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I

A Bit of Logic: A User’s Toolbox

This prerequisite chapter — what some authors call a “Chapter 0” —is an abridged
version of Chapter I of volume 1 of my Lectures in Logic and Set Theory. Itis of-
fered here just in case that volume Mathematical Logic is not readily accessible.

Simply put, logic' is about proofs or deductions. From the point of view of
the user of the subject — whose best interests we attempt to serve in this chapter —
logic ought to be just a toolbox which one can employ to prove theorems, for
example, in set theory, algebra, topology, theoretical computer science, etc.

The volume at hand is about an important specimen of a mathematical theory,
or logical theory, namely, axiomatic set theory. Another significant example,
which we do not study here, is arithmetic. Roughly speaking, a mathematical
theory consists on one hand of assumptions that are specific to the subject
matter — the so-called axioms — and on the other hand a toolbox of logical rules.
One usually performs either of the following two activities with a mathematical
theory: One may choose to work within the theory, that is, employ the tools and
the axioms for the sole purpose of proving theorems. Or one can take the entire
theory as an object of study and study it “from the outside” as it were, in order to
pose and attempt to answer questions about the power of the theory (e.g., “does
the theory have as theorems all the ‘true’ statements about the subject matter?”),
its reliability (meaning whether it is free from contradictions or not), how its
reliability is affected if you add new assumptions (axioms), etc.

Our development of set theory will involve both types of investigations indi-
cated above:

(1) Primarily, we will act as users of logic in order to deduce “true” state-
ments about sets (i.e., theorems of set theory) as consequences of certain

T We drop the qualifier “mathematical” from now on, as this is the only type of logic we are about.

1



2 1. A Bit of Logic: A User’s Toolbox

“obviously true”' statements that we accept up front without proof, namely,
the ZFC axioms.? This is pretty much analogous to the behaviour of a
geometer whose job is to prove theorems of, say, Euclidean geometry.

(2) We will also look at ZFC from the outside and address some issues of the
type “is such and such a sentence (of set theory) provable from the axioms
of ZFC and the rules of logic alone?”

It is evident that we need a precise formulation of set theory, that is, we must
turn it into a mathematical object in order to make task (2), above, a meaningful
mathematical activity.® This dictates that we develop logic itself formally, and
subsequently set theory as a formal theory.

Formalism,¥ roughly speaking, is the abstraction of the reasoning processes
(proofs) achieved by deleting any references to the “truth content” of the com-
ponent mathematical statements (formulas). What is important in formalist
reasoning is solely the syntactic form of (mathematical) statements as well as
that of the proofs (or deductions) within which these statements appear.

A formalist builds an artificial language, that is, an infinite — but finitely
specifiable* — collection of “words” (meaning symbol sequences, also called
expressions). Hell then uses this language in order to build deductions — that
is, finite sequences of words — in such a manner that, at each step, he writes
down a word if and only if it is “certified” to be syntactically correct to do so.
“Certification” is granted by a toolbox consisting of the very same rules of logic
that we will present in this chapter.

The formalist may pretend, if he so chooses, that the words that appear in a
proof are meaningless sequences of meaningless symbols. Nevertheless, such
posturing cannot hide the fact that (in any purposefully designed theory) these

—

We often quote a word or cluster of related words as a warning that the crude English meaning
is not necessarily the intended meaning, or it may be ambiguous. For example, the first “true”
in the sentence where this footnote originates is technical, but in a first approximation may be
taken to mean what “true” means in English. “Obviously true” is an ambiguous term. Obvious to
whom? However, the point is — to introduce another ambiguity — that “reasonable people” will
accept the truth of the (ZFC) axioms.

This is an acronym reflecting the names of Zermelo and Fraenkel —the founders of this particular
axiomatization — and the fact that the so-called axiom of choice is included.

Here is an analogy: It is the precision of the rules for the game of chess that makes the notion of
analyzing a chessboard configuration meaningful.

The person who practises formalism is a formalist.

The finite specification is achieved by a finite collection of “rules”, repeated applications of which
build the words.

By definition, “he”, “his”, “him” — and their derivatives — are gender-neutral in this volume.

e
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1. A Bit of Logic: A User’s Toolbox 3

words codify “true” (intuitively speaking) statements. Put bluntly, we must have
something meaningful to talk about before we bother to codify it.

