinates, the de Sitter

solution could be interpreted as an expansion of the system of coordinates in hyperbolic
space (Lanczos 1922).

ds2 = −dt2 + cosh2 t
[
dφ2 + cos2φ

(
dψ2 + cos2ψdχ2

)]
(1.5)

Lanczos wrote that:

It is interesting to observe how one and the same geometry can appear with quite different physical
interpretations according to the interpretations placed upon the particular coordinates.

At almost exactly the same time, the Soviet meteorologist and theoretical physicist Alexan-
der Alexandrovich Friedman published the first of his two classic papers on relativistic cos-
mology (Friedman 1922, 1924). His key realization was that isotropic world models had
to have isotropic curvature everywhere. In the paper of 1922, Friedman found solutions for
expanding world models with closed spatial geometries, including those that expand to a
maximum radius and then collapse to a singularity. In the paper of 1924, he showed that
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A brief history of cosmology 9

there exist expanding solutions that are unbounded with hyperbolic geometry. The differen-
tial equations that he derived were:

(1922)

(
Ṙ
R

)2

+
(
2RR̈
R2

)
+

c2

R2
−Λ = 0 (1.6)

(1924)

(
Ṙ
R

)2

+
(
2RR̈
R2

)
−

c2

R2
−Λ = 0 (1.7)

In both cases,

3Ṙ2

R2
+
3c2

R2
−Λ = κc2ρ (1.8)

The solutions of these equations correspond exactly to the standard world models of general
relativity and are appropriately known as the Friedman world models. The history of general
relativity in the Soviet Union is a remarkable story and Friedman’s role in introducing Soviet
scientists to the theory and the subsequent difficult development of these studies in the USSR
needs to be better known. It has been carefully described by Zelmanov (1967) in a review
that has not been translated into English.
It has always been considered somewhat surprising that it was some years before Fried-

man’s important papers were given the recognition they deserve. In 1923, Einstein be-
lieved he had found an error in the first of Friedman’s papers and published his concern
in Zeitschrift für Physik. Friedman showed that Einstein was incorrect and Einstein sub-
sequently published his withdrawal of his objection in the same journal. My guess is that
Einstein’s concern was remembered, but not his acknowledgment of his error.
In 1927, Georges Lemaître independently discovered the Friedman solutions and only

then became aware of Friedman’s pioneering contributions (Lemaître 1927). Both Lemaître
and Howard P. Robertson (1928) were aware of the fact that the Friedman solutions re-
sult locally in a velocity-distance relation. Lemaître derived what he termed the “apparent
Doppler effect,” in which “the receding velocities of extragalactic nebulae are a cosmical
effect of the expansion of the Universe” with υ ∝ r. Robertson found a similar result stating
that “we should expect . . . a correlation υ ≈ (cl/R),” where l is distance and υ the recession
velocity. From nearby galaxies, he found a value for Hubble’s constant of 500 km s−1 Mpc−1.
The discovery of the velocity-distance relation for galaxies was interpreted as evidence

for the expansion of the Universe as a whole. There remained problems of interpretation of
the notions of time and distance in cosmology because the field equations could be set up in
any frame of reference. By 1935, the problem had been solved independently by Robertson
and George Walker (Robertson 1935; Walker 1935). For isotropic, homogeneous world
models, they showed that the metric of spacetime had to have the form

ds2 = dt2 −
R2(t)

c2

[
dr2

(1+κr2)
+ r2(dθ2 + sin2 θdφ2)

]
(1.9)

where κ is the curvature of space at the present epoch, r is a comoving radial distance coor-
dinate and R(t) is the scale factor which describes how the distance between any two world
lines change with cosmic time t. The Robertson-Walker metric contains all the geometries
consistent with the assumptions of isotropy and homogeneity of the Universe; the curvature
κ = R−2, where R, the radius of curvature of the spatial sections of the isotropic curved
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10 M. S. Longair

space, can be positive, negative or zero. The physics of the expansion is absorbed into the
scale factor R(t).
With the discovery of the velocity-distance relation, Einstein regretted the inclusion of

the cosmological constant into the field equations. According to George Gamow, Einstein
stated that the introduction of the cosmological constant was “the biggest blunder of my life”
(Gamow 1970). In 1932, Einstein and de Sitter showed that there is one special solution of
the equations withΛ = 0 and κ = 0, corresponding to Euclidean space sections (Einstein & de
Sitter 1932). This Einstein-de Sitter model has density at the present epoch ρ0 = 3H2

0/8πG.
This density is often referred to as the critical density and the Einstein-de Sitter model as
the critical model, because it separates the ever-expanding models with open, hyperbolic
geometries from those that will eventually collapse to a singularity and that have closed,
spherical geometry. When Einstein and de Sitter inserted H0 = 500 km s−1 Mpc−1 into the
expression for ρ0, they found ρ0 = 4× 10−25 kg m−3. Although this value was somewhat
greater than the mean density in galaxies derived by Hubble, they argued that it was of the
correct order of magnitude and that there might well be a considerable amounts of “dark
matter” present in the Universe.

1.4 Astrophysical Cosmology up to 1939

1.4.1 Dark Matter
Astrophysical evidence for dark matter was not long in coming. In 1933, Fritz

Zwicky made the first dynamical studies of rich clusters of galaxies, in particular, of the
Coma cluster (Zwicky 1933, 1937). The method Zwicky used to estimate the total mass
of the cluster involved the virial theorem, which had been derived by Arthur Eddington in
1916 to estimate the masses of star clusters (Eddington 1916). The theorem relates the total
internal kinetic energy T = 1

2M〈υ2〉 of the galaxies in a cluster to its gravitational potential
energy, |U | = GM2/2Rcl in statistical equilibrium under gravity. Eddington showed that
T = 1

2 |U | and so the mass of the cluster can be found, M ≈ 2Rcl〈υ2〉/G.
Zwicky measured the velocity dispersion of the galaxies in the Coma cluster and found

that there was much more mass in the cluster than could be attributed to the visible parts of
galaxies. In solar units, the ratio of mass to optical luminosity of a galaxy such as our own
is about 3, whereas for the Coma cluster the ratio was found to be about 500—there must be
about 100 times more dark or hidden matter as compared with visible matter in the cluster.
Zwicky’s pioneering studies have been confirmed by all subsequent studies of rich clusters
of galaxies.

1.4.2 The Age of the Universe and Eddington-Lemaître Models
Despite Einstein’s renunciation of the cosmological constant Λ, there remained a

very grave problem for those models in which Λ is set equal to zero. In all world models
with Λ = 0, the age of the Universe is less thanH−1

0 . Using Hubble’s estimate ofH0 = 500 km
s−1 Mpc−1, the age of the Universe must be less than 2× 109 years old, a figure in conflict
with the age of the Earth derived from studies of the ratios of abundances of long-lived
radioactive species, which gave ages significantly greater than this value.
Eddington and Lemaître recognized that this problem could be eliminated if Λ were pos-

itive (Eddington 1930; Lemaître 1931a). The effect of a positive cosmological constant is
to counteract the attractive force of gravity when the Universe has grown to a large enough
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