SOLITON EQUATIONS AND THEIR ALGEBRO-GEOMETRIC SOLUTIONS
Volume II: (1 + 1)-Dimensional Discrete Models

As a partner to Volume I: (1 + 1)-Dimensional Continuous Models, this monograph provides a self-contained introduction to algebro-geometric solutions of completely integrable, nonlinear, partial differential-difference equations, also known as soliton equations.

The systems studied in this volume include the Toda lattice hierarchy, the Kac–van Moerbeke hierarchy, and the Ablowitz–Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker–Akhiezer functions, and theta function representations of all relevant quantities involved.

The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and, especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices. Detailed notes for each chapter, together with an exhaustive bibliography, enhance understanding of the main results.

Reviews of Volume I:
‘...this is a book that I would recommend to any student of mine, for clarity and completeness of exposition...Any expert as well would enjoy the book and learn something stimulating from the sidenotes that point to alternative developments. We look forward to Volumes II and III!’
Mathematical Reviews

‘The book is very well organized and carefully written. It could be particularly useful for analysts wanting to learn new methods coming from algebraic geometry.’
EMS Newsletter
CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS

Editorial Board:
B. Bollobás, W. Fulton, A. Katok, F. Kirwan, P. Sarnak, B. Simon, B. Totaro

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit:
http://www.cambridge.org/series/sSeries.asp?code=CSAM

Already published
55 D. Bump Automorphic forms and representations
56 G. Laumon Cohomology of Drinfeld modular varieties II
57 D.M. Clark & B.A. Davey Natural dualities for the working algebraist
58 J. McCleary A user’s guide to spectral sequences II
59 P. Taylor Practical foundations of mathematics
60 M. P. Brodmann & R. Y . Sharp Local cohomology
61 J. D. Dixon et al. Analytic pro-p groups
62 R. Stanley Enumerative combinatorics II
63 R. M. Dudley Uniform central limit theorems
64 J. Jost & X. Li-Jost Calculus of variations
65 A. J. Berrick & M. E. Keating An introduction to rings and modules
66 S. Morosawa Holomorphic dynamics
67 A. J. Berrick & M. E. Keating Categories and modules with K-theory in view
68 K. Sato Levy processes and infinitely divisible distributions
69 H. Hida Modular forms and Galois cohomology
70 R. Iorio & V. Iorio Fourier analysis and partial differential equations
71 R. Blei Analysis in integer and fractional dimensions
72 F. Borceaux & G. Janelidze Galois theories
73 B. Bollobás Random graphs
74 J. M. Dudley Real analysis and probability
75 T. Sheil-Small Complex polynomials
76 C. Voisin Hodge theory and complex algebraic geometry, I
77 C. Voisin Hodge theory and complex algebraic geometry, II
78 V. Paulsen Completely bounded maps and operator algebras
79 F. Gesztesy & H. Holden Soliton Equations and Their Algebraic-Geometric Solutions, I
80 S. Mukai An Introduction to Invariants and Moduli
81 J. J. Duistermaat & J. A. C. Kolk Multidimensional Real Analysis I
82 G. Tourlakis Lectures in Logic and Set Theory, I
83 R. A. Bailey Introduction to Foliations and Lie Groupoids
84 J. Kollár, K. E. Smith & A. Corti Rational and Nearly Rational Varieties
85 J. Carlson, S. Müller-Stach & C. Peters Period Mappings and Period Domains
86 J. J. Duistermaat & J. A. C. Kolk Multidimensional Real Analysis II
87 M. Golumbic & A. N. Trenk Tolerance Graphs
88 R. Carter Lie Algebras of Finite and Affine Type
89 M. Marcus & J. Rosen Markov Processes, Gaussian Processes, and Local Times
90 L. Harper Global Methods for Combinatorial Isoperimetric Problems
91 I. Moerdijk & J. Mrcun Introduction to Foliations and Lie Groupoids
92 J. Kollár, K. E. Smith & A. Corti Rational and Nearly Rational Varieties
93 R. Carter Lie Algebras of Finite and Affine Type
94 H. L. Montgomery, R. C. Vaughan & M. Schroeder Multiplicative Number Theory I
95 J. Chavel Riemannian Geometry
96 D. Goldfeld Automorphic Forms and L-Functions for the Group GL(n,R)
97 R. Carter Lie Algebras of Finite and Affine Type
98 J. Bertoin Random Fragmentation and Coagulation Processes
99 J. Bertoin Random Fragmentation and Coagulation Processes
100 E. Frenkel Langlands Correspondence for Loop Groups
101 A. Kirillov An Introduction to Lie Groups and Lie Algebras
102 F. Gesztesy & H. Holden Soliton Equations and Their Algebraic-Geometric Solutions, II
103 T. Tao & V. H. Vu Additive Combinatorics
104 T. Tao & V. H. Vu Additive Combinatorics
105 E. B. Davies Linear Operators and their Spectra
106 T. Kaczynski Complex Analysis
107 T. Ceccherini-Silberstein, F. Scarabotti, F. Tolli Harmonic Analysis on Finite Groups
108 T. Ceccherini-Silberstein, F. Scarabotti, F. Tolli Harmonic Analysis on Finite Groups