Therefore, a formal theory is a laboratory version (artificial replica or sim-

ulation, if you will) of a “real” mathematical theory of the type encountered
in mathematics,’ and formal proofs do unravel (codified versions of) “truths”
beyond those embodied in the adopted axioms.

It will be reassuring for the uninitiated that it is a fact of logic that the to-
tality of the “universally true” statements — that is, those that hold in all of
mathematics and not only in specific theories — coincides with the totality
of statements that we can deduce purely formally from some simple univer-
sally true assumptions such as x = x, without any reference to meaning or
“truth” (Godel’s completeness theorem for first order logic). In short, in this
case formal deducibility is as powerful as “truth”. The flip side is that formal
deducibility cannot be as powerful as “truth” when it is applied to specific
mathematical theories such as set theory or arithmetic (Godel’s incompleteness
theorem).

Formalization allows us to understand the deeper reasons that have pre-

vented set theorists from settling important questions such as the continuum

hypothesis — that is, the statement that there are no cardinalities between that of
the set of natural numbers and that of the set of the reals. This understanding is
gathered by “running diagnostics” on our laboratory replica of set theory. That

is, just as an engineer evaluates a new airplane design by building and testing

a model of the real thing, we can find out, with some startling successes, what

are the limitations of our theory, that is, what our assumptions are incapable of

logically implying.* If the replica is well built,’ we can then learn something
about the behaviour of the real thing.

In the case of formal set theory and, for example, the question of our failure

to resolve the continuum hypothesis, such diagnostics (the methods of Godel
and Cohen — see Chapters VI and VIII) return a simple answer: We have not
included enough assumptions in (whether “real” or “formal”) set theory to settle
this question one way or another.

—

e

wn

Examples of “real” (non-formalized) theories are Euclid’s geometry, topology, the theory of
groups, and, of course, Cantor’s “naive” or “informal” set theory.

In model theory “model” means exactly the opposite of what it means here. A model airplane
abstracts the real thing. A model of a formal (i.e., abstract) theory is a “concrete” or “real” version
of the abstract theory.

This is where it pays to choose reasonable assumptions, assumptions that are “obviously true”.



4 1. A Bit of Logic: A User’s Toolbox

But what about the interests of the reader who only wants to practise set
theory, and who therefore may choose to skip the parts of this volume that just
talk about set theory? Does, perchance, formalism put him into an unnecessary
straitjacket?

We think not. Actually it is easier, and safer, to reason formally than to do so
informally. The latter mode often mixes syntax and semantics (meaning), and
there is always the danger that the “user”” may assign incorrect (i.e., convenient,
but not general) meanings to the symbols that he manipulates, a phenomenon
that anyone who is teaching mathematics must have observed several times
with some distress.

Another uncertainty one may encounter in an informal approach is this:
“What can we allow to be a ‘property’ in mathematics?” This is an important
question, for we often want to collect objects that share a common property,
or we want to prove some property of the natural numbers by induction or by
the least principle. But what is a property? Is colour a property? How about
mood? It is not enough to say, “no, these are not properties”, for these are
just two frivolous examples. The question is how to describe accurately and
unambiguously the infinite variety of properties that are allowed. Formalism
can do just that.t

“Formalism for the user” is not a revolutionary slogan. It was advocated
by Hilbert, the founder of formalism, partly as a means of — as he believed* —
formulating mathematical theories in a manner that allows one to check them
(i.e., run diagnostic tests on them) for freedom from contradiction,? but also as
the right way to do mathematics. By this proposal he hoped to salvage mathe-
matics itself — which, Hilbert felt, was about to be destroyed by the Brouwer
school of intuitionist thought. In a way, his program could bridge the gap
between the classical and the intuitionist camps, and there is some evidence
that Heyting (an influential intuitionist and contemporary of Hilbert) thought
that such a rapprochement was possible. After all, since meaning is irrelevant
to a formalist, all that he is doing (in a proof) is shuffling finite sequences of

T Well, almost. So-called cardinality considerations make it impossible to describe all “good”
properties formally. But, practically and empirically speaking, we can define all that matter for
“doing mathematics”.

