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Preface

This volume contains the basics of Zermelo-Fraenkel axiomatic set theory. It is
situated between two opposite poles: On one hand there are elementary texts that
familiarize the reader with the vocabulary of set theory and build set-theoretic
tools for use in courses in analysis, topology, or algebra — but do not get into
metamathematical issues. On the other hand are those texts that explore issues
of current research interest, developing and applying tools (constructibility,
absoluteness, forcing, etc.) that are aimed to analyze the inability of the axioms
to settle certain set-theoretic questions.

Much of this volume just “does set theory”, thoroughly developing the theory
of ordinals and cardinals along with their arithmetic, incorporating a careful dis-
cussion of diagonalization and a thorough exposition of induction and inductive
(recursive) definitions. Thus it serves well those who simply want tools to ap-
ply to other branches of mathematics or mathematical sciences in general (e.g.,
theoretical computer science), but also want to find out about some of the subtler
results of modern set theory.

Moreover, a fair amount is included towards preparing the advanced reader
to read the research literature. For example, we pay two visits to Godel’s con-
structible universe, the second of which concludes with a proof of the relative
consistency of the axiom of choice and of the generalized continuum hypothesis
with ZF. As such a program requires, I also include a thorough discussion of
formal interpretations and absoluteness. The lectures conclude with a short but
detailed study of Cohen forcing and a proof of the non-provability in ZF of the
continuum hypothesis.

The level of exposition is designed to fit a spectrum of mathematical sophis-
tication, from third-year undergraduate to junior graduate level (each group will
find here its favourite chapters or sections that serve its interests and level of
preparation).

X1
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xii Preface

The volume is self-contained. Whatever tools one needs from mathematical
logic have been included in Chapter 1. Thus, a reader equipped with a com-
bination of sufficient mathematical maturity and patience should be able to
read it and understand it. There is a trade-off: the less the maturity at hand, the
more the supply of patience must be. To pinpoint this “maturity”: At least two
courses from among calculus, linear algebra, and discrete mathematics at the
junior level should have exposed the reader to sufficient diversity of mathemat-
ical issues and proof culture to enable him or her to proceed with reasonable
ease.

A word on approach. I use the Zermelo-Fraenkel axiom system with the axiom
of choice (AC). This is the system known as ZFC. As many other authors do, I
simplify nomenclature by allowing “proper classes” in our discussions as part
of our metalanguage, but not in the formal language.

I said earlier that this volume contains the “basics”. I mean this charac-
terisation in two ways: One, that all the fundamental tools of set theory as needed
elsewhere in the mathematical sciences are included in detailed exposition. Two,
that I do not present any applications of set theory to other parts of mathematics,
because space considerations, along with a decision to include certain advanced
relative consistency results, have prohibited this.

“Basics” also entails that I do not attempt to bring the reader up to speed
with respect to current research issues. However, a reader who has mastered
the advanced metamathematical tools contained here will be able to read the
literature on such issues.

The title of the book reflects two things: One, that all good short titles are
taken. Two, more importantly, it advertises my conscious effort to present the
material in a conversational, user-friendly lecture style. I deliberately employ
classroom mannerisms (such as “pauses” and parenthetical “why”’s, “what if”’s,
and attention-grabbing devices for passages that I feel are important). This
aims at creating a friendly atmosphere for the reader, especially one who has
decided to study the topic without the guidance of an instructor. Friendliness
also means steering clear of the terse axiom-definition-theorem recipe, and
explaining how some concepts were arrived at in their present form. In other
words, what makes things tick. Thus, I approach the development of the key
concepts of ordinals and cardinals, initially and tentatively, in the manner they
were originally introduced by Georg Cantor (paradox-laden and all). Not only
does this afford the reader an understanding of why the modern (von Neumann)
approach is superior (and contradiction-free), but it also shows what it tries to
accomplish. In the same vein, Russell’s paradox is visited no less than three
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xiii

times, leaving us in the end with a firm understanding that it has nothing to do
with the “truth” or otherwise of the much-maligned statement “x € x” but it is
just the result of a diagonalization of the type Cantor originally taught us.