To
Gloria
Christian, Mads, Frederik, and Daniel
Elli, Peter, and Franziska
Susanne, Simon, and Jakob
Contents

<table>
<thead>
<tr>
<th>Acknowledgments</th>
<th>page ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1 The Toda Hierarchy</td>
<td></td>
</tr>
<tr>
<td>1.1 Contents</td>
<td>25</td>
</tr>
<tr>
<td>1.2 The Toda Hierarchy, Recursion Relations, Lax Pairs, and Hyperelliptic Curves</td>
<td>26</td>
</tr>
<tr>
<td>1.3 The Stationary Toda Formalism</td>
<td>41</td>
</tr>
<tr>
<td>1.4 The Stationary Toda Algebro-Geometric Initial Value Problem</td>
<td>72</td>
</tr>
<tr>
<td>1.5 The Time-Dependent Toda Formalism</td>
<td>84</td>
</tr>
<tr>
<td>1.6 The Time-Dependent Toda Algebro-Geometric Initial Value Problem</td>
<td>103</td>
</tr>
<tr>
<td>1.7 Toda Conservation Laws and the Hamiltonian Formalism</td>
<td>117</td>
</tr>
<tr>
<td>1.8 Notes</td>
<td>145</td>
</tr>
<tr>
<td>2 The Kac–van Moerbeke Hierarchy</td>
<td></td>
</tr>
<tr>
<td>2.1 Contents</td>
<td>161</td>
</tr>
<tr>
<td>2.2 The KM Hierarchy and its Relation to the Toda Hierarchy</td>
<td>162</td>
</tr>
<tr>
<td>2.3 The Stationary KM Formalism</td>
<td>172</td>
</tr>
<tr>
<td>2.4 The Time-Dependent KM Formalism</td>
<td>178</td>
</tr>
<tr>
<td>2.5 Notes</td>
<td>181</td>
</tr>
<tr>
<td>3 The Ablowitz–Ladik Hierarchy</td>
<td></td>
</tr>
<tr>
<td>3.1 Contents</td>
<td>186</td>
</tr>
<tr>
<td>3.2 The Ablowitz–Ladik Hierarchy, Recursion Relations, Zero-Curvature Pairs, and Hyperelliptic Curves</td>
<td>187</td>
</tr>
<tr>
<td>3.3 Lax Pairs for the Ablowitz–Ladik Hierarchy</td>
<td>202</td>
</tr>
<tr>
<td>3.4 The Stationary Ablowitz–Ladik Formalism</td>
<td>220</td>
</tr>
</tbody>
</table>
Contents