1 This belief was unfounded, as Godel’s incompleteness theorems showed.

§ Hilbert’s metatheory — that is, the “world” or “lab” outside the theory, where the replica is
actually manufactured — was finitary. Thus — Hilbert believed — all this theory building and
theory checking ought to be effected by finitary means. This was another ingredient that was
consistent with peaceful coexistence with the intuitionists. And, alas, this ingredient was the one
that — as some writers put it — destroyed Hilbert’s program to found mathematics on his version
of formalism. Godel’s incompleteness theorems showed that a finitary metatheory is not up to
the task.



1. A Bit of Logic: A User’s Toolbox 5

symbols, never having to handle or argue about infinite objects — a good thing,
as far as an intuitionist is concerned.!

In support of the “formalism for the user” position we must not fail to
mention Bourbaki’s (1966a) monumental work, which is a formalization of a
huge chunk of mathematics, including set theory, algebra, topology, and theory
of integration. This work is strictly for the user of mathematics, not for the
metamathematician who studies formal theories. Yet, it is fully formalized,
true to the spirit of Hilbert, and it comes in a self-contained package, including
a “Chapter 0” on formal logic.

More recently, the proposition of employing formal reasoning as a tool has
been gaining support in a number of computer science undergraduate curricula,
where logic and discrete mathematics are taught in a formalized setting, starting
with a rigorous course in the two logical calculi (propositional and predicate),
emphasizing the point of view of the user of logic (and mathematics) — hence
with an attendant emphasis on calculating (i.e., writing and annotating formal)
proofs. Pioneering works in this domain are the undergraduate text (1994) and
the paper (1995) of Gries and Schneider.

You are urged to master the technique of writing formal proofs by studying
how we go about it throughout this volume, especially in Chapter II1.* You will
find that writing and annotating formal proofs is a discipline very much like
computer programming, so it cannot be that hard. Computer programming is
taught in the first year, isn’t it?%

T True, a formalist applies classical logic, while an intuitionist applies a different logic where, for
example, double negation is not removable. Yet, unlike a Platonist, a formalist does not believe —
or he does not have to disclose to his intuitionist friends that he might do — that infinite sets exist
in the metatheory, as his tools are just finite symbol sequences. To appreciate the tension here,
consider this anecdote: It is said that when Kronecker — the father of intuitionism — was informed
of Lindemann’s proof (1882) that  is transcendental, while he granted that this was an interesting
result, he also dismissed it, suggesting that 7 — whose decimal expansion is, of course, infinite
but not periodic — “does not exist” (see Wilder (1963, p. 193)). We do not propound the tenets of
intuitionism here, but it is fair to state that infinite sets are possible in intuitionistic mathematics
as this has later evolved in the hands of Brouwer and his Amsterdam school. However, such
sets must be (like all sets of intuitionistic mathematics) finitely generated — just like our formal
languages and the set of theorems (the latter provided that our axioms are too) — in a sense that
may be familiar to some readers who have had a course in automata and language theory. See
Wilder (1963, p. 234).

Many additional paradigms of formal proofs, in the context of arithmetic, are found in Chapter II
of volume 1 of these Lectures.

One must not gather the impression that formal proofs are just obscure sequences of symbol
sequences akin to Morse code. Just as one does in computer programming, one also uses comments
in formal proofs — that is, annotations (in English, Greek, or your favourite natural language)
that aim to explain or justify for the benefit of the reader the various proof steps. At some point,
when familiarity allows and the length of (formal) proofs becomes prohibitive, we agree to relax
the proof style. Read on!

e

wn



4

6 1. A Bit of Logic: A User’s Toolbox

It is also fair to admit, in defense of “semantic reasoning”, that meaning is
an important tool for formulating conjectures, for analyzing a given proof in
order to figure out what makes it tick, or indeed for discovering the proof, in
rough outline, in the first place. For these very reasons we supplement many of
our formal arguments in this volume with discussions that are based on intuitive
semantics, and with several examples taken from informal mathematics.

We forewarn the reader of the inevitability with which the informal language
of sets already intrudes in this chapter (as it indeed does in all mathematics).
More importantly, some of the elementary results of Cantorian naive set theory
are needed here. Conversely, formal set theory needs the tools and some of the
results developed here. This apparent “chicken or egg” phenomenon is often
called “bootstrapping”,! not to be confused with “circularity” — which it is not:
Only informal set theory notation and results are needed here in order to found
formal set theory.

This is a good place to summarize our grand plan:

First (in this chapter), we will formalize the rules of reasoning in general — as
these apply to all mathematics — and develop their properties. We will skip the
detailed study of the interaction between formalized rules and their intended
meaning (semantics), as well as the study of the limitations of these formalized
rules. Nevertheless, we will state without proof the relevant important results
that come into play here, the completeness and incompleteness theorems (both
due to Kurt Godel).

Secondly (starting with the next chapter), once we have learnt about these
tools of formalized reasoning — what they are and how to use them — we will
next become users of formal logic so that we can discover important theorems
of (or, as we say, develop) set theory. Of course, we will not forget to run a few
diagnostics. For example, Chapter VIII is entirely on metamathematical issues.

Formal theories, and their artificial languages, are defined (built) and “tested”
within informal mathematics (the latter also called “real” mathematics by
Platonists). The first theory that we build here is general-purpose, or “pure”,
formal logic. We can then build mathematical formal theories (e.g., set theory)
by just adding “impurities”, namely, the appropriate special symbols and ap-
propriate special assumptions (written in the artificial formal language).

We describe precisely how we construct these languages and theories using
the usual abundance of mathematical notation, notions, and techniques available

T The term “bootstrapping” is suggestive of a person pulling himself up by his bootstraps. Reput-
edly, this technique, which is pervasive, among others, in the computer programming field — as
alluded to in the term “booting” — was invented by Baron Miinchhausen.



L.1. First Order Languages 7

to us, augmented by the descriptive power of natural language (e.g., English,
or Greek, or French, or German, or Russian), as particular circumstances or
geography might dictate. This milieu within which we build, pursue, and study
our theories — besides “real mathematics” — is also often called the metatheory,
or more generally, metamathematics. The language we speak while at it, this
meélange of mathematics and natural language, is the metalanguage. @

L.1. First Order Languages

In the most abstract and thus simplest manner of describing it, a formalized
mathematical theory (also, formalized logical theory) consists of the following
sets of things: a set of basic or primitive symbols, 7, used to build symbol
sequences (also called strings, or expressions, or words, over 77); a set of
strings, W, over 77, called the formulas of the theory; and finally, a subset of
Wif, Thm, the set of theorems of the theory.f

Well, this is the extension of a theory, that is, the explicit set of objects in it.
How is a theory given?

In most cases of interest to the mathematician it is given by specifying 7" and
two sets of simple rules, namely, formula-building rules and theorem-building
rules. Rules from the first set allow us to build, or generate, Wff from 7.
The rules of the second set generate Thm from WIf. In short (e.g., Bourbaki
(1966Db)), a theory consists of an alphabet of primitive symbols and rules used
to generate the “language of the theory” (meaning, essentially, W{f) from these
symbols, and some additional rules used to generate the theorems. We expand
on this below.

I.1.1 Remark. What is a rule? We run the danger of becoming circular or too
pedantic if we overdefine this notion. Intuitively, the rules we have in mind
are string manipulation rules — that is, “black boxes” (or functions) that re-
ceive string inputs and respond with string outputs. For example, a well-known
theorem-building rule receives as input a formula and a variable, and it returns
(essentially) the string composed of the symbol V, immediately followed by the
variable and, in turn, immediately followed by the formula.! O @

(1) First off, the (first order) formal language, L, where the theory is “spoken’
is a triple (7, Term, WIff), that is, it has three important components, each
of them a set. 7 is the alphabet (or vocabulary) of the language. It is the

 For a less abstract, but more detailed view of theories see p. 39.
* This rule is usually called “generalization”.
§ We will soon say what makes a language “first order”.
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collection of the basic syntactic “bricks” (symbols) that we use to form
symbol sequences (or expressions) that are terms (members of Term) or
formulas (members of WIf). We will ensure that the processes that build
terms or formulas, using the basic building blocks in 7, are (intuitively)
algorithmic (“mechanical”). Terms will formally codify objects, while for-
mulas will formally codify statements about objects.

(2) Reasoning in the theory will be the process of discovering “true statements”
about objects — that is, theorems. This discovery journey begins with cer-
tain formulas which codify statements that we take for granted (i.e., accept
without proof as “basic truths”). Such formulas are the axioms. There are
two types of axioms. Special, or nonlogical, axioms are to describe specific
aspects of any theory that we might be building; they are “basic truths”
in a restricted context. For example, “x 4+ 1 # 0” is a special axiom that
contributes towards the characterization of number theory over N. This is a
“basic truth” in the context of N but is certainly not true of the integers or the
rationals — which is good, because we do not want to confuse N with the in-
tegers or the rationals. The other kind of axiom will be found in all theories.
It is the kind that is “universally valid”, that is, not a theory-specific truth
but one that holds in all branches of mathematics (for example, “x = x” is
such a universal truth). This is why this type of axiom will be called logical.

(3) Finally, we will need rules for reasoning, actually called rules of inference.
These are rules that allow us to deduce, or derive, a true statement from other
statements that we have already established as being true.’ These rules will
be chosen to be oblivious to meaning, being only conscious of form. They
will apply to statement configurations of certain recognizable forms and
will produce (derive) new statements of some corresponding recognizable
forms (see Remark 1.1.1).

I.1.2 Remark. We may think of axioms (of either logical or nonlogical type) as
being special cases of rules, that is, rules that receive no input in order to produce
an output. In this manner item (2) above is subsumed by item (3), thus we are
faithful to our abstract definition of theory (where axioms were not mentioned).

An example, outside mathematics, of an inputless rule is the rule invoked
when you type date on your computer keyboard. This rule receives no input,
and outputs the current date on your screen. O

We next look carefully into (first order) formal languages.

T The generous use of the term “true” here is only meant to motivate. “Provable” or “deducible”
formula, or “theorem”, will be the technically precise terminology that we will soon define to
replace the term “true statement”.
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There are two parts in each first order alphabet. The first, the collection of
the logical symbols, is common to all first order languages (regardless of which
theory is spoken in them). We describe this part immediately below.

Logical Symbols.

LS.1. Object or individual variables. An object variable is any one symbol out
of the unending sequence vp, vy, vz, . ... In practice — whether we are
using logic as a tool or as an object of study — we agree to be sloppy with
notation and use, generically, x, y, z, u, v, w with or without subscripts
or primes as names of object variables.! This is just a matter of nota-
tional convenience. We allow ourselves to write, say, z instead of, say,
V120000000000560000009 - Object variables (intuitively) “vary over” (i.e., are
allowed to take values that are) the objects that the theory studies (e.g.,
numbers, sets, atoms, lines, points, etc., as the case may be).

LS.2. The Boolean or propositional connectives. These are the symbols “—"
and “Vv”.* These are pronounced not and or respectively.

LS.3. The existential quantifier, that is, the symbol “3”, pronounced exists or

for some.
LS.4. Brackets, that is, “(” and “)”.
LS.5. The equality predicate. This is the symbol “=", which we use to indicate

that objects are “equal”. It is pronounced equals.

The logical symbols will have a fixed interpretation. In particular, “=" will
always be expected to mean equals.

The theory-specific part of the alphabet is not fixed, but varies from theory
to theory. For example, in set theory we just add the nonlogical (or special)
symbols, € and U. The first is a special predicate symbol (or just predicate) of
arity 2; the second is a predicate symbol of arity 1.5

In number theory we adopt instead the special symbols S (intended meaning:
successor, or “ 4 17, function), 4+, X, 0, <, and (sometimes) a symbol for the

—

Conventions such as this one are essentially agreements — effected in the metatheory — on how to
be sloppy and get away with it. They are offered in the interest of user-friendliness and readability.
There are also theory-specific conventions, which may allow additional names in our informal
(metamathematical) notation. Such examples, in set theory, occur in the following chapters.

* The quotes are not part of the symbol. They serve to indicate clearly, e.g., in the case of “Vv” here,
what is part of the symbol and what is not (the following period is not).

“arity” is derived from “ary” of “unary”, “binary”, etc. It denotes the number of arguments
needed by a symbol according to the dictates of correct syntax. Function and predicate symbols
need arguments.

w»
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exponentiation operation (function) a”. The first three are function symbols of

arities 1, 2, and 2 respectively. 0 is a constant symbol, < is a predicate of arity 2,

and whatever symbol we might introduce to denote a” would have arity 2.
The following list gives the general picture.

Nonlogical Symbols.

NLS.1.

NLS.2.

NLS.3.

A (possibly empty) set of symbols for constants. We normally use
the metasymbolst a, b, ¢, d, e, with or without primes or subscripts, to
stand for constants unless we have in mind some alternative “standard”
formal notation in specific theories (e.g., ¥, 0, w).

A (possibly empty) set of symbols for predicate symbols or relation
symbols for each possible arity n > 0. We normally use P, Q, R,
generically, with or without primes or subscripts, to stand for predicate
symbols. Note that = is in the logical camp. Also note that theory-
specific formal symbols are possible for predicates, e.g., <, €, U.
Finally, a (possibly empty) set of symbols for functions for each possi-
ble arity n > 0. We normally use f, g, h, generically, with or without
primes or subscripts, to stand for function symbols. Note that theory-
specific formal symbols are possible for functions, e.g., +, X.

I.1.3 Remark. (1) We have the option of assuming that each of the logical
symbols that we named in LS.1-LS.5 have no further structure and that the
symbols are, ontologically, identical to their names, that is, they are just these
exact signs drawn on paper (or on any equivalent display medium).

In this case, changing the symbols, say, — and 3 to ~ and E respectively
results in a “different” logic, but one that is, trivially, isomorphic to the one we
are describing: Anything that we may do in, or say about, one logic trivially
translates to an equivalent activity in, or utterance about, the other as long as
we systematically carry out the translations of all occurrences of — and 3 to ~
and E respectively (or vice versa).

An alternative point of view is that the symbol names are not the same as
(identical with) the symbols they are naming. Thus, for example, “—" names
the connective we pronounce not, by we do not know (or care) exactly what
the nature of this connective is (we only care about how it behaves). Thus, the
name “—” becomes just a typographical expedient and may be replaced by other
names that name the same object, not.

This point of view gives one flexibility in, for example, deciding how the
variable symbols are “implemented”. It often is convenient to suppose that the

' Metasymbols are informal (i.e., outside the formal language) symbols that we use within “real”
mathematics — the metatheory — in order to describe, as we are doing here, the formal language.
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entire sequence of variable symbols was built from just two symbols, say, “v”
and

39 &
“| T

One way to do this is by saying that v; is a name for the symbol
sequence

Regardless of option, v; and v; will name distinct objects if i # j.

This is not the case for the metavariables (abbreviated informal names)
X, ¥,2z,u, v, w. Unless we say explicitly otherwise, x and y may name the
same formal variable, say, vi3;.

We will mostly abuse language and deliberately confuse names with the
symbols they name. For example, we will say “let vigg7 be an object variable. . .”
rather than “let vigg7 name an object variable ...”, thus appearing to favour
option one.

(2) Any two symbols included in the alphabet are distinct. Moreover, if any
of them are built from simpler sub-symbols — e.g., vo, v, V2, . . . might really
name the strings vv, v|v, v||v, ... — then none of them is a substring (or subex-
pression) of any other.}

(3) A formal language, justlike a natural language (such as English or Greek),
is alive and evolving. The particular type of evolution we have in mind is the
one effected by formal definitions. Such definitions continually add nonlogical
symbols to the language.’

Thus, when we say that, e.g., “c and U are the only nonlogical symbols of
set theory”, we are telling a small white lie. More accurately, we ought to have
said that “e and U are the only ‘primitive’ (or primeval) nonlogical symbols of
set theory”, for we will add loads of other symbols such as U, w, ¥, C, and C.

This evolution affects the (formal) language of any theory, not just that of

set theory. O @

We intend these two symbols to be identical to their names. No philosophical or other purpose
will be served by allowing more indirection here (such as “v names u, which actually names w,
which actually is ... ").

What we have stated under (2) are requirements, not metatheorems. That is, they are nothing of
the sort that we can prove about our formal language within everyday mathematics.

This phenomenon will be visited upon in some detail in what follows. By the way, any additions
are made to the nonlogical side of the alphabet, since all the logical symbols have been given,
once and for all.