A word on coverage. Chapter I is our “Chapter 0”. It contains the tools needed
to enable us do our job properly — a bit of mathematical logic, certainly no more
than necessary. Chapter II informally outlines what we are about to describe
axiomatically: the universe of all the “real” sets and other “objects” of our
intuition, a caricature of the von Neumann “universe”. It is explained that the
whole fuss about axiomatic set theory' is to have a formal theory derive true
statements about the von Neumann sets, thus enabling us to get to know the
nature and structure of this universe. If this is to succeed, the chosen axioms
must be seen to be “true” in the universe we are describing.

To this end I ensure via informal discussions that every axiom that is intro-
duced is seen to “follow” from the principle of the formation of sets by stages, or
from some similarly plausible principle devised to keep paradoxes away. In this
manner the reader is constantly made aware that we are building a meaningful
set theory that has relevance to mathematical intuition and expectations (the
“real” mathematics), and is not just an artificial choice of a contradiction-free
set of axioms followed by the mechanical derivation of a few theorems.

With this in mind, I even make a case for the plausibility of the axiom of
choice, based on a popularization of Godel’s constructible universe argument.
This occurs in Chapter IV and is informal.

The set theory we do allows atoms (or Urelemente),t just like Zermelo’s.
The re-emergence of atoms has been defended aptly by Jon Barwise (1975) and
others on technical merit, especially when one does “restricted set theories”
(e.g., theory of admissible sets).

Our own motivation is not technical; rather it is philosophical and ped-
agogical. We find it extremely counterintuitive, especially when addressing
undergraduate audiences, to tell them that all their familiar mathematical
objects — the “stuff of mathematics” in Barwise’s words — are just perverse
“box-in-a-box-in-a-box . .. ” formations built from an infinite supply of empty
boxes. For example, should I be telling my undergraduate students that their
Sfamiliar number “2” really is just a short name for something like D@ ”?
And what will I tell them about “+/27"?

T 0.K., maybe not the whole fuss. Axiomatics also allow us to meaningfully ask, and attempt to
answer, metamathematical questions of derivability, consistency, relative consistency, indepen-
dence. But in this volume much of the fuss is indeed about learning set theory.

¥ Allows, but does not insist that there are any.
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Some mathematicians have said that set theory (without atoms) speaks only
of sets and it chooses not to speak about objects such as cows or fish (colourful
terms for urelements). Well, it does too! Such (“atomless”) set theory is known
to be perfectly capable of constructing “artificial ” cows and fish, and can then
proceed to talk about such animals as much as it pleases.

While atomless ZFC has the ability to construct or codify all the familiar
mathematical objects in it, it does this so well that it betrays the prime directive
of the axiomatic method, which is to have a theory that applies to diverse
concrete (meta — i.e., outside the theory and in the realm of “everyday math”)
mathematical systems. Group theory and projective geometry, for example,
fulfill the directive.

In atomless ZFC the opposite appears to be happening: One is asked to
embed the known mathematics into the formal system.

We prefer a set theory that allows both artificial and real cows and fish, so that
when we want to illustrate a point in an example utilizing, say, the everyday set
of integers, Z, we can say things like “let the atoms (be interpreted to) include
the members of Z . ...

But how about technical convenience? Is it not hard to include atoms in a
formal set theory? In fact, not at all!

A word on exposition devices. I freely use a pedagogical feature that, I believe,
originated in Bourbaki’s books — that is, marking an important or difficult topic
by placing a “winding road” sign in the margin next to it. I am using here the
same symbol that Knuth employed in his TgXbook, namely, <, marking with
it the beginning and end of an important passage.

Topics that are advanced, or of the “read at your own risk” type, can be
omitted without loss of continuity. They are delimited by a double sign, ©<.

Most chapters end with several exercises. I have stopped making attempts to
sort exercises between “hard” and “just about right”, as such classifications are
rather subjective. In the end, I’ll pass on to you the advice one of my professors
at the University of Toronto used to offer: “Attempt all the problems. Those you
can do, don’t do. Do the ones you cannot”.

What to read. Just as in the advice above, I suggest that you read everything
that you do not already know if time is no object. In a class environment the
coverage will depend on class length and level, and I defer to the preferences of
the instructor. I suppose that a fourth-year undergraduate audience ought to see
the informal construction of the constructible universe in Chapter IV, whereas
a graduate audience would rather want to see the formal version in Chapter VI.
The latter group will probably also want to be exposed to Cohen forcing.
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