3.5 The Stationary Ablowitz–Ladik Algebro-Geometric Initial Value Problem 236
3.6 The Time-Dependent Ablowitz–Ladik Formalism 249
3.7 The Time-Dependent Ablowitz–Ladik Algebro-Geometric Initial Value Problem 267
3.8 Ablowitz–Ladik Conservation Laws and the Hamiltonian Formalism 281
3.9 Notes 314

Appendices

A	Algebraic Curves and Their Theta Functions in a Nutshell	324
B	Hyperelliptic Curves of the Toda-Type	353
C	Asymptotic Spectral Parameter Expansions and Nonlinear Recursion Relations	365
D	Lagrange Interpolation	385

List of Symbols 395
Bibliography 398
Index 423
Errata and Addenda for Volume I 426
Acknowledgments

It’s been a hard day’s night,
and I’ve been working like a dog.
It’s been a hard day’s night,
I should be sleeping like a log.

J. Lennon/P. McCartney

This monograph is the second volume focusing on a certain class of solutions, namely the algebro-geometric solutions of hierarchies of soliton equations. While we studied nonlinear partial differential equations in one space and one time dimension in the first volume, with the Korteweg–de Vries (KdV) and AKNS hierarchies as the prime examples, we now discuss differential-difference equations, where the time variable is continuous, while the one-dimensional spatial variable is discretized in this second volume. The key examples treated here in great detail are the Toda and Ablowitz–Ladik lattice hierarchies.

As in the case of the previous volume, we have tried to make the presentation as detailed, explicit, and precise as possible. The text is aimed to be self-contained for graduate students with sufficient training in analysis. Ample background material is provided in the appendices. The notation is consistent with that of Volume I, whenever possible (but the present Volume II is independent of Volume I).

To a large extent this enterprise is the result of joint work with several colleagues and friends, in particular, Wolfgang Bulla and Jeff Geronimo.

The writing, and in particular the typesetting of a technical manuscript is no easy task. As was the case for Volume I we have had the great fortune to be assisted by Harald Hanche-Olsen whenever we got stuck, and we appreciate his unselfish assistance.

Parts of the manuscript have been read by Emma Previato and Maxim Zinchenko. We gratefully acknowledge their constructive comments. We are particularly indebted to Emma Previato for the comprehensive list of misprints we received and

1 A Hard Day’s Night (1964).
Acknowledgments

for her enthusiasm about this project in general. Her efforts required a considerable
time commitment and we truly appreciate her help. We are also very grateful to Engui
Fan for supplying us with a large number of corrections for Volume I.

The web-page with URL

www.math.ntnu.no/~holden/solitons

contains an updated list of misprints and comments for Volume I and will include the
same for this volume. Please send pertinent comments to the authors.

Our research in this area has been funded in part by the Research Council and the
Office of Research of the University of Missouri, Columbia, the US National Science
Foundation, the Research Council of Norway, and the Austrian Science Fund (FWF)
under Grants No. P17762, Y330, and J2655.

Over the duration of this project we have enjoyed the very friendly hospitality
of several institutions, including Imperial College, New York University, Institut
Mittag-Leffler, University of Vienna, University of Missouri, Columbia, and the Nor-
wegian University of Science and Technology, and we are grateful for their generous
support.

July 7, 2008

Fritz Gesztesy
Department of Mathematics
University of Missouri
Columbia, MO 65211
USA
fritz@math.missouri.edu
www.math.missouri.edu/personnel/
faculty/gesztesy.html

Helge Holden
Department of Mathematical Sciences
Norwegian University of Science and Technology
NO–7491 Trondheim
Norway
holden@math.ntnu.no
www.math.ntnu.no/~holden/

Johanna Michor
Fakultät für Mathematik
Universität Wien
Nordbergstr. 15
1090 Wien
Austria
jmichor@esi.ac.at
www.mat.univie.ac.at/~jmichor/

Gerald Teschl
Fakultät für Mathematik
Universität Wien
Nordbergstr. 15
1090 Wien
Austria
Gerald.Teschl@univie.ac.at
www.mat.univie.ac.at/~gerald/

© Cambridge University Press www.cambridge.org