—

e

w»
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@ Wait a minute! If formal set theory is to serve as the foundation of all mathe-
matics, and if the present chapter is to assist towards that purpose, then how is
it that we are already employing natural numbers like 12000000560000009 as
subscripts in the names of object variables? How is it permissible to already talk
about “sets of symbols” when we are about to found a theory of sets formally?
Surely we do not have' any of these items yet, do we?

This protestation is offered partly in jest. We have already said that we work
within real mathematics as we build the “replicas” or “simulators” of logic
and set theory. Say we are Platonists. Then the entire body of mathematics —
including infinite sets, in particular the set of natural numbers N — is available
to us as we are building whatever we are building.

We can thus describe how we assemble the simulator and its various parts
using our knowledge of real mathematics, the language of real mathematics,
and all “building blocks” available to us, including sets, infinite or otherwise,
and natural numbers. This mathematics “exists” whether or not anyone ever
builds a formal simulator for naive set theory, or logic for that matter. Thus any
apparent circularity disappears.

Now if we are not Platonists, then our mathematical “reality” is more re-
stricted, but, nevertheless, building a simulator or not in this reality does not
affect the existence of the reality. We will, however, this time, revise our tools.
For example, if we prefer to think that individual natural numbers exist (up
to any size), but not so their collection N, then it is still possible to build our
formal languages (in particular, as many object variables as we want) — pretty
much as already described — in this restricted metatheory. We may have to
be careful not to say that we have a unending sequence of such variables, as
this would presume the existence of infinite sets in the metatheory.! We can
say instead that a variable is any object of the form v; where i is a (meaning-
less) word of (meaningless) symbols, the latter chosen out of the set or list
“0,1,2,3,4,5,6,7,8,9".

Clearly the above approach works even within a metatheory that has failed
to acknowledge the existence of any natural numbers.$ @@

In this volume we will take the normal user-friendly position that is habi-
tual nowadays, namely, that our metatheory is the Platonist’s (infinitary)
mathematics. @

T “Do not have” in the sense of having not formally defined — or proved to exist — or both.

1 A finitist would have none of it, although a post-Brouwer intuitionist would be content that such
a sequence is finitely describable.

§ Hilbert, in his finitistic metatheory, builr whatever natural numbers he needed by repeating the
stroke symbol “|”.
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1.1.4 Definition (Terminology about Strings). A symbol sequence, or expres-
sion (or string), that is formed by using symbols exclusively out of a given set
M is called a string over the set, or alphabet, M.

If A and B denote strings (say, over M), then the symbol A * B, or more
simply A B, denotes the symbol sequence obtained by listing first the symbols
of A in the given left to right sequence, immediately followed by the symbols of
B in the given left to right sequence. We say that A B is (more properly, denotes
or names) the concatenation of the strings A and B in that order.

We denote the fact that the strings (named) C and D are identical sequences
(but we just say that they are equal) by writing C = D. The symbol # denotes
the negation of the string equality symbol =. Thus, if # and ? are (we do mean
“are”) symbols from an alphabet, then #?? = #77? but #? £ #7?. We can also
employ = in contexts such as “let A = ##7”, where we give the name A to the
string ##7.}

In this book the symbol = will be used exclusively in the metatheory as equality
of strings over some set M. @

The symbol A normally denotes the empty string, and we postulate for it the
following behaviour:

A=Ar=)AA for all strings A.

We say that A occurs in B, or is a substring of B, iff % there are strings C and
D such that B = CAD. For example, “(” occurs four times in the (explicit)
string “—()V)((”, at positions 2, 3, 7, 8. Each time this happens we have an
occurrence of “(” in “—=(OV)((".

If C = A, we say that A is a prefix of B. If moreover D £ A, then we say
that A is a proper prefix of B. O

L.1.5 Definition (Terms). The set of terms, Term, is the smallest set of strings
over the alphabet 7 with the following two properties:

(1) Any of the items in LS.1 or NLS.1 (x, y, z, a, b, ¢, etc.) are included.

—

A set that supplies symbols to be used in building strings is not special. It is just a set. However,
it often has a special name: “alphabet”.

Punctuation, such as “.”, is not part of the string. One often avoids such footnotes by quoting
strings that are explicitly written as symbol sequences. For example, if A stands for the string
#, one writes A = “#”. Note that we must not write “A”, unless we mean a string whose only
symbol is A.

If and only if.

w»
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(2) If f is a function® of arity n and #, », .. ., t, are included, then so is the
string “ ftitp ... t,".

The symbols ¢, s, and u, with or without subscripts or primes, will denote
arbitrary terms. As they are used to describe the synfax of terms, we often call
such symbols syntactic variables — which is synonymous with metavariables.

a

I.1.6 Remark. (1) We often abuse notation and write f(¢,...,t,) instead of
fti.. . ty.

(2) Definition 1.1.5 is an inductive definition.! It defines a more or less com-
plicated term by assuming that we already know what simpler terms look like.
This is a standard technique employed in real mathematics (within which we are
defining the formal language). We will have the opportunity to say more about
such inductive definitions — and their appropriateness — in a & < comment
later on.

(3) We relate this particular manner of defining terms to our working def-
inition of a theory (given on p. 7 immediately before Remark I.1.1 in terms
of “rules” of formation). Item (2) in I.1.5 essentially says that we build new
terms (from old ones) by applying the following general rule: Pick an arbitrary
function symbol, say f. This has a specific formation rule associated with it.
Namely, “for the appropriate number, 7, of an already existing ordered list of
terms, tq, . .., Iy, build the new term consisting of f, immediately followed by
the ordered list of the given terms”.

For example, suppose we are working in the language of number theory.
There is a function symbol + available there. The rule associated with + builds
the new term +ts for any prior obtained terms ¢ and s. Thus, +v,v;3 and
4121 + vyvy3 are well-formed terms. We normally write terms of number the-
ory in infix notation,! i.e., t+s, vy +vy3 and vi2; +(v; +v13) (note the intrusion of
brackets, to indicate sequencing in the application of +).

A by-product of what we have just described is that the arity of a function
symbol f is whatever number of terms the associated rule will require as
input.

T We will omit from now on the qualification “symbol” from terminology such as “function sym-
bol”, “constant symbol”, “predicate symbol”.

 Some mathematicians are adamant that we call this a recursive definition and reserve the term
“induction” for “induction proofs”. This is seen to be unwarranted hairsplitting if we consider
that Bourbaki (1966b) calls induction proofs “démonstrations par récurrence”. We will be less
dogmatic: Either name is all right.

§ Function symbol placed between the arguments.
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(4) A crucial word used in 1.1.5 (which recurs in all inductive definitions) is
“smallest”. It means “least inclusive” (set). For example, we may easily think of
a set of strings that satisfies both conditions of the above definition, but which
is not “smallest” by virtue of having additional elements, such as the string

113 £33
—|—|( .

Pause. Why is “——(” not in the smallest set as defined above, and therefore
not a term?

The reader may wish to ponder further on the import of the qualification
“smallest” by considering the familiar (similar) example of N. The principle of
induction in N ensures that this set is the smallest with the properties

(i) 0isincluded, and
(@i1) if n is included, then sois n + 1.

By contrast, all of Z (set of integers), Q (set of rational numbers), and R (set
of real numbers) satisfy (i) and (ii), but they are clearly not the “smallest” such.

"®
1.1.7 Definition (Atomic Formulas). The set of aromic formulas, Af, contains
precisely:

(1) The strings ¢ = s for every possible choice of terms ¢, s.
(2) The strings Pt1, .. . t, for every possible choices of n-ary predicates P (for
all choices of n > 0) and all possible choices of terms ¢, 2, .. ., t,. O

@We often abuse notation and write P(tq,...,t,) instead of Pt;...1t,. @

1.1.8 Definition (Well-Formed Formulas). The set of well-formed formulas,
WIT, is the smallest set of strings or expressions over the alphabet 7" with the
following properties:

(a) All the members of Af are included.

(b) If.Z and . denote strings (over 7) that are included, then (.7 v .%) and
(—.2) are also included.

(c) If .7 ist a string that is included and x is any object variable (which may or
may not occur (as a substring) in the string .-%), then the string ((3x). %)
is also included. We say that . 7 is the scope of (Ix). d

 Denotes